
A Human-Robot Interface for Urban Search and Rescue

Bruce A. Maxwell, Nicolas Ward, and Frederick Heckel
Swarthmore College

Swarthmore, PA 19081
{maxwell, nward2, fheckel1}@swarthmore.edu

From: AAAI Technical Report WS-03-01. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved.
Abstract
This paper describes the Swarthmore College entry in the
2003 Urban Search and Rescue [USR] Event at the 2003
American Association for Artificial Intelligence Robot
Competition. The primary focus of Swarthmore’s entry was
the development of a fast, responsive user interface for
effectively tele-operating a robot with some autonomous
capability. This interface was inspired by first-person video
game interfaces, and enabled Swarthmore to place second in
the 2003 USR competition.

Introduction
The Urban Search and Rescue [USR] event at the American
Association for Artificial Intelligence [AAAI] Robot Com-
petition challenges robot teams to find victims in a simu-
lated urban environment. In order to be successful at this
task, the robot must answer three questions:

1. Where should it search?
2. How should it get there?
3. How does it identify victims?

The most successful teams so far answer these questions
by providing a human operator with as much information as
possible about the situation so that they can answer the
questions accurately. Currently, the second question--
regarding local navigation--is the only one of these three
questions for which teams have attempted to give the robots
autonomy.

It is our belief that the eventual solution to this problem
will be a combination of effective user interfaces and robust
autonomy on the part of the robot in answering the ques-
tions above. In other words, it is important to have a human
in the loop, but the human should be processing and
answering the most difficult questions encountered in the
search, not providing input about basic search patterns or
navigation except in difficult circumstances.

Since robust autonomous systems are still a difficult
research problem, effective user interfaces are critical.
Thus, the focus of our 2003 USR entry was to develop an
effective, responsive user interface that permitted the opera-
tor to use a range of autonomy in navigation, and provide
the greatest flexibility in the use of the robot’s hardware. As
a result of the effective interface and the robot’s limited

navigational autonomy, Swarthmore placed second in the
2003 competition.

Robot Hardware and Software
Swarthmore’s robots in the USR competition were two iRo-
bot/RWI Magellan Pro’s with onboard 450MHz Pentium III
computers running Linux. Figure 1 shows one of the robots
entering the USR arena. The Magellans come with 16 sen-
sor panels, each containing a bump sensor, an IR sensor,
and a sonar. In addition, each Magellan has a Canon VC-C4
pan-tilt-zoom [PTZ] camera mounted on top, near the front,
with a pan range of -100º to 100º, a tilt range of -30º to 90º,
and a 16X optical zoom. The camera video is connected to
a bt848-based PCI framegrabber, and it receives pan-tilt-
zoom commands via the serial port.

Because the robots are wheeled, and do not have a high
clearance, they are only able to enter the yellow area of the
arena. So the focus of the interface is on making the opera-
tor more productive, providing a large quantity of accurate
information about the environment, and enabling the robot
to traverse the area faster.

The software used locally on the robot to manage the
robot’s navigation and sensors in the 2003 contest was
based on the REAPER software originally developed at
Swarthmore for the AAAI contest in 2000 (Maxwell et. al.
2001). Since then, the majors changes have involved
upgrades to the vision system (Maxwell et. al. 2003), and
the use of the Inter-Process Communication [IPC] package
for all communication between processes (Simmons and
James, 2001).

.Copyright 2003. American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Figure 1: One of the Magellans entering the USR arena.

Human-Robot Interface
The primary focus of our work for the 2003 contest was the
interface for managing the robot during the Urban Search
and Rescue [USR] task. The interface is a set of non-local
(to the robot) applications that permit an operator to man-
age one or two robots simultaneously. Communication with
the processes local to the robot occurs via IPC. The inter-
face implements the concept of sliding autonomy, where
the operator is able to give the robots more or less decision-
making ability depending upon the situation. This interface
is described in detail in the following section.

Motivation
Early in the course of this design project, it was realized
that the greatest advances in user interfaces [UI] in the past
ten years have been made in the realm of video games.
Computer and console games alike must have clear inter-
faces which provide the player with both controls and infor-
mational displays that allow for very fast response times to
situations in a dynamic environment. These interfaces have
developed at an incredibly rapid pace, with perhaps the pin-
nacle of UI design being that of so-called First-Person
Shooter [FPS] games (Unreal Tournament, 1999). FPS
games are the most appropriate interface paradigm for a
project such as USR, as they represent a three dimensional
world with which the player can interact. Navigating a
three-dimensional game world in search of computer-gen-
erated enemies is analogous to the task of finding injured
and/or trapped victims in a USR scenario. Mapping that
three-dimensional environment down to a two-dimensional
computer display is simple enough using a live video feed,
but making it intelligible, informative, and useful for the
robot operator is far more difficult.

Design
The most successful FPS games have very simple inter-
faces: the main portion of the interface is dedicated to a
large viewing area that contains the game world. Small sta-
tus areas around the perimeter are allocated for information
regarding the player’s health and equipment. Most games
also have a radar mini-map showing the direction to ene-
mies or other players, as well as a separate screen contain-
ing a map of the current game level.

The robot interface focuses on three sources of informa-
tion: a video stream from the robot’s PTZ camera, a “radar”
view visualizing the range sensor data (sonar and infrared,
combined) from the robot, and a manually updated map
view showing the robot’s internal map of the navigated
area. Together, these three windows, shown in Figure 2,
bring the robot’s view of the world to the remote operator.

Simplifying the interface reduces on-screen clutter, but
also precludes having visual duplicates of the robot’s
motion and camera controls. This means that most of the
control must be done via the computer’s keyboard, much
like an FPS. The standard WASD directional pad is pre-
ferred by many right-handed gamers, because it puts most
of the basic controls within one key of the fingers of the left
hand, and frees up the right hand for using the mouse.
Unfortunately, “mouselook”, where moving the mouse
rotates the player’s head in the game world, was not some-
thing that could be implemented with the robot’s existing
PTZ camera implementation. Because of this limitation, a
second d-pad control was created for the camera using
UHJK on a QWERTY keyboard. With the operator’s left
and right hands resting on the keyboard, the vast majority of
the interface controls are a single keypress away. The oper-
ator can use the fast-twitch muscles in their hand to react as
quickly as possible to changing conditions in the robot’s
environment.

Figure 2: (a) Standard video and navigation interface
screen, (b) expanded screen with button controls, (c) map
screen showing a map built by the robot in USR run 3, (d)
sensor and camera status display.

(a)

(b)

(c)(d)

Interest Points
The mouse does play one important role in interacting with
the video image received from the robot: it allows the oper-
ator to set and manipulate points of interest, including land-
marks and victim locations, which are then stored in the
robot’s map. The operator’s own human visual system pro-
vides the brain behind what the robot is seeing.

The operator can set an interest point on the ground by
clicking on the image. The robot will use its current posi-
tion and camera orientation data to calculate the location of
the selected point in the world by assuming that the click
occurred somewhere in the ground plane. This ability to
orient on local landmarks reduces errors in localization.

The robot’s internal localization is based on odometry
and dead reckoning, which means that the robot’s position
and orientation become increasingly inaccurate as it moves.
The orientation is the most likely of the three coordinates to
be incorrect, so the operator can use previously set land-
marks to correct the robot’s orientation. If the operator sees
that the current landmark--whose estimated position is
highlighted in the display--no longer matches the real-
world position where it was originally set, they can click on
the landmark object again. The program uses the current
position of the robot and the stored position of the land-
mark, along with the newly recalculated vector to the land-
mark, to reset the robot’s global orientation. This correction
can remove unwanted bends and curves on the map that are
caused by a drift in the robot’s orientation.

The ability to set landmarks significantly improved the
accuracy of the robot’s generated map, and allowed the
addition of some unique features. The method used for cap-
turing the landmark point is essentially the mathematical
inverse of the calculations necessary to draw ground plane
bars on the image, which permit the operator to estimate
distances in the scene.

When drawing the ground plane bars, a distance from the
robot (0.5 meter intervals) and a heading (directly ahead)
are converted into a pixel coordinate. For the landmarks, the
image position of the mouse click is converted into a global
2-D position in the ground plane of the world. The first step
is to calculate the vertical angle between the ground plane
and the line of sight from the camera to the interest point,

(1)

where tilt is the vertical tilt of the camera, r is the row (y
pixel) in the image where the mouse event occurred, H is
the height of the image in pixels, and FOVv is the vertical
field of view of the camera. This is a linear approximation
to the true tilt angle of the pixel, as it assumes each pixel
corresponds to an equal angle in the field of view, but works
well enough for the field of view used by the robot.

This angle can be used to calculate the distance along the
ground plane from the camera to the interest point, and thus
from the robot’s current location (designated as the center
of the robot) to the interest point,

(2)

where Cz is the vertical distance between the camera and
the ground and Cx is the distance from the camera to the
center of the robot.

In addition to the distance, we can also calculate the ori-
entation of the interest point relative to the robot using a lin-
ear approximation,

(3)

where FOVh is the horizontal FOV of the camera, W is the
width of the image in pixels, c is the column (x pixel) in the
image where the mouse event occurred, and pan is the hori-
zontal pan position of the camera.

Once the system has the distance and orientation of the
interest point relative to the robot’s current position, it gen-
erates a fixed global map location for the interest point. As
the robot moves, the estimated location of the interest point
is displayed on the operator’s screen. If the estimated loca-
tion and the actual location differ, then the operator can fix
the robot’s estimated orientation by clicking again on the
interest point. We make the assumption that errors in (x, y)
location are small compared to errors in orientation, and
those assumptions allow us to correct theta based on the
user specified landmarks.

The ability to select interest points, however, is more
generally useful than just correcting the robot’s orientation.
After the user selects a point, the system can query the user
for other data that should be associated with it. In the USR
competition, for example, creating a victim interest point
brings up a form giving the user the opportunity to fill out
the information required for each victim as part of the com-
petition. Figure 3 shows an example victim dialog box.

Using the victim data collected from the operator, the
interface was able to generate a web page on the fly. In a
real USR situation, this page could be served over a wire-
less network from the operator’s computer to rescue work-
ers with properly equipped PDAs. The rescuers would then
have instant access to the victim’s status, an image of the
victim and the surrounding structure, a map to the victim
with a robot-navigable path highlighted, and images of any
navigation points set along that path. Once the map accu-
racy is significantly improved, this kind of information
access will be highly useful to human rescue workers.
Returning this data also fulfills the robot’s role as a scout
into a potentially dangerous situation.

φ π
2
--- tilt– 

  r
H
2
----– 

  FOV v

H
---------------+=

d
Cz

φ()tan
---------------- Cx+=

θ
FOV h

W
--------------- W

2
----- c– 

  pan+=

Results and Evaluation
The competition provided a number of insights into the
strengths and weaknesses of the user interface. Some of
these were a result of design choices, while others were a
result of hardware or software limitations on the robot
itself.

One of the design choices, for example, was to make the
default screen use the keyboard exclusively for low level
control of the robot. For an experienced user, the improve-
ment gained by using only the keyboard exclusively is valu-
able and saves time relative to a mouse. Unfortunately,
having a large number of controls accessible only by poten-
tially hard-to-remember keystrokes dramatically increases
the interface learning curve. An operator who has trained
on the interface will have no problems, and a new operator
who has experience playing FPS games with similar key
layouts will be able to adjust quickly.

New operators with little or no gaming experience, on the
other hand, may find the interface too obscured. During the

time that they would spend learning the keyboard layout
they would be effectively useless in a real operational set-
ting, due to very slow response times and an increased inci-
dence of mistaken keypresses that could endanger the robot
through inadvertent motion.

This problem became obvious when a new operator with
effectively no gaming experience attempted to use the inter-
face. Even after a brief training period, and making the
mouse-based controls visible, the operator was barely able
to get the robot to move, let alone use it to search for vic-
tims. When considering the trade-off between efficiency for
a trained user and usability for a wide range of inexperi-
enced users, the increased efficiency granted by the key-
board interface is more important in the field. However, the
mouse-based interface is still necessary if there is a need for
naive users to manage the robots. Training a new user
would not require a significant investment in time or
resources, but enough to acclimate the user to the interface.

One of the limitations of the underlying system that we
found during the competition was that the landmark correc-
tion system itself was error-prone. Setting a landmark too
close to the robot or setting and resetting landmarks too
often could lead to sudden jumps in orientation. Setting one
landmark some distance ahead of the robot and then not set-
ting a new landmark until the first one was reached gave
better maps. Since the setting of landmarks is totally up to
the discretion of the operator, this practice either comes
with experience or as part of the operator’s training.

A second limitation of the underlying system was that the
autonomous navigation was too jerky to permit effective
monitoring of long forward motions by the operator. Thus,
although the magnitude of the robot’s forward motion or
rotation could be set to an arbitrary value before sending a
move or rotate command, we found that small rotations or
motions worked best. Asking the robot to travel several
meters in a straight line using its own obstacle avoidance
simply did not work well in the enclosed spaces with noisy
sensors. This is clearly an area for future improvement in
the underlying navigation system.

Making large rotations (greater than an eighth of a turn,
or about 45˚) seriously exacerbated the motion errors, and
also tended to disorient the operator when the video blurred
and lagged. Using short forward motions (less than 0.5
meters) and small angles (around π/10 radians) allowed the
operator to nudge the robot in the desired direction without
worrying as much about the robot’s own behaviors sud-
denly kicking in to avoid an obstacle. Smaller motions also
made far more accurate maps, which made the victim data
web pages more useful.

For the camera’s PTZ controls, a small step angle
(around π/8 radians) was set for tilting and panning. There
are also jump-to options for moving the camera to the limit
of its PTZ ranges, as well as for quickly resetting the cam-
era to a straight ahead view.

Figure 3: Dialog window for entering victim data.

Finally, user disorientation can be a serious problem for
any sort of tele-operation interface. For this project, there
were several occasions where the operator was driving the
robot around with the camera off-center, so the operator’s
perception of forward did not match the actual orientation
of the robot. This type of human error slows down progress
considerably, since the operator is constantly fighting the
robot’s correct behavior. When using veto mode (when the
operator completely overrides the robot’s behaviors), the
operator must be very careful to orient themselves and the
robot properly. Otherwise, they stand a chance of damaging
the robot or getting it trapped. Usually this problem was
caused by the operator ignoring one of the status displays,
like the camera orientation or the range information. These
problems inspired the operator mantra “Always trust your
robot!”, since a remote operator is forced to make some
(possibly incorrect) assumptions about the robot’s situation.

Conclusions and Future Work
One of the biggest weaknesses of the interface actually has
nothing to do with the interface itself: the frame rate of the
video transmitted by the robot is too low. The choppy image
disconnects the operator from the reality viewed by the
robot, and may allow some important information to be
missed while the robot is in motion. Because of this, it is
hoped that the video transmission speed can be improved
independently of the interface program.

There are two ways of improving the video rate, and both
of them will probably be implemented in the future. The
robot’s wireless system could be switched from the older
and slower 802.11 protocol to the faster 802.11b protocol,
while sacrificing some of the operational range, thus
increasing the bandwidth of the signal. In addition to
increasing the bandwidth, we can implement some form of
compression, since the video data is currently sent as raw
data through IPC over TCP/IP. The compression may
involve using a standard image compression library to
reduce the size of each video frame, and it could even use
some form of temporal compression so that only those
image pixels which have changed since the last frame are
transmitted. As well as increasing the frame rate, the sys-
tem could also use the added bandwidth make the image
larger. A higher resolution image would have a marked
effect on picture quality.

The interface as it stands right now is certainly usable,
and by most standards is decent. However, there is still
room for improvement. Before changing the UI itself, com-
munication from the robot to the user needs to be improved.
Most of these steps are a form of idiot-proofing to prevent
the user from making a potentially catastrophic error. Alerts
will be added to prevent the robot from moving forward if
the PTZ camera is not facing forward, to avoid crashes
when using veto mode, and to look for sudden and impossi-

ble jumps in position or orientation. Such emergency infor-
mation should prevent the operator from accidentally
damaging the robot through human error. One thing that
might improve the initial experience for a new operator
would be the use of a keyboard overlay with clearly labeled
controls. For a larger hardware investment, some sort of
custom joystick and keypad system might make the interac-
tion with the interface even easier to use.

All of the rest of the potential changes fall under the
umbrella goal of making the interface even more like an
FPS game. The first is to emphasize the video feed, making
it the largest displayed widget. This means improving the
video transmission to allow for a larger image, as well as
removing unnecessary widgets and controls from around
the video display. Once this is done, more of the status con-
trols can be moved from textual elements to a transparent
heads-up display [HUD] system overlaid onto the video
itself. This would eliminate the need for the separate xrobo-
view application, since the PTZ display and “radar” would
both be drawn (albeit on a smaller scale) directly onto the
video image instead of in their own window. Finally,
because the map already only updates at the command of
the user, it would be moved from the separate xmap appli-
cation to being displayed in place of the video image. Tog-
gling between the normal view and the map screen would
be allowed only when the robot was stationary.

Implementing mouselook--where the orientation of
either the robot or the camera follows the mouse--while in
video mode would also be an improvement.

Last, but certainly not least, the entire view that is now
contained in one image should become a full-screen inter-
face, with all of the afore-mentioned changes implemented.
Building all of this functionality into a HUD, and including
the afore-mentioned operator alerts should allow the opera-
tor to avoid some of the problem that had to be dealt with
during the competition. At that point the interface would be
indistinguishable from any number of FPS games currently
on the market. This complete transformation is the ultimate
goal of the USR tele-operation interface.

Additional work is planned for the software running on
the robots themselves. This work will affect obstacle avoid-
ance/path planning, mapping, and cooperation between the
robots. The first major addition is a new navigation mod-
ule,. At the core of this new module is the concept of Veloc-
ity Space, which will do a better job of keeping the robots’
trajectories more even, improving their speed, and improv-
ing their response to commands (Fox et. al. 1997). The cur-
rent control module is not perfectly suited to the task of
tele-operated urban search and rescue, but the new naviga-
tion module should fill the niche quite nicely.

In addition to the navigation module, we will be improv-
ing the mapping module, and hopefully integrating simulta-
neous localization and mapping [SLAM] to get more
accurate maps. The new mapping system will also provide a

more general solution which can be applied to other prob-
lem domains (such as Robot Soccer) in a more effective
manner.

Related to this is our plan to enable the robots to commu-
nicate with each other-- when synthesized with SLAM, our
robots as a group should be able to generate very good
maps. Some level of strategy will also be explored with
multiple robots, such as having three robots, each following
the one in front. When a decision point (fork in the path) is
reached, one robot will stay behind, to enable us to more
quickly explore an area without backtracking.

Acknowledgements
This work was supported in part by NSF IIS-0308186, and
the American Association for Artificial Intelligence.

References
[1] Dieter Fox, Wolfram Burgard, and Sebastian Thrun,

“The Dynamic Window Approach to Collision Avoid-
ance”, IEEE Robotics & Automation Magazine, 4(1),
March 1997.

[2] B. A. Maxwell, L. A. Meeden, N. S. Addo, P. Dickson,
N. Fairfield, N. Johnson, E. G. Jones, S. Kim, P. Malla,
M. Murphy, B. Rutter, E. Silk, 2001, “REAPER: A
Reflexive Architecture for Perceptive Agents”, AI
Magazine, American Association for Artificial Intelli-
gence, 22(1): 53-66.

[3] B. A. Maxwell, N. Fairfield, N. Johnson, P. Malla, P.
Dickson, S. Kim, S. Wojtkowski, T. Stepleton, “A
Real-Time Vision Module for Interactive Perceptual
Agents”, Machine Vision and Applications, 14, pp. 72-
82, 2003.

[4] Reid Simmons and Dale James, Inter-Process Commu-
nication: A Reference Manual, Carnegie Mellon Uni-
versity, March 2001.

[5] Unreal Tournament, Epic Games Inc, 1999.

	Abstract
	This paper describes the Swarthmore College entry in the 2003 Urban Search and Rescue [USR] Event...

	Introduction
	1. Where should it search?
	2. How should it get there?
	3. How does it identify victims?

	Robot Hardware and Software
	Figure 1 : One of the Magellans entering the USR arena.

	Human-Robot Interface
	Motivation
	Design
	Figure 2 : (a) Standard video and navigation interface screen, (b) expanded screen with button co...

	Interest Points
	(1)
	(2)
	(3)
	Figure 3 : Dialog window for entering victim data.

	Results and Evaluation
	Conclusions and Future Work
	Acknowledgements
	References
	[1] Dieter Fox, Wolfram Burgard, and Sebastian Thrun, “The Dynamic Window Approach to Collision A...
	[2] B. A. Maxwell, L. A. Meeden, N. S. Addo, P. Dickson, N. Fairfield, N. Johnson, E. G. Jones, S...
	[3] B. A. Maxwell, N. Fairfield, N. Johnson, P. Malla, P. Dickson, S. Kim, S. Wojtkowski, T. Step...
	[4] Reid Simmons and Dale James, Inter-Process Communication: A Reference Manual, Carnegie Mellon...
	[5] Unreal Tournament, Epic Games Inc, 1999.

	A Human-Robot Interface for Urban Search and Rescue
	Bruce A. Maxwell, Nicolas Ward, and Frederick Heckel
	Swarthmore College
	Swarthmore, PA 19081
	{maxwell, nward2, fheckel1}@swarthmore.edu

