
ButlerBot: The Robotic Butler

Diana David, Zion Adika, Liu Yang, Vitaly Bokser
Additional Team Members: Edmond Hakimian (Data Integration)

 Zeynep Altinbas (Speech Recognition)
 Richard Spillane (Computer Vision)

Stony Brook University
Computer Science Department
Stony Brook, NY 11794-4400

ddavid@ic.sunysb.edu, yliu@cs.sunysb.edu

Abstract
ButlerBot is a robotic butler created to cater to people’s
questions at the International Joint Conference on Artificial
Intelligence (IJCAI) 2003 conference and to escort people
to desired destinations. The three main areas of research
focused on in ButlerBot, the Stony Brook Robot Design
Team’s new robot created for the American Association of
Artificial Intelligence's (AAAI) Robot Host competition,
are navigation, computer vision and data server / human
interaction. ButlerBot was the second place winner at the
AAAI 2003 Robot Host competition.

Introduction
At the 2003 International Joint Conference on Artificial
Intelligence (IJCAI), the American Association of
Artificial Intelligence (AAAI) held its annual robotics
competition and exhibition. Robots had the option to enter
four different events including the robot host, the robot
exhibition, the robot rescue and the robot challenge.
 The robot host event involves serving data related to the
IJCAI conference to people in attendance, as well as
escorting users from their current location to a desired
destination. Teams participating in the robot exhibition
event are able to show interesting and unique research in
the field of robotics that is perhaps not covered by any of
the other events. For the robot rescue event, AAAI creates
a scenario where a disaster has occurred and thus left
dummy-people trapped. Robots then search through the
rubble to locate potential victims they could save. The
robot challenge event participants create robots capable of
finding their way to the conference registration desk,
registering themselves, finding the room they are meant to
present in and then giving a presentation on themselves
and the technologies used in their creation.
 The Stony Brook Robot Design Team created ButlerBot
for the AAAI robot host event and robot exhibition event.
In the matter of three short months, all of ButlerBot was
designed, implemented and ready to serve as a butler at the

conference. The team was divided into three subgroups:
navigation, computer vision and data server / human
interaction. The navigation group focused on escorting
people from one location to another while simultaneously
tracking itself. The computer vision group worked closely
with the navigation group for example to help the robot
realize its position based on landmarks, which were red,
green, blue and yellow balloons. The data server / human
interaction group devised a way to store relevant
conference information to serve to individuals and created
a user-friendly interface to interact with people.

System Architecture
The main driver of ButlerBot’s software system is a Finite
State Machine (FSM). The four main components
connected to the driver are the user interface, navigation,
vision and the text processing / information server. All of
the components communicate via TCP/IP socket
connections. Figure 1 shows how ButlerBot’s system
architecture was designed to interact.

Figure 1: System Architecture Design

Navigation
Being that ButlerBot’s main purpose is to serve and assist
users within a designated area, such as a conference hall or

User
Interface

Text
Processing /
Information

Server

Navigation

Vision

Driver

From: AAAI Technical Report WS-03-01. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved.

a hotel, a complex navigation system is not necessary. A
simpler navigation system would reduce cost and potential
error. An internal coordinate system and a means of
keeping track of the robot’s current coordinates suffice as
the backbone for the navigation system. Ideally, this
internal coordinate system should be easily replaceable
with a different coordinate system structure based on a
different environment. This would reduce the required
effort in migrating the robot from one environment to
another.
 ButlerBot’s navigation system consists of an internal
coordinate system representation of the surrounding area.
The robot keeps track of its current position on its virtual
map. Currently the map is a planar map, though various
floor maps can be included to create a complete
representation of an entire building. Work is still needed to
integrate the various floors by adding transition points on
each map.
 Each map data structure consists of three main
components: an outer boundary, a list of inner static
obstruction boundaries, and a list of predefined paths to
reach various destinations from the robot’s patrol route.
The outer boundaries define walls and other stationary
obstructions adjacent to the walls. Each individual
boundary is stored as a vector of line segments. Internal
obstruction polygons, each defined as its own vector of line
segments, are also stored as part of ButlerBot’s internal
mapping structure. Whenever moving about, ButlerBot
will never cross one of these line segments. The last
component of the internal map is a list of paths that the
robot can take to reach one of the valid destinations on its
valid destination list. Each path must start at a point on the
robot’s “patrol path”, which will be discussed shortly.
When the robot decides to move to a new destination
(based on its user interaction), it will first return to its
“patrol path” and follow it to the starting point of the
“destination path”, after which it will follow the
“destination path” until the destination.
 When not en route to a particular destination, ButlerBot
will be in “patrol” mode. In this mode, the robot will
traverse a predefined series of line segments, occasionally
stopping to look around for an “interesting” event. An
“interesting” event can be defined as a motion, or the
detection of an image resembling a human figure. If an
“interesting” event is discovered, ButlerBot will
temporarily leave its patrol route and head towards the
interesting event in an attempt to seek out and approach
potential users. In order to increase ButlerBot’s chances of
finding a person to assist, if no person has been detected
for a predetermined amount of time while patrolling,
ButlerBot will begin making random dips into areas not
specifically listed as part of its patrol route. As part of
ButlerBot’s next design phase, work will be done to
improve the patrol mode. In particular, the route will be
traversed in a less mechanical manner, using a stronger
heuristic algorithm for determining where in the path to

head next and where to spend the most amount of time.
The “dips” out of the patrol path will be less random and
more heuristic-based as well. This enhanced algorithm will
add a memory component to ButlerBot’s decision-making
engine. Areas in which more individuals are found will
receive higher priority in the decision of where to move
next and for what period of time to move to the new
location. A weighted random number generator with
dynamically modified weights can be used to implement
this enhancement. With a heuristic navigation engine as
such, it is anticipated that ButlerBot’s effectiveness will be
substantially improved.
 As part of the ButlerBot navigation system, a set of six
infrared sensors (distance sensors), were used to detect
non-stationary obstacles and prevent collisions. Initially, a
simple wall-hugging algorithm was used to attempt to clear
the obstacle. Such a collision detection system was crucial
to the effectiveness of the robot’s autonomous navigation.

ER1 Hardware Communication Channel
The ButlerBot Navigation hardware, provided by
Evolution's ER1 hardware platform, involved a command
line interface to communicate in order to control the
movement of the robot. The hardware API is accessed by
opening a TCP/IP socket to the ER1 program running as a
background task. The API contains simple commands that
allow autonomous control of the robot, for example “move
10 meters” in order to move forward 10 meters or “move
90 degrees” in order to turn. These commands would then
be converted by the ER1 software into a serial format
recognized by the robot control hardware. The robot
control hardware uses a Universal Serial Bus to interface
the host PC. The stepper motors that drive the robot’s
motions are controlled by the robot control hardware,
which translates the signals from the PC into appropriate
stepper signal descriptions.

Limitations of the Autonomous Navigation System
The autonomous navigation system of ButlerBot depended
too much on a map based environment, as well as its initial
position. Thus it could not easily be placed in an arbitrary
environment.
 Another problem is that it did not account for slippage of
the motors, particularly on different type of floor surfaces.
These errors would accumulate and ultimately distort the
robot’s knowledge of its actual location.
 With a high-precision odometer added to the system, the
robot will be able to more effectively maintain an accurate
record of its current position. However, this is only one
part of the ultimate solution, as the wheels slipping on
difficult surfaces would still be able to accumulate error in
keeping track of the current position. Another method for
increasing the accuracy of the current coordinates that are
maintained by the navigation system, which is still being
developed, is an auto-calibration system that would

periodically recalibrate the robots position. The current
method of auto-calibration makes use of the vision analysis
from the stereo camera. Utilizing beacons such as colored
balloons or intense lights, ButlerBot can determine its
actual current coordinates and readjust its position to
counteract any inaccuracies.

Computer Vision
The two main tasks for ButlerBot’s vision system are to
detect human activity and to track its own location
accurately.

Motion Detection
A statistical model was implemented to detect human
motion by identifying non-static portions of an image’s
background that contain only small motions (Elgammal,
Harwood and Davis 2000). Figure 2 shows a series of
images where only the person’s location changes between
images, followed by a black and white image output from
the motion detection algorithm to be discussed.
 Image-processing techniques are used to enhance the
quality of images being sent into the motion detection
algorithm. Poisson filters and median filters are used to
return large blobs containing objects with motion. In order
to simplify the motion model and achieve more accurate
results when navigating, larger motions are focused on
while smaller motions are ignored. The final object of
interest is chosen to be the largest blob in the resulting
image. The Digiclops Camera from Point Grey Research
(PGR) uses a stereo algorithm to retrieve depth information
for each pixel in the reference image. The average depth
for all of the pixels under the mask (where the mask is the
largest blob detected) is used as the depth for the target.

Landmark detection
The location of ButlerBot is continually tracked, but error
tends to accumulate as the robot moves around. The
information pertaining to the robot’s position is thus
updated from time to time. Balloons are used as a
landmark to help the robot adjust its knowledge of its
current location. The first step is color detection since the
balloons are vivid colors including red, green, blue and
yellow. The image of the scene is first transformed into
HSV (Hue, Saturation, Value) space. Next, only the pixels
within a specific threshold are retained as possible pixels
for a landmark. Again, the image is cleaned and noise is
eliminated using image processing and enhancement
techniques. Large blobs are then considered targets. The
problem of determining if a target with a desired color is a
landmark or not still remains though. Using an edge
detection algorithm, only the edge of a target is outlined
and highlighted. If the target is a balloon, all of the pixels
creating the boundary of the balloon should be at the same

distance from its center of mass based on the spherical
geometry of a balloon. Due to the possible noise present in
real data, the variance of the distance for each boundary
pixel to the center of mass is calculated. If the variance is
within a preset threshold, it is a balloon; otherwise it is
considered an outlier object. Figure 3 shows an input
image at the top and the binary output images created by
the landmark detection algorithm.

Figure 2: Motion Detection Inputs and Result

Figure 3: Landmark Detection

 Once the position for two landmarks is determined,
triangulation is used to determine the current location of
the robot. A moving human figure identification module
implemented by Richard Spillane and Liu Yang is not
described here for reasons of brevity.

Data Server
A MySQL database was created to store conference data
for ButlerBot to serve. When searching for an answer in
the MySQL database, another database is used to substitute
synonyms in the case that an answer is not found for the
original question. Unfortunately, due to the time
constraints of three months, the database was not fully
integrated with the user interface. Rather a Perl script was
written to convert the data saved in the MySQL database
into text files with a specialized format. Figure 4 shows an
example of a data entry in the new text file.

AAAI:
8
* AAAI is the American Association for Artificial Intelligence
fox:!sly
3
* Foxes scare me!!
* Do you like foxes?

Figure 4: Example of Data Storage

The first line of each data entry contains keyword
combinations. The first row in Figure 4 would match to
any sentence containing the word AAAI while the second
row would match to any sentence containing the word fox
but not the word sly. The intent is to eliminate the case
where a person may enter a phrase such as “I am as sly as a
fox” and to only match a statement to the results shown in
Figure 4 if the person is truly speaking about a fox in terms
of an animal. However, a dilemma arises when a sentence
matches multiple sets of keywords. Therefore, on the
second line of each data entry is the priority that keyword
is given. From Figure 4 it can be seen then that if a
sentence used both the word AAAI and fox, but not the
word sly, the data server would match the result to the
keyword AAAI since it has a higher priority than the
keyword set “fox:!sly”. Each line beginning with an
asterisk after the second line in the data entries contains
results that match the given keywords. One of the results
is randomly selected when a sentence is matched up to a
given keyword. Much of the code to handle these decisions
was adapted from Carnegie Mellon University’s Duane
Fields’ Splotch Program.

Human Interaction
There are several options for human interaction with
ButlerBot. The interface is shown in Figure 5. A person
may simply click on a tabbed pane to view a general
schedule of the entire IJCAI conference or a map of the
conference building. Another option is to communicate
with the robot by manually entering a question into a
search field and having ButlerBot search for the answer.
Microsoft Agent has been incorporated into ButlerBot's
interface so that a butler avatar converses with the user,
increasing user-friendliness.
 A wireless headset in combination with IBM’s ViaVoice
speech recognition software allows users to verbally
command the robot. The user’s verbal command is then
automatically entered into the same search field as if the
user had manually entered it.
 Whether manually entering the data or verbally
communicating with the robot, ButlerBot’s response is

determined in the same manner described above in the
Data Server section.
 Yet another way to interact with ButlerBot is through the
interactive map displayed in the upper left hand corner of
the user interface. Depending on the room the robot is
currently in, different red stars are displayed on the map as
seen in Figure 5. If a user clicks on a red star, ButlerBot
will escort the user to the destination selected.

Figure 5: ButlerBot’s User Interface

Future Work
 In future revisions of the navigation system, ButlerBot
will use Dijkstra’s shortest path algorithm to automatically
determine the best path to take (Dijkstra 1959). This
would assist it in taking a more direct route to the
destination. In order to prevent a shortest path through an
obstruction within the map boundaries, a simple Bentley-
Ottmann sweep can be used on the list of line segments
composing the polygon shaped obstruction (Bentley and
Ottmann 1979).
 A Neural Network (NN) algorithm has already been
implemented for human activity recognition. The NN
distinguishes between different human behaviors including
standing, walking, and sitting and thus allows the robot to
make a better decision as the various behaviors can easily
be integrated into the robot’s Finite State Machine as
specific states. In future work, motion estimation will also
be added to enable real tracking.
 A more intelligent conversation server will be created
using Neural Network algorithms such that the robot can
learn from speaking to people. Another goal is for
ButlerBot to remember previous questions and statements
entered by the user and the corresponding replies given
back to the user to further simulate realistic conversation.
 New methods of voice recognition are being investigated
as ViaVoice had many problems at the conference
including working well for wide ranges of users and it was

found to not handle significant background noise
gracefully. In addition, the user interface will be further
enhanced graphically. While MS Agent provided a very
attractive and attention grabbing character to interact with,
a larger and more expressive avatar is being researched.

Acknowledgements
A huge thanks to both Amanda Stent and Dimitris Samaras
for their guidance, and the College of Engineering and
Applied Science for their sponsorship. In addition, this
project was sponsored and made possible by Evolution
Robotics. Thanks particularly to Jennifer McNally and
Hans Dreyer of Evolution Robotics for their wonderful
customer service and assistance in technical support.

References
Bentley, J.L., Ottmann, T.: ``Algorithms for Reporting and
Counting Geometric Intersections''. IEEE Trans. on
Computers C 28, 643-647, 1979

Dijkstra, E. "Two Problems in Connexion with Graphs,"
Numerische Mathematik, 1 (1959),
269-271.
Elgammal, A., Harwood, D., and Davis L., "Non-parametric
model for background subtraction” in FRAME-RATE Workshop,
IEEE, 1999.

Evolution Robotics, http://www.evolution.com
IBM ViaVoice SDK for Windows, http://www-
3.ibm.com/software/speech/dev/
MS Agent, http://www.microsoft.com/msagent/
MySQL, http://www.mysql.com/
Splotch, http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/
ai-repository/ai/areas/classics/eliza/splotch/0.html

