
Lewis the Graduate Student:
An Entry in the AAAI Robot Challenge

William D. Smart Michael Dixon Nik Melchior
Joseph Tucek Ashwin Srinivas

Media and Machines Laboratory
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

United States
{wds,msd2,nam1,jat2,avs1}@cse.wustl.edu

Abstract

In this paper, we describe Lewis the Graduate Stu-
dent, Washington University’s entry in the AAAI Mo-
bile Robot Competition Challenge Event. Lewis suc-
cessfully completed a modified subset of the Challenge
tasks, with a minimum of human intervention. We de-
scribe the architecture of our system, and how each
sub-task was achieved. We also offer some thoughts on
the performance of the system, and highlight our plans
for future work.

Introduction
This paper describes Washington University’s entry in
the Robot Challenge event of the AAAI mobile Robot
Competition, held at IJCAI 2003, in Acapulco, Mexico.
The entry was fielded by the Media and Machines Lab-
oratory, in the Department of Computer Science and
Engineering. The main programming team consisted of
four undergraduate students and one faculty member.

Our lab robot, Lewis, was not brought to Mexico
for the competition due to the cost of shipping. In-
stead, the hard drive, and various sub-systems were
removed and transplanted into another robot, called
Pinky, of the same type in Acapulco. Surprisingly, this
did not substantially affect the performance of the soft-
ware, once a few minor differences were accounted for.
Leaving aside any philosophical questions of self, the
robot will be referred to as Lewis in this paper.

Lewis is a standard iRobot B21r mobile robot plat-
form, with a Directed Perception pan/tilt unit, two
color cameras, and SICK laser range-finder.

We begin by outlining the Robot Challenge task. We
then discuss our overall software architecture, and then
go into greater depth for each of the component parts.
Because of the strict modularity of design, each of the
individual sub-tasks corresponds to one or more stand-
alone programs.

Copyright c© 2003, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

The Task
The full Robot Challenge task can be summarized by a
sequence of sub-tasks.

1. Start the robot at the door to the convention center.

2. Autonomously locate the registration desk, asking for
help when appropriate.

3. Stand in line at the registration desk. Upon getting
to the front of the line, interact with the official at the
desk. Get registration materials (including a map of
the conference center), and find out the talk location.

4. Plan a path to the talk location, and navigate there.
Arrive in time to give the talk.

5. If there is time on the way, interact with conference-
goers. Accept tasks from designated conference of-
ficials (such as delivering a message to a specified
room).

6. Give a talk, and answer questions.

We chose to concentrate on a modified subset of these
tasks because of our limited manpower. Specifically, we
attempted the following:

1. Start the robot at the door of the conference center.

2. Autonomously location the registration desk using
pre-positioned directional signs.

3. Identify the registration desk, and join the end of
the line. Move towards the head of the line. Once
at the desk, ask for registration materials, and allow
the conference official to designate a talk location on
a touch-panel displaying a pre-learned map of the
conference center.

4. Plan a path to the talk location, and navigate to it
directly.

5. Give a pre-scripted talk, and answer questions.

It should be noted that our robot-human interaction
was extremely limited, and consisted of touch-screen
interactions. Also, it could be argued that the amount

From: AAAI Technical Report WS-03-01. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved. 



of “real” artificial intelligence in the system was quite
low.

This was our first attempt at the challenge event,
and we made the conscious decision to engineer a sys-
tem that would address the specific technical challenges
imposed by the rules. While this is not really in the
spirit of the event (which was designed to showcase AI
research), we believe that it gives us an excellent plat-
form on which to build in the future. Now that we
can handle the basic requirements of the event, we are
in a good position to add in subsystems based on the
ongoing research projects in our lab.

The Software Framework
We used a simple finite state machine (FSM) based
control structure. Each state in the machine roughly
corresponds to a subtask, and is performed by a single
stand-alone program. The amount of explicit interac-
tion between these programs is extremely limited. For
the challenge event, only two programs directly interact
by passing two floating point numbers.

The programs have well-define pre- and post-
conditions, which allows each part of the overall solu-
tion to be developed independently. These conditions
are explicitly stated, but not specified algorithmically.
For example, the line-wait state, used for standing
in line at the registration desk, has the precondition of
being at the end of the line, pointed at the desk. The
post-condition is that the robot is at the head of the
line, pointed at the desk.

By specifying the pre- and post-conditions in this
manner, we were able to minimize the amount of in-
tegration work that had to be done after arriving at
the conference. Although we had to alter internal ele-
ments of almost all of the behaviors on-site, this did not
affect the overall system much, because of the limited
interactions between programs.

Sequencing the Programs
The structure of the FSM was specified using a sim-
ple description language, illustrated in figure 1. The
description specifies the starting state, the optional re-
covery state (see below), and whether or not a graphical
control interface should be used. Each state has a sym-
bolic name, an associated program (possibly with argu-
ments), and a list of transitions. Transitions are made
based on the value returned by the program when it
terminates.

The individual programs are sequenced by an execu-
tive that monitors for abnormal termination, and allows
a human supervisor to interrupt the normal flow of con-
trol. If a recovery state is specified, the FSM transitions
to this state on a human interrupt or abnormal program
termination. If no such state is specified, the sequencer
terminates and closes all active control programs.

Graceful Recovery
One of our primary goals was to have a graceful recov-
ery strategy, in case one of the control programs suf-

start follow-sign
recovery follow-hat
use gui

state follow-sign gotosign
action 0 trans follow-sign
action 1 trans door-wait
action 2 trans line-wait
action 3 trans seek-sign

state seek-sign seeksign
action 0 trans follow-sign
action 1 trans seek-sign

state door-wait doorwait
action 0 trans follow-sign

state line-wait QueueStander
action 0 trans register

state register get_goal smrt/maps/mexico
action 0 trans localize

state localize smrt_start_loc
action 0 trans goto-talk

state follow-hat followhat
action 0 trans stop

Figure 1: A portion of the task sequence specification
for the challenge event in Acapulco.

fered a segmentation fault, or if the robot was about to
crash into something. The sequencing code keeps watch
over the control programs looking for the former prob-
lem, while a human-activated on-screen “panic button”
takes care of the latter.

If something goes wrong, the system enters a spe-
cial recovery state. the default recovery state grace-
fully stops the robot in its tracks. However, for the
challenge event another, more intelligent strategy was
implemented.

On entering the recovery state the robot looks for,
and tries to follow, a (specific) red baseball cap. If no
such cap is seen, the robot does not move and waits for
ten seconds. If no cap appears within ten seconds, the
recovery state terminates.

If the robot does see a red baseball cap (using the
color-finding techniques outlined below), it attempts to
follow the wearer of the cap. By fusing the information
from the camera and the laser range-finder, the robot
is able to robustly follow the wearer, keeping a safe
distance. We use this technique to guide the robot to a
safe place, often the start position for some other state
in the FSM. Once the robot is in the correct position,
the hat-wearer moves quickly out of the robot’s field
of view. This is not difficult, since the hat-tracking
software is designed only to follow slow-moving hats.
After ten seconds of not seeing a hat, the recovery state



terminates.
On termination of the recovery state, the sequencer

launches a graphical interface that allows the human
supervisor to pick the next state of the robot. Once the
state has been picked and verified, the robot enters that
state, and continues operating according to the FSM.

Following Signs
To reach the registration desk without prior knowledge
of its location, we chose to follow signs. To make this
task more feasible, we provided our own signs designed
to be easily detected and positioned such that one sign
points roughly in the direction of the next, leading from
the starting location to the registration desk. This
turns the task of finding the registration desk into the
much easier task of detecting arrowed signs, measuring
their arrow directions, and following the vectors defined
by this.

All movement is subject to low-level obstacle avoid-
ance, implemented by a greedy navigation algorithm.
For a given final destination point, we select the point
nearest our destination that can be reached with a
straight line path. To calculate this point, we first com-
pute the horizon of ”reachable” points. This is done
by performing a closing operation on the 180 degrees
of laser readings. We take the robot’s radius plus a
safety tolerance and calculate how far along each of the
180 headings the robot would be able to travel with-
out intersecting any of the laser endpoints. The clos-
est reachable point will be either on this horizon or at
the intersection point of a laser heading and the line
perpendicular to the laser heading which intersects the
goal point. We compute these points and select the
one nearest the goal as our intermediate destination.
We continually recompute and approach this interme-
diate point until either the intermediate point or the
final destination is reached. If the intermediate point is
reached, the obstacle avoider signals its failure to find
a path connecting the start point and the destination,
otherwise success is signaled.

Finding Signs
We use a color-based approach for our sign detection.
All signs are to be constructed of a known outer color
(in this case magenta) with an arrow of a known in-
ner color (black). To detect arrowed signs we detect
blobs of the outer and inner colors. Since the specific
colors are known in advance, this is a very straight-
forward process, that classifies pixels according to their
values in the YUV color space. Once we have de-
tected all the color blobs, we find the set of all outer-
colored blobs which contain exactly one inner-colored
blob, with appropriate outer-inner size ratios. Using
two nested blobs eliminates many of the problems with
false positives typical with color blob detection, but it
is limited based on the size of the center blob. From
a distance, the center blob may not be visible, so in
the case where no nested blob signs are detected, the
largest outer-colored blob is used.

Following Signs
To follow signs we simply approach the most promi-
nent sign, and upon reaching the sign orient the robot
in the direction of the sign’s arrow. To do this, we must
be able to measure the relative position of a sign, the
orientation, and the arrow direction. Given the mea-
surements of the sign and the intrinsic parameters of
the camera, one can calculate the position of the sign
in relation to the camera. We make the assumption
that the sign will be hung at roughly camera level, and
is more-or-less perpendicular to the floor plane, so find-
ing the plane in which the sign lies is straightforward.

To measure the arrow direction, we look for the pres-
ence of diagonal edges in the inner blob. The only
strong diagonal edges within this region will be the
head of the arrow, so by determining which half of the
box has more diagonal edges, we can determine which
way the arrow points. Although not as robust to errors
as other techniques, such as template matching, this
method for arrow-direction measurement was simple to
implement and was independent of the specific arrow
used on the sign. This allowed us to test multiple sign
configurations without modifying the code.

Once the robot finds a sign, it orients itself parallel
with the sign, facing the direction in which the arrow is
pointing. The robot the begins searching for the next
sign. If no sign is found, the robot simply drives for-
wards, and begins searching for the next sign by pan-
ning the camera back and forth.

Dealing with Doors
We chose to use an upward pointing arrow to indicate
a closed door. When an upward arrow is encountered,
the robot approaches and enters the door-waiting pro-
cess. This process begins by playing a please-open-door
message. It then waits for laser readings to indicate a
space wide enough to move through to open in front of
the robot. As this occurs, the robot will pass through
the door. Upon crossing the threshold, the robot will
play a thank-you message and re-enter the sign follow-
ing process.

Finding the Registration Desk
We used a downward pointing arrow to indicate the
registration desk. Upon detecting a downward pointing
sign, the sign following process ends, signaling for the
line following process to begin.

Registering for the Conference
Once the robot found the registration desk, the next
task was to stand in line and receive its registration
materials. This breaks down into two sub-tasks, stand-
ing in line and actually registering. These sub-tasks are
dealt with in this section.

Standing in Line
The precondition for this task is that the robot is facing
the registration sign, is roughly pointing in a direction



perpendicular to the registration desk, and is beyond
the end of the line. Previously, we had developed code
that would actively find the line, and place the robot
at the end. However, the particular arrangement of the
environment in Acapulco made this code redundant and
it was removed. The sign-following sub-system reliably
placed the robot in the correct position for the start of
this sub-task.

Standing in line is fairly simple. The robot moves
forwards until it is within 80cm of the closest object in
front (assumed to be a person). When this object moves
forwards, the robot follows. Some hysteresis was built
into the system, to ensure that small movements by the
human in front of the robot did not trigger short, jerky
movements by the robot. This procedure is repeated
until the robot is at the registration desk.

To recognize when it is at the registration desk, the
robot constantly performs a Hough transform on the
laser contact points over the front 60 degrees. If more
that 80% of the points line close to the line predicted
by the Hough transform, this means that there are no
objects between the robot and the desk. The value of 60
degrees and threshold of 80% were empirically found to
give good performance. When the robot is closer than
80cm from the desk, and there are no objects between it
and the desk, the line-standing module terminates, and
control passes to the registration interaction module.

Registration Interaction
The interaction at the registration desk consists of a
GTK+ graphical user interface (GUI) and some asso-
ciated auditory prompts. The GUI displays a map of
the convention hall (constructed previously) and a se-
lection box for listing maps of other areas of interest to
the robot. Instructions for selecting the talk location
are printed beside the map, and an abbreviated form is
repeated out loud (using the Festival speech synthesis
system) to the judge. The GUI is meant to be displayed
on a small touch-screen, which would allow the judge
to simply tap the location of the talk. However, due
to problems connecting the touch-screen to the robot’s
power supply in Acapulco, the GUI was displayed on
the laptop sitting on top of the robot.

Our interface allows the judge to change his or her se-
lection any number of times, prompting them to press
“OK” when satisfied with his choice. At this point,
the robot thanks the judge, and the registration inter-
face terminates. The output from this module is too
complicated to return to the FSM with a simple exit
code. Instead, the (x, y) coordinates selected by the
judge are written to a temporary file which is read by
the next module, the navigator. This is the only ex-
plicit inter-module communication used by the system
for this event.

Getting to the Talk Location

Up to this point, the robot had no sense of its loca-
tion within the convention hall. It had navigated from

sign to sign, following the direction of each successive
arrow, and conducting a visual search when it failed to
detect a sign. After interacting with the judge at the
registration desk, the FSM started a localization pro-
cess which continued to run for the remainder of the
challenge. Since we knew the location of the registra-
tion desk, the localizer was given a hint as to the robot’s
starting location. In addition, the entire conference hall
was contained within one map. Since the challenge had
been simplified such that the robot was never required
to leave this room, the localizer was never required to
change maps, or reinitialize its position estimate.

As the robot moves, the estimate of its location on
the map is updated by Monte Carlo localization, based
heavily on the Carmen software from Carnegie Mellon
University. Roughly 6000 particles were used to form
the estimate, and they were contained within a Gaus-
sian centered at the last-estimated position. Although
we considered allowing a small portion of the parti-
cles to be uniformly distributed throughout the map
(to handle the kidnaped robot problem), this feature
was turned off during the challenge. We expected the
robot to be surrounded by a dense crowd of specta-
tors during the entire run, and this expectation was
proven correct. The Monte Carlo localization algorithm
weights particles based on the correspondence between
actual laser range-finder data and the data that would
be generated by a robot located at each particle. Since
the crowd would make the laser range-finder all but
useless, we were afraid that random particles would be
weighted unreasonably high (e.g. particles in corners of
the room), and the estimated location could jump about
the room. Instead, the other component of Monte Carlo
localization was relied upon more heavily: as the robot
moves, odometry data is used to update the location
of each particle. Odometry can be trusted for short
distances, and particle weighting would still have a sig-
nificant effect if a unique environment feature (such as
the small columns the filled the venue) was detected.
Unfortunately, no record of the localizer’s performance
was kept during the challenge. However, given our nav-
igation strategy (described below in section ), the direct
path taken by the robot is indicative of satisfactory per-
formance.

Planning a Path
Although the robot is aware of its location and the
location of its goal, navigating between these points
is not trivial. While the obstacle avoider described
above in section is useful for simple movement com-
mands, it cannot be trusted for navigating any signif-
icant distance. It can easily become trapped in “box
canyon” obstacles, and it will give up if faced with a
large (or persistent) obstacle. Instead, we constructed
a roadmap off-line using the map of the conference hall,
and the obstacle avoider was used as a local planner be-
tween nodes (or way-points) of the roadmap.

The nodes of the roadmap were chosen from the map
using a number of heuristics. Since we knew that our



local planner works well in open areas, very few nodes
were placed in empty areas of the map. Approaching
obstacles, though, the nodes become much more dense.
Finally, no nodes were placed within a robot’s radius
of any obstacle. To form the roadmap, each node was
connected to a small number of its nearest neighbors to
create an undirected graph.

Navigating to the Talk

We use Dijkstra’s shortest path algorithm to choose a
series of nodes between the given starting point (the
location estimated by the localizer) and the goal point
(the location of the talk specified by the judge). The
chosen nodes, optimized for traveling distance, become
the way-points for our navigator. Although optimiza-
tions are apparent, the navigator simply attempts to
reach each way-point in turn using the obstacle avoider
as a local planner. At each way-point, the navigator
queries the localizer for a current estimate. It uses this
estimate to give the obstacle avoider the relative loca-
tion of the next way-point. If the obstacle avoider were
to fail to reach any way-point, the navigator will retry
a number of times before simply planning a new route
from the current location to the remembered goal.

The Presentation

The final task of the challenge is for the robot to give a
talk about itself. We did not consider this a core part
of our system (this year), and our solution is some-
what straightforward. The talk-giving module relies on
a human helper who advances the slideshow, and who
signals the completion of a question from the audience
with a key-press.

Giving the Talk

The robot is equipped with a soundcard and uses the
Festival text-to-speech system to generate speech. A
simple piece of sequencing code reads the text for each
slide from a file, then asks the human helper to advance
to the next slide. Appropriate pauses are inserted at the
start and end of each slide. However, all of this is done
without reference to the outside world. The robot does
not check to make sure that the slide has advanced, or
that there is even a slideshow running.

Answering Questions

Once the robot has finished reading from the slideshow
script, it asks if there are any questions from the au-
dience. The robot has no speech input, and only one
answer to questions, triggered by a key-press from the
human helper:

“That’s a good question. The answer involves very
complicated mathematics, but I’d be happy to talk
about it off-line, perhaps over coffee.”

Conclusions

Performance in Acapulco
The system performed extremely well in Acapulco, far
exceeding our expectations. Our main failure mode was
the misidentification of two signs. The orientation of
one directional sign was wrongly calculated (but not
by much). The registration sign was confused with a
similar-colored sign on the wall two meters behind it.
Both of these incidents required some minimal inter-
vention. Other than those two problems, however, the
system operated flawlessly.

Lessons Learned
The simple modular framework was a great asset, since
it allowed us to minimize integration problems. Each
of the modules worked well individually, and only a few
minor problems had to be ironed out when they were
sequenced together.

The main feature lacking from the robot in Acapulco
was some form of monitoring and reporting system.
Being able to log sensor data and decisions made by
the processes would have greatly accelerated the de-
bugging process, and enabled us to carry out a bet-
ter post-mortem performance analysis. Having systems
that would also display (some subset of) this informa-
tion on demand during the run would also have been
helpful.

The main lessons learned were ones we knew already:
integration is hard, and environment changes can ruin
your day. We were able to limit the former, but some
of the latter were beyond our control. Highly variable
lighting conditions in the conference center proved to
be less of a problem than we had first feared. However,
we are indebted to the local lighting crew who crawled
into the ceiling to string a spotlight that illuminated
our “this is a door” sign. Without them, we would
probably have had to pay for a new glass door.

The Future
Although the current control framework is adequate for
the task in Acapulco, we have plans to improve on it.
In particular, programs should have a way of passing
information back upon termination that is better than
a single return code. We are investigating a

We are also keenly aware that our human interaction
is seriously lacking. We are investigating a simple gestu-
ral interface to allow the robot to take directions from a
human. We are also carrying out human-robot interac-
tion studies to determine the effects of subtle cues (such
as gaze-direction, and the notion of “personal space) on
humans’ responses to the robot.

Our main goal, however, is to build on the frame-
work that we have developed this year, and insert more
“science” into the system. The modular nature of the
design makes it a perfect vehicle for testing the results
from the various robot- and vision-related projects cur-
rently underway in our lab. This will bring us closer to



the spirit of the rules when we enter Lewis in the 2004
Challenge event in San Jose.

Acknowledgments
The work described in this paper was partly funded
by NSF under award #0196213 and REU award
#0139576, and partly the Washington University
Sesquicentennial fund. We would like to thank Mark
Bober, Rob Glaubius, Ben LeGrand, Andy Martignoni,
and Jim Tucek for their help with testing, tweaking, and
fixing various parts of the system. We would also like
to thank iRobot Corporation for generously allowing us
to borrow one of their robots in Acapulco.


