
GRACE and GEORGE:
Autonomous Robots for the AAAI Robot Challenge

Reid Simmons, Allison Bruce, Dani Goldberg, Adam Goode, Michael Montemerlo,
Nicholas Roy, Brennan Sellner, Chris Urmson

Carnegie Mellon University
{reids+challenge@cs.cmu.edu}

Alan Schultz, William Adams, Magda Bugajska, Matt MacMahon, Jessica Mink,
Dennis Perzanowski, Stephanie Rosenthal, Scott Thomas

Naval Research Laboratory

Ian Horswill, Robert Zubek

Northwestern University

David Kortenkamp, Bryn Wolfe, Tod Milam

Metrica, Inc.

Bruce Maxwell

Swarthmore College

Abstract

In an attempt to solve as much of the AAAI Robot
Challenge as possible, five research institutions
representing academia, industry and government, integrated
their research on a pair of robots named GRACE and
GEORGE. This paper describes the second year effort by
the GRACE team, the various techniques each participant
brought to GRACE, and the integration effort itself.

1. Introduction
The main objectives of the AAAI Robot Challenge are to
(a) provide a task that will demonstrate a high level of
intelligence and autonomy for robots acting in a natural,
peopled, dynamic environment, (b) stimulate state-of-the-
art robotics research to address this task, and (c) use robot
demonstrations to educate the public about the exciting and
difficult challenges of robotics research. The Challenge
was designed as a problem that would probably need a
decade to achieve adequately. When the task was
designed, it was anticipated that no single research
institution would have adequate resources to meet the
Challenge on its own.

The Challenge task is for a robot to attend the AAAI
National Conference on Artificial Intelligence as a

participant – the robot must find the registration booth and
register, interacting with people as needed, then, with a
map from the registration packet in hand-analogue, find its
way to a specified location in time to give a technical talk
on itself. Ideally, the robot should be given no more
information than any other participant arriving in a new
city to attend a major technical conference. In particular,
that means that the robot should not know the layout of the
convention center beforehand, and the environment should
not be modified. However, compromises will be necessary
in order to allow current state-of-the-art robots to achieve
the task.

There are a number of important technologies that are
needed to meet the Challenge. These include localization
in a dynamic environment; safe navigation in the presence
of moving people; path planning; dynamic replanning;
visual tracking of people, signs, and landmarks; gesture
and face recognition; speech recognition and natural
language understanding; speech generation; knowledge
representation; and social interaction with people. While
research has been done in all of these areas to a greater or
lesser extent, they all need further work to be robust in the
environment that the Challenge specifies. The integration
of these technologies is a major challenge.

From: AAAI Technical Report WS-03-01. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved.

In addition, the members of the GRACE team believe that
the type of collaborative work that is needed to achieve the
necessary integration will help advance robotics. We
realize that integrating hardware and software from five
institutions is be very difficult. Our first year goal,
therefore, was to create an architecture and infrastructure
that would enable us to integrate our existing software into
a system that could do a credible job with the Challenge
task. We all agreed that this would be a multi-year effort,
and that in subsequent years we would build on this year’s
robot system. This year, we extended our architecture and
infrastructure from our first effort, and added additional
capabilities to the system.

2. Robot Hardware
GRACE (Graduate Robot Attending ConferencE) is built
on top of an iRobot B21 mobile robot, while GEORGE
(GraduatE RObot attendinG conferencE) is built on
iRobot’s B21R. Both robots have an expressive computer-
animated face displayed on a flat-panel LCD screen, as
well as a large array of sensors (see Figure 1). The sensors

that come standard with the B21 and B21R include touch,
infrared, and sonar sensors. Near the base is a SICK
scanning laser range finder that provides a 180-degree field
of view.

Both robots have several cameras, including a stereo
camera head on a pan-tilt unit built by Metrica TRACLabs
and a single color camera with pan-tilt-zoom capability,
built by Canon. The robots speak using high-quality speech
generation software (Festival), and receive human
responses using a wireless microphone headset (a Shure
TC Computer Wireless transmitter/receiver pair).

All the software runs on board. Two 500 MHz systems on
GRACE and two dual P III 800 MHz systems on
GEORGE, running Linux, run most of the autonomy
software. An additional small laptop on each robot,
running Windows, runs the speech recognition and natural
language speech-to-text software. Note that only the
speech recognition software runs on the laptop – all speech
understanding software is executed on the main robot
computers. In addition, there is a separate processor for the
Metrica stereo head. Each robot is equipped with a
Linksys wireless access point to connect the robot to the
outside world (for debugging, monitoring, and backup).

3. Software Architecture
Following the design decision from the previous year, the
system was designed as a set of independent programs that
communicated via message passing. This facilitated
distributed development and simplified testing and
debugging. We continued to use the IPC package
(www.cs.cmu.edu/~IPC) for (nearly all) communications,
due to its expressiveness, ease of use, and familiarity.

Most of the software was written in C or C++ (using the
GCC 2.96 compiler), running under Red Hat Linux 7.2,
7.1, and 6.2. Exceptions included the use of a Windows
laptop to run ViaVoice (www.ibm.com/software/speech)
and the use of Allegro Common Lisp for NRL’s Nautilus
natural language understanding system. In addition,
O p e n G L , P e r l a n d F e s t i v a l
(www.cstr.ed.ac.uk/projects/festival) were used for the
computer-animated face and speech generation.

The computer-animated face, the coordinating Poobah
process (Section 4.7) and several of the task-level
programs were written using the Task Description
Language (TDL). TDL is an extension of C++ that
contains explicit syntax to support hierarchical task
decomposition, task synchronization, execution
moni tor ing, and except ion handl ing (see
www.cs.cmu.edu/~TDL and [Simmons & Apfelbaum,
1998]). A compiler translates TDL code into pure C++
code that includes calls to a domain-independent Task-

Figure 1. GRACE (left) and GEORGE (right).

Control Management library (TCM). The translated code
can then be compiled using standard C++ compilers and
linked with other software. The idea is to enable complex
task-level control constructs to be described easily,
enabling developers to focus more on the domain-
dependent aspects of their programs.

F i n a l l y , w e u s e d M i c r o r a p t o r
(http://gs295.sp.cs.cmu.edu/brennan/mraptor/) to provide
seamless cross-machine process control. The Microraptor
system consists of a daemon running on each machine and
any number of clients (usually running on wirelessly-
connected laptops). The daemons share a single global
configuration file and provide remote process spawning,
killing, and monitoring capabilities. Using the Microraptor
TDL library, the Poobah (Section 4.7) was able to start and
stop processes quickly and easily. In addition, the system
provided a simple way for multiple users to view the
output of and interact with the plethora (30+) of processes
that make up the GRACE system. Please note that
Microraptor is still under heavy development, has not been
released beyond a few trial projects, and that the authors
cannot at this time provide any support whatsoever to
anyone desiring to use it. Any interested parties should
contact the authors via the above website to receive
notification upon official release.

In addition to continuing the effort to integrate the vast
amount of software that had been developed by the
participating institutions, this year we also decided to
duplicate the entire system onto a second, separate
hardware platform (Section 2).

4. Performing the Challenge Task
As mentioned above, the Challenge is to have an
autonomous mobile robot attend the National Conference
on Artificial Intelligence. More specifically, the robot is to
perform the following subtasks:

1. Start at the front door of the conference center;
2. Navigate to the registration desk (ideally by

locating signs and/or asking people and/or
following people – at this point, the robot does
not have a map of the building);

3. Register: stand in line if necessary, have the
robot identify itself, receive registration material,
a map of the conference center, and a room
number and time for its talk;

4. Interact with other conference attendees (ideally
recognize participants by reading nametags or
recognizing faces and schmooze – striking up
brief personal conversations);

5. If requested, perform volunteer tasks as time
permits, such as “guarding” a room or delivering
an object to another room;

6. Get to the conference room on time, using map
received in step 3. This may involve riding an
escalator or elevator.

7. Make a two-minute presentation about its own
technology, and answer questions.

This year, we planned to do all of the subtasks, but in the
end had to do without the abilities for schmoozing and
volunteering. The robots accomplished a new subtask this
year by answering simple questions from the audience by
themselves. In addition, just like last year, the human
interaction on the way to the registration desk was limited
to interaction with one person, a student who worked with
the team that summer. In future years, we will expand the
scope to include all subtasks and enable arbitrary
conference participants to interact with the robot.

The next sections describe in more detail the major
subsystems for each of the Challenge tasks.

4.1 Getting to the Registration Area (GRA)
The goal of this portion of the challenge is to find the
registration area by interacting with people. We used an
off-the-shelf speech recognition system, IBM's ViaVoice,
to convert from spoken utterances to text strings. The text
strings were then parsed and interpreted using Nautilus,
NRL's in-house natural language understanding system,
[Perzanowski, et al., 2002; Perzanowski, et al., 1998;
Wauchope, 1994]. Nautilius’ output, in a format similar to
that used in standard predicate logic, was mapped to IPC
messages that represented the command or information
given. To achieve a goal, we interleave linguistic and
visual information with direction execution (see Figure 2).
If there are no directions to be followed, the robot performs
a random walk until a human is detected. The robot then
engages the human in a conversation to obtain directions to
the destination in question. The task is completed once
the destination is reached, as determined by an explicit
human confirmation or by the robot visually detecting the
goal (Section 4.2). Execution monitors run concurrently
throughout the task to ensure both safety and the
integration of various required linguistic and sensory
information. For example, an explicit STOP command can
be issued if unforeseen or dangerous conditions arise.

The directions can consist of four types of utterances:

• simple low-level movements,
• mid-level movements requiring more perception,
• new sub-goals, and
• commands relative to named objects.

Simple low-level commands, such as "turn left" and "go
forward five meters," provide the most direct control of the
robot. Higher level instructions, such as "go down the
hallway on your right" use more of the robots' perception

and rely less on the direction-giver to accurately estimate
distances and angles. An utterance like "Go to Cholula
Hall" gives the robot a more immediate sub-goal to
accomplish its current goal. Finally, one can name objects
and refer to locations relative to them: "That is a pillar
[pointing]. Go behind the pillar." In addition, the robots
can ask simple, yes-no questions such as "Am I at the
registration desk?" and "Can you help me?".

Places (destinations) are organized topologically, including
containment relationships and route connectivity. Every
obtained direction is part of a memorized route between
two, possibly unspecified, places. For each route,
directions are executed sequentially. For directions
specifying an intermediate destination, such as "take the
elevator to the second floor," an intermediate goal is
instantiated (getting to the elevator), and the logic is
recursively applied to the new goal.

Once all the available directions to the current goal have
been executed, the robot concludes that either it has arrived
at the destination or additional information is required to
reach the goal. If the robot perceives the destination before
all the directions are executed, the remaining ones are
abandoned, and it continues with the next goal. Thus,
suppose the robot asks a human bystander "Excuse me,
where is the registration desk?" and the human responds,
"Grace, go over there <accompanied by a gesture>. Take
the elevator to the ground floor. Turn right. There is a

pillar in front of you. Go behind the pillar." The directions
are mapped to a representation something like:

 Find Registration Desk:
 Find Elevator ('ground floor');
 Go over there <gesture direction>;
 Turn right;
 Name Object(Front,'pillar').
 Go Relative('pillar', behind).

The use of spatial relationships is a new capability this
year. The robot can refer to locations relative to named
objects for environment descriptions e.g., "There is a desk
in front of me and a doorway behind it," and issued
directives, e.g., "Go around the desk and behind the pillar."
In addition, users can inquire about the robot's environment
and label objects. For example, a user may ask the robot,
"What do you see?" and the robot could respond, "There
are objects in front of me and on my left." Spatial
relationships are derived from an evidence grid map that
accumulates occupancy information from multiple sensors.
This short-term map is then filtered, processed, and
segmented into environment objects. The spatial reasoning
code then generates a high-level linguistic description of
the overall environment and a detailed description for each
object. Objects are clusters of occupied cells in the map
that can be assigned labels by a user. These capabilities
establish a more natural communication mechanism
between people and robots, especially for novice users
[Skubic, et al., 2002].

4.2 Finding the Registration Desk (FRD)

Once the robot reached the registration area (Section 4.1),
the next subtask was to move up to the registration desk.
This involved three related sub-subtasks: (1) searching for
and visually acquiring the sign indicating the registration
desk; (2) confirming that the correct sign had been located
by reading the text printed on it; and (3) approaching the
desk in a manner such that the standing in line module
could detect the line. This year, we narrowed the
definition of this module to (1) passively (i.e. with no
module-directed camera or robot movement) detecting
pink blobs and (2) verifying that the detected pink blob is
the correct sign by reading any text on it. Thus, this
module did not have to deal directly with any locomotion
issues, instead allowing the Poobah (Section 4.7) to handle
them. This reassignment of responsibilities was necessary
to facilitate a smooth handoff between this module and the
standing in line module. Since the registration area itself
was unreachable by the robots (no elevators or ramps were
available), we used our own (approximately 0.5 x 1.0
meter) large pink signs – one with the text “Humans” and
one with “Large Robots” – on the NRL exhibition booth.

Figure 2. Direction Taking

The Swarthmore Vision Module (SVM) [Maxwell et. al.,
2002] provided the vision software capabilities used for
this task. SVM is a general-purpose vision scheduler that
enables multiple vision operators to run simultaneously
and with differing priorities, while maintaining a high
frame rate. It also provides tightly integrated control over
a pan-tilt-zoom camera, such as the Canon VC-C4 that was
used on GRACE and GEORGE.

The SVM library includes a number of vision operators,
one of which (the color blob detector based on histograms)
was used to find the pink sign above the registration desk.
In addition, each vision operator can function in up to six
different modes, including the PTZ_SET mode that was
used in this project. The PTZ_SET mode allows software
external to SVM to set the position of the camera by
designating pan, tilt, and zoom parameters. SVM does not
independently move the camera in this mode. The software
for finding the registration desk was written using TDL.

The convention center layout was such that the registration
desk was rather close (roughly 10 meters) when the robot
first came into eyeshot of it. This, combined with an
improved version of SVM and the module code, allowed
us to use the camera to passively search for pink blobs at
its widest field of view (45 degrees) while the robot was
moving. This behavior was initiated during the Get to
Registration Area (GRA) (Section 4.1) module’s
execution, when the robot was told that it was in the
general vicinity of the registration area by the human
giving it directions. We avoided running the blob detector
at all times in order to minimize false sign detections (a
number of items used by the maintenance crews were
identical in color to our signs).

As soon as a pink blob was detected, the Poobah (Section
4.7) was notified and immediately paused the GRA
module. The Finding the Registration Desk (FRD) module
then proceeded to zoom in on the sign in a number of
stages (to allow for realignment with the sign) and read any
text on the sign. This text (or lack thereof) was then
compared with a hard-coded target string (in this case,
“Large Robots”). If the strings matched, the Poobah shut
down the GRA module and began the approach to the
desk. If they didn’t match, control was returned to the
GRA module and our passive blob detection continued. In
testing and during the run, we saw a very low number of
false positive blob detections while detecting all visible
signs. If the GRA module ran to completion and control
was handed to the FRD module, a search was performed
by scanning the world with the camera’s widest possible
field of view (once a blob was detected, execution
proceeded as before).

Once the registration sign was found and verified to be the
correct sign, we calculated the rough position of the
registration desk based on the blob elevation measure

provided by SVM and the robot’s odometry. At this point,
the Poobah (Section 4.7) moved the robot to a position two
meters in front of and two meters to the side of the desk.
Before the move, the Poobah (Section 4.7) also enabled the
Stand In Line (SIL) (Section 4.3) module. The goal was to
move off to the side of any potential line in order to give
the SIL module a clear view of the line. During the move,
the SIL module continuously attempted to detect a line. As
soon as it did so, the Poobah shut down FRD and ceded
control to SIL. If SIL had not detected the line by the time
the robot finished its move, the Poobah assumed no line
existed, moved directly to the registration desk, and
proceeded to register (Section 4.4).

During this year’s run, the FRD module interrupted the
GRA module upon detection of the “Human” sign. It then
proceeded to zoom in on the sign, failed to read the text,
and concluded that it was the wrong sign. In the interim,
the human giving directions indicated that the robot was at
the registration area, which terminated the GRA module
and handed control to the FRD module. A search
commenced, during which the correct (“Large Robots”)
sign was detected and verified. Unfortunately, the SIL
module failed to detect the line, and the Poobah ended up
driving GRACE directly to the head of the line.

4.3 Standing in Line (SIL)

Once the robot was near the registration desk, it proceeded
to register. First, however, it attempted to wait in line, like
any polite conference attendee. GRACE and GEORGE use
a combination of an understanding of personal space and
range information to stand in line. They use the concept of
personal space to understand when people are actually in
line, rather than milling around nearby. People standing in
line will typically ensure that they are close enough to the
person in front of them to signify to others that they are in
line, while maintaining a minimum socially acceptable
separation distance. GRACE and GEORGE also use this
information to ensure that once in line they do not make
others feel uncomfortable by getting too close to them. The
algorithm is based on earlier work using stereo vision for
detecting lines [Nakauchi & Simmons, 2002].

The robot uses the SICK scanning laser range finder to
identify people and walls. Before each movement, a laser
scan is performed. Clusters in the range data are grouped
into three categories: those that might be people, those that
are likely walls, and other (Figure 3). This classification is
based on the shape of the cluster. To identify people, the
algorithm looks for a small cluster of data points (with a
spread of less than ~50cm) or a pair of small clusters close
together. This simple heuristic incorrectly classifies a
variety of objects that are not people as people, but these
“false positives” are generally irrelevant in this limited
context.

If a cluster is too big to be a person and the points in the
cluster fall approximately along a line, the cluster is
considered to be a wall. Occlusions in the range data (as
seen in Figure 3) are compensated for by comparing wall
clusters to one another to determine if a single wall
segment can explain them. If this is the case, then those
clusters are combined to provide a better estimate of the
orientation and location of the walls.

This year’s version of the Stand In Line (SIL) module was
much more robust to the robot’s initial position than the
2002 version, at least during testing (it failed to detect the
line during the actual run). Roughly the same algorithm
was used, but the assumption that the desk was initially in
front of the robot was removed. Instead, the SIL module
can be run in either a monitoring mode, where it reports the
location of the head of the line it detects (if any), or in an
active mode where it takes control of the robot and actually
stands in line. This allows the Poobah (Section 4.7) to
move the robot about according to the information reported
by the FRD module and then hand off control to the SIL
module as soon as it detects a line whose head is close
enough (within one meter) to the FRD module’s estimate
of the location of the registration desk.

The “stand in line” algorithm takes a head-of-the-line hint
(which is the estimated location of the desk produced by
the FRD module) and tries to find the closest wall to that
hint. Once the closest wall has been found, the robot
searches for the person closest to this wall. This person is
considered to be the “head of the line”. Once the head of
the line has been identified, the algorithm attempts to chain
nearby people together using the notion of personal space.
Those that are too far from the person in front of them, or

those who are not approximately behind someone in line,
are considered to be not in line. Once the line is found, the
robot moves directly towards the back of the line,
intermittently checking for more people in line. When it
reaches the back of the line, it moves to a position behind
the last person. At this point, the robot only considers the
person immediately in front of it, maintaining the personal
space between the robot and that person. Upon nearing the
registration desk, it maintains a stand-off distance until the
person in front leaves. When there are no more people in
front of the robot, it drives to a set distance from the
registration desk and control passes to the Register module.

4.4 Registering

The objectives for this subtask were to develop an
interaction system that was robust enough so that a
(relatively) untrained person could interact with it and to
present an interface that was natural enough so that the
registrar and observers could interact with GRACE and
GEORGE at least somewhat as they would with a human.
The specific task was for the robot to obtain all the various
registration paraphernalia (bag, badge, and proceedings),
as well as the location and time of her talk. The
implementation of this subtask was identical to the 2002
effort.

Figure 4 illustrates the data and control flow for a typical
interaction cycle with the robot. A wireless microphone
headset is used to acquire speech, which is then converted
to text by ViaVoice. ViaVoice has the ability to read in a
user-specified BNF-style grammar, which it then uses to
assist in speech disambiguation. In fact, it will only
generate utterances that are valid under the loaded

Figure 3. GRACE’s perception of people in line

 Figure 4. Information flow for the registration desk
task

grammar. Obviously, there is an inverse relationship
between the size of the grammar and the recognition
accuracy of ViaVoice (when presented with valid
utterances). We built our own grammar to cover all the
potential utterances we could think of within the given
scope. Since the breadth of interaction involved in
performing the registration task is rather limited, we were
able to achieve satisfactorily accurate recognition.

ViaVoice transmits the utterances that it recognizes as
strings over TCP in its own proprietary format. NRL
developed a module, called UTT, which listens for
transmissions from ViaVoice and re-broadcasts them over
IPC as “utterance” messages. The text strings are then
parsed by the utt2signal process. utt2signal performs the
same basic function as Nautilus, but is significantly
simpler and more specialized. utt2signal is based on a
Bison parser that was hand-generated from the ViaVoice
BNF grammar. It distills the utterances down to the
primitives that we need to drive our interaction and
transmits the appropriate signals to the “expression”
process (see below). In addition, utt2signal is responsible
for dispatching any raw information gleaned from the
utterances to the appropriate process. For instance, if the
registrar tells the robot the location of its talk, utt2signal
informs the navigation software of this.

The “expression” process controls the computer-animated
face and the Festival speech generation software. Users
write interaction scripts that include facial expressions,
quoted text, pauses, conditional operators, choice
operators, and most basic math and logic operations. The
scripting language allows the definition of macros, which
consist of basic face movements, utterances, non-face
primitives (such as pauses), and other macros. Even more
powerful is the ability to create and execute hierarchical
finite state machines (see Figure 5). The FSMs can
execute actions when entering a state and can transition
based on signals received from other processes (e.g.,
utt2signal – hence the name).

Since utt2signal abstracts out the actual parsing, the FSM
can concentrate on the content, which decreases its
complexity. In addition, execution time scales well with
the size and number of finite state machines. In the future,
this will allow much more complex interactions to be
driven without worrying about computational
requirements.

The robots’ faces (Figure 6) are one of the most important
aspects of their ability to interact with people. It is used
for both emotional expression and for simple gestures,
since GRACE lacks any conventional manipulators.
GEORGE obviously uses a different face model (Figure 6),
but the underlying software is identical. The face is based
on an implementation of the simple face in [Parke &
Waters, 1996]. It incorporates a muscle-level model of
face movement to allow semi-realistic face motions. It
accepts muscle and simple movement commands from
expression; macros of these commands are built up within
the “expression” process to allow easy access to
complicated expressions or gestures.

!New this year was a mood server, which attempts to make
the face more dynamic by causing its expression to change
based on what is happening to the robot at the time. One
shortcoming of last year’s system was that the face
remained expressionless except during explicit utterances,
which often included embedded facial expressions. The

 Figure 5. Simplified FSM for the registration task

Figure 6. GRACE’s (left) and GEORGE’s (right)
Faces

mood server was designed to make the expressions change
in a coherent and realistic way by maintaining an internal
"emotional state" for the robot. This emotional state and
the way that it is updated are based on the Ortony, Clore,
and Collins model of the cognitive structure of emotions
[Ortony, 1988]. The mood server accepts as input events
from the various modules corresponding to interactions
with the real world. For example, an event was fired
whenever the robot received a desired object during
registration. These events were interpreted as affecting one
or more of a number of mood axes corresponding to basic
emotions, and the underlying estimation of the robot’s
mood was appropriately updated. This estimation of mood
was then used to continuously modify the expression of the
face, both during utterances and when the face would have
been otherwise static.

Last, but not least, is the system’s ability to generate
speech. We use a version of Festival that was modified to
enable it to generate phonemes for a given utterance, which
are then processed to extract lip-synching information.
Festival performed admirably, overall, with two notable
exceptions: it tends to speak in a monotone and cannot
handle acronyms. While it is possible to embed pitch
changes in strings sent to Festival, this was too labor-
intensive to take advantage of, and does not tend to
produce convincing speech, in any case. Likewise, it is
possible to embed phonetic pronunciations, to deal with
utterances such as “AAAI.”

There were a number of small, persistent problems with the
interaction. First, ViaVoice had trouble with short
utterances, often misinterpreting them as numbers. Since
an utterance of just numbers was parsed as a statement of
the time of the robot’s talk, this could cause some
confusion. However, GRACE was able to recover from
such mistakes, due to the structure of the driving FSM.

The other problem had to do with the disambiguation of
pronouns and other generic statements. The system
disambiguates such statements as “here you go,” “no,” or
“you have it” based on the latest prompt that was given
(i.e., what state of the FSM the robot is currently in).
However, if the robot prompted the registrar and the
registrar began to respond, but ViaVoice did not complete
recognizing the utterance until after the system had timed
out and begun the next prompt, the robot would believe
that a non-specific statement was about the new prompt,
even if only a syllable or two of it had been uttered. This
obviously caused some problems, as the potential existed
for the robot’s belief of the state of the world to get out of
sync with reality, resulting in a potentially very unnatural
interaction.

4.5 Navigating to the Talk

After registering, the Challenge robots are allowed to use a
map to navigate in the building. Ideally, the robots would
actually read the map given to them. GRACE and
GEORGE, however, use a map that they had built
previously and saved on disk. The map was used to help
the robots make their way from the registration desk to the
talk venue. The map-based navigation task was comprised
of three main technologies: map-building, localization, and
navigation control.

The evening prior to the Challenge event, the robot was
driven around the convention center. During this time,
time-stamped odometry and laser range data were recorded
to file. This data was then used to build a map through a
process called scan matching [Lu & Milios, 1997]. The
implementation of our scan-matching algorithm was
adapted from a software package provided by Dirk Hahnel
at the University of Freiburg [Hahnel et. al., 2002].
Generating a map from laser and odometry data is largely
an automated process, although our implementation also
allows the user to correct misalignments after the scan-
matching process. The output of the map-building process
is an occupancy grid map, shown in Figure 7. This map is
103.1 x 56.8 m, with a resolution of 10cm/grid cell. The
black pixels represent regions of space with a high
probability of occupancy, such as walls, chairs, etc.
Similarly, the white areas are regions of space with a low
probability of occupancy. Not shown in this image are
regions of space where no data could be collected (i.e.,
behind walls).

The robots use a probabilistic approach to localization
called Markov Localization. The localizer estimates a
probability distribution over all possible positions and
orientations of the robot in the map given the laser readings
and odometry measurements observed by the robot. This
probability distribution is approximated using a particle
filter [Thrun et. al., 2000]. The robot is initialized with an
approximate starting position, and the distribution of

Figure 7. Map built by GRACE of the Acapulco
Convention Center

particles evolves to reflect the certainty of the localizer’s
position estimate.

As the robot moves, the probability distribution is updated
according to:

Ú ----⋅= 1111)(),|()|()(iiiiiii dsspassipsopsp h
where si is the pose at time i, ai-1 the last action, and oi the
last observation.

Navigation was performed using a two-level system. The
low-level system uses the Lane-Curvature Method [Ko &
Simmons, 1998] to convert commands in the form of
directional headings to motor velocity commands. The
high-level planner consists of an implementation of a
Markov Decision Process planner [Burgard et. al., 1998;
Konolige, 2000]. The planner operates by assigning a
positive reward to the goal location, and negative reward to
poses close to obstacles. The planner uses value iteration to
assign a value to each cell; this value corresponds to the
future expected reward of each cell, as in the following
equation:

˜̃
¯

ˆ
ÁÁ
Ë

Ê
+= ÂÂ

==

||

1

||

1

)),|(|()()(max)(
A

k
iikj

S

j
ji

a
i ssaspsVsRsV pg

where R(si) is the immediate reward of robot pose si, and
V(si) is the expected reward to be maximized. The planner
extracts the maximum-likelihood path by choosing from
the start state (the current pose of the robot as given by the
localizer) successive states that maximize the expected
reward. The directional command passed to the low-level
controller is just the direction of the neighboring state with
the highest expected reward.

During execution of the planned path, the planner also
integrates sensor information, based on the current pose
estimate from the localizer, to make changes to the map.
This allows the planner to compensate for small errors in
localization and changes to the environment that could
invalidate certain paths.

The only major difference in this year’s implementation
was the inclusion of a fiberoptic gyro on GRACE, which
yielded much more accurate rotational pose, greatly
increasing the accuracy of the generated map.

4.6 Giving the Talk

Once the robot navigated to the lecture area (in the
Exhibition Hall), it gave a talk about the technologies that
comprised her. The talk-giving system is an attempt to
scale behavior-based architectures directly to higher-level
cognitive tasks. The talk-giver combines a set of behavior-
based sensory-motor systems with a marker-passing
semantic network, a simple parser, and an inference
network, to form an integrated system that can both
perform tasks and answer questions about its own ability to

perform those tasks. It interfaces with the computer-
animated face and Festival speech generation systems to do
the actual presentation.

The talk system is structured as a parallel network of logic
gates and finite-state machines. Inference rules in the
system are compiled into a feed-forward logic network.
This gives it circuit semantics: the inputs of the network
monitor the truth-values of premises as generated by the
sensory systems and the outputs of the network track the
truth-values of conclusions in real-time as the premises
change. In effect, the entire rule base is rerun from scratch
to deductive closure at sensory frame-rates. Although this
sounds inefficient, the rule engine can run a base of 1000
Horn rules with 10 conjuncts each, updating at 100Hz (100
complete reevaluations of the knowledge base per second),
using less that 1% of the CPU. Using a generalization of
deictic representation called role passing, the network is
able to implement a limited form of quantified inference –
a problem for previous behavior-based systems. Rules
may be quantified over the set of objects in short-term
memory, provided they are restricted to unary predicates
(predicates of one argument).

The talk-giving system implements reflective knowledge –
knowledge of its own structure and capabilities – through
two mechanisms: a marker-passing semantic network
provides a simple mechanism for long-term declarative
memory, while role passing allows variables within
inference rules to be bound to behaviors and signals within
the system. The former allows the system to answer
questions about its own capabilities, while the latter allows
it to answer questions about its current state and control
processes.

The talk-giving system can follow simple textual
instructions. When a human issues a command such as
“drive until the turn,” its simple parser, which is formed as
a cascade of finite-state machines, examines each
individual word, binding the appropriate words to the
appropriate roles. In this case, the parser binds the drive
behavior to the role activity and the turn sensory signal to
the role destination. When it detects a stop (e.g., a pause),
it triggers the handle-imperative behavior, which
implements the rules:

• If the signal bound to destination is false,
activate the behavior bound to activity.

• If destination is bound to a sensory signal and
that signal is true, deactivate activity and myself.

• If activity deactivates itself, also deactivate
myself.

Since this behavior is parameterized by other behaviors,
we call it a higher-order behavior, in analogy to the
higher-order procedures of functional programming

languages. Other examples are the explain behavior,
which walks a subtree of the semantic network to produce
a natural language explanation of the behavior, and the
demo behavior, which both explains and runs the behavior.
Role passing and higher-order behaviors are easily
implemented using parallel networks of gates and finite-
state machines, making them a natural choice for the kind
of distributed, parallel processing environments often
found on mobile robots. They are implemented in GRL, a
functional programming language for behavior-based
systems that provides many of the amenities of LISP, while
statically compiling programs to a network of parallel
finite-state machines.

To give a talk, GRACE and GEORGE use the Linksys
wireless connection to a laptop to open a PowerPoint
presentation, reads the text of each bullet-point, and uses
keyword matching to find an appropriate node in its
semantic network. It uses a novel distributed
representation of a discourse stack to resolve ambiguities,
using only SIMD marker-passing operations. Having
determined the node to which the bullet-point refers, the
system uses spreading activation to mark the subtree rooted
at the selected node as being relevant. It then discusses
the topic by continually selecting and explaining the
“highest priority” relevant, unexplained, node. Priorities
are computed off line using a topological sort so that if
topic A is required to understand topic B, A will always
have higher priority.

By continually reselecting the highest priority relevant,
unexplained node using circuit semantics, the system can
respond instantly to changes in relevance when, for
example, an unexpected contingency during a
demonstration opens up an opportunity to explain a
feature. It also allows the robot to cleanly respond to, and
return from, interruptions without re-planning. However,
such topic shifts require the generation of transition cues
such as “but first …” or “getting back to …”. The talk
code detects these abrupt topic shifts by tracking the
current semantic net node, its parent node, and the previous
node and parent. By comparing these, the system can
determine whether it has moved locally up, down, or
laterally in the hierarchy, or whether it has made a non-
local jump to an unrelated node. It then generates the
appropriate transition phrase.

The talk-giver is far from fluent. It is not intended to
demonstrate that behavior-based systems should be the
implementation technique of choice for natural language
generation. Instead, it shows that parallel, finite-state
networks are much more powerful than previously
believed. Moreover, by implementing as much of a robot’s
control program as possible with these techniques, we get
efficiency, easy parallelization, and flawless
synchronization of the knowledge base with the
environment.

4.7 The Poobah

One important aspect of overall integration that was
lacking in our effort last year was a coordinating process.
The various modules were manually serialized and very
self-contained; little to no high-level failure recovery was
performed, and due to this structure each task was
extremely specific to the Challenge. The Poobah is our first
effort to address these issues.

The Poobah is written entirely in TDL, and contains one
TDL task tree corresponding to each of the modules. It is
responsible for launching and killing the appropriate
processes at the right times (via Microraptor; see Section
3), coordinating all data flow between modules, and
handling all aspects of the overall Challenge task that do
not fall within the purview of one of the above-described
modules. This affords us a number of advantages:

1) The modules are insulated to as high a degree as
possible from Challenge-specific details. This
allows existing work to be integrated much more
quickly by keeping the modules generalized.

2) If a module fails, we can fall back to a previous
module or skip ahead, depending on the context
and reported details of the failure.

3) Data can be easily maintained across multiple
modules, allowing non-serial data flow among
modules.

4) The majority of the Challenge-specific code can
be concentrated in one central location.

In the current implementation, the majority of the tasks are
merely serialized by the Poobah. A notable exception is
the FRD => SIL => Registration handoff. As detailed in
Sections 4.2 and 4.3 above, the Poobah is responsible for
passing hints from the FRD module to the SIL module, as
well as executing a number of robot moves (and a
smattering of utterances) in order to bring the robot into a
state in which the SIL module can take over control.
Although the Poobah was not used on GEORGE (since we
were unable to get Microraptor working), it performed
flawlessly on GRACE.

5. Discussion and Summary
On Thursday, 14 August, GRACE and GEORGE
attempted the AAAI Robot Challenge, in front of
interested onlookers. While some portions of the software
performed quite well – even better in some cases than last
year – other parts did not. We also experienced a few
hardware problems that confounded our efforts. Overall,
almost all errors could be traced to integration problems
and not to the underlying algorithms.

Although both robots are similar and GEORGE is a much
newer robot, one of GEORGE’s computers had an older
version of Linux installed, a requirement imposed by the
manufacturers’ underlying control and interface code.
Specifically, GEORGE’s two machines run RedHat 6.2
(2.2 kernel) and 7.3 (2.4 kernel), as opposed to RedHat 7.2
(2.2 and 2.4 kernel) on both of GRACE’s machines. We
believe this might be the root cause for several yet to be
diagnosed problems.

Possibly related to a difference in operating systems, we
could not get the Microraptor system (and therefore the
Poobah) running properly on GEORGE, and thus could not
automatically start and monitor the 30+ processes that
were required. This required us to hand start and sequence
the processes, something that we learned last year was
difficult at best and prone to errors.

While we wanted both robots to run in quick succession for
the whole challenge, we decided that GEORGE’s software
was not ready and were going to have GEORGE just give
the talk, with him waiting in the talk area for GRACE to
arrive. We took GRACE for her run. Unfortunately, at the
start of the run, a power drain from a damaged PC-104
stack browned out the SICK laser. This, in combination
with the earlier (known) failure of the sonars due to
humidity, deprived GRACE of all active sensors, and she
promptly ran into a coffee table. GRACE then sat,
unresponsive, while the power problem was diagnosed.
We decided to see what GEORGE could accomplish, with
us manually starting the code.

GEORGE had some new code that was not on GRACE,
which would allow us to demonstrate the ability to process
high-level spatial commands, such as, “go to the other side
of the table” or “go between the table and the chair,”
however this code was not fully integrated into the system.
Although not diagnosed, we believe that this code was
either making too many requests of the IPC system or
causing the system to wait for responses from it, which
along with the human giving a lot of requests in
succession, caused the natural understanding system to lag
far behind the rest of the system. (GRACE did not have
the spatial referencing system, and did not suffer from this
problem.) This lag time made speech and gestures difficult
to use, and we resorted to moving GEORGE to the talk
area to get him ready to give the talk.

The new emotional model that drove the facial expressions
(and in some cases the behavior) of GRACE and GEORGE
performed well. In fact, as GEORGE suffered from an
inability to receive valid directions, as described above,
GEORGE’s face became more and more panic stricken!
This was a programmed response to not receiving
directions and progressing to the goal. By the end of the
initial phase of the run, GEORGE appeared to be as
horrified as his handlers.

Meanwhile, GRACE’s power problem was diagnosed and
repaired. Further, after several attempts, we decided to not
run the speech recognition system (an off the shelf
product), which was having problems understanding the
human, and instead, typed the English language commands
directly to the natural language understanding system.
This worked well, and we were able to get GRACE
through the initial task of getting near the registration desk.

GRACE did a great job of recognizing and reading the
signs indicating the place for robots to register. She found
the pink of the “Humans” sign and did not initially
correctly read the text, found the pink of the “Robots” sign,
correctly read the sign and passed control to the code to
stand in line (Sections 4.2, 4.3, 4.7). Here, GRACE again
had trouble seeing the line and proceeded to move to the
front of the line.

The interaction with the human at the registration desk
went reasonably well (this person was one of the judges),
and GRACE was given a map built earlier of the exhibit
hall and the place where the talk would occur. GRACE
navigated quite well, despite a crowd of people, to the area
for the talk.

Once in place, GEORGE proceeded to give the talk. The
talk code was written to be generic and understand which
robot was giving the talk so the robot could refer to itself
and the other robot correctly. The talk, shortened this year,
was performed well to a small crowd. To cap off the
performance, GEORGE answered questions from the
audience, using its knowledge base to match against key
words from the questions.

As stated earlier, while some things worked much better
this year, we also experienced many problems – however,
we believe these errors, as shown above were mostly
integration related. So why did we still have integration
errors in the second year of this project? The problem was
the introduction of a second, not quite similar robot. A
large amount of time this year was spent getting a similar
environment on the second robot, and on getting all of the
software to run. While a source revision control system
was in use, a sizable part of the code that was considered
external to the actual research code was not under revision
control, and yet this code needed to be modified for
various reasons related to the differences in platforms,
resulting in failures in the research code of the other teams.
A lesson learned for next year – we are bringing this code
under revision control.

Speech recognition, not a part of the research code, but an
off the shelf product, still performed poorly this year. We
did methodically evaluate other products for speech
recognition, but did not find any with better performance.
We are currently working with one of the top speech

understanding research groups and hope to have a better
system next year.

What went right? The general direction understanding
code worked better this year. The robots could read the
signs to determine which was the correct line. The
navigation code ran extremely well this year. And finally,
the robot not only gave a good talk that was not canned,
but also answered questions.

With two operational robots to use for development this
year, one at CMU and the other at NRL, our first task,
currently in progress, is to make all of the code we
expected to run perform properly, with no integration
problems. We hope to have this accomplished by the end
of October. With integration errors out of the way, and
with two robots, we expect to be able to concentrate on
research issues.

What is in store for next year? We expect to have GRACE
and GEORGE able to understand spatial references. The
robots will understand utterances like “go to the other side
of the…” and “go around the….” They will be able to do
spatial reasoning. Using a recently developed
computational cognitive model of perspective taking, the
robots should be able to understand directions without
errors in the human versus the robots perspective.

An unaccomplished goal for this year, we plan to
incorporate capabilities for the robot to “schmooze” with
other participants. We would like to have the robot
perform its own crowd control. And since we have two
robots, we plan to have the robots work together next year.

Acknowledgments
We would like to thank the organizers and the sponsors of
the 2003 Robot Competition and Exhibition for this
opportunity. In addition, we would like to thank Samuel
Blisard (University of Missouri at Columbia) for his help
with spatial reasoning software and Jonathan Sabo for help
with GEORGE’s system administration.

References
[Burgard et. al., 1998] W. Burgard, A.B. Cremers, D. Fox,

D. Hahnel, G. Lakemeyer, D .Schulz, W. Steiner, and S.
Thrun. “The Interactive Museum Tour-Guide Robot.” In
Proceedings of the AAAI Fifteenth National Conference
on Artificial Intelligence, 1998.

[Hahnel et. al., 2002] D. Hahnel, D. Schulz, and W.
Burgard. “Map Building with Mobile Robots in
Populated Environments.” In Proceedings of Conference
on Intelligent Robotics and Systems, 2002.

[Ko & Simmons, 1998] N.Y. Ko and R. Simmons. “The
Lane-Curvature Method for Local Obstacle Avoidance.”
In Proceedings of Conference on Intelligent Robotics
and Systems, Vancouver, Canada, 1998.

[Konolige, 2000] K. Konolige. “A Gradient Method for
Realtime Robot Control.” In Proceedings of Conference
on Intelligent Robotic Systems, 2000.

[Lu & Milios, 1997] F. Lu and E. Milios. “Globally
Consistent Range Scan Alignment for Environment
Mapping.” Autonomous Robots, 4:333-349, 1997.

[Maxwell et. al., 2002] B.A. Maxwell, N. Fairfield, N.
Johnson, P. Malla, P. Dickson, S. Kim, S. Wojtkowski,
T. Stepleton. “A Real-Time Vision Module for
Interactive Perceptual Agents.” Machine Vision and
Applications, to appear 2002.

[Nakauchi & Simmons, 2002] Y. Nakauchi and R.
Simmons. “A Social Robot that Stands in Line.”
Autonomous Robots, 12:3 pp.313-324, May 2002.

[Ortony, 1988] A. Ortony, G. L. Clore, and A. Collins.
The Cognitive Structure of Emotions. Cambridge
University Press, 1988.

[Parke & Waters, 1996] F. Parke and K. Waters. Computer
Facial Animation. A.K. Peters, Ltd., December 1996,
ISBN 1-56881-014-8.

[Perzanowski et. al., 1998] D. Perzanowski, A.C. Schultz,
and W. Adams. “Integrating Natural Language and
Gesture in a Robotics Domain.” In Proceedings of the
International Symposium on Intelligent Control, IEEE:
Piscataway, NJ, pp. 247-252, 1998.

[Perzanowski et. al., 2002] D. Perzanowski, A.C. Schultz,
W. Adams, W. Skubic, M. Abramson, M. Bugajska, E.
Marsh, J.G. Trafton, and D. Brock. “Communicating
with Teams of Cooperative Robots.” Multi-Robot
Systems: From Swarms to Intelligent Automata, A. C.
Schultz and L.E. Parker (eds.), Kluwer: Dordrecht, The
Netherlands, pp. 185-193. 2002.

[Simmons & Apfelbaum, 1998] R. Simmons and D.
Apfelbaum, "A Task Description Language for Robot
Control," Proceedings Conference on Intelligent
Robotics and Systems, October, 1998.

[Skubic, et al., 2002] M. Skubic, D. Perzanowski, W.
Adams, and A. Schultz. Using Spatial Language in
Human-Robot Dialog. In Proc. of ICRA 2002,
Washington, DC, 2002.

[Thrun et. al., 2000] S. Thrun, D. Fox, W. Burgard and F.
Dellaert. “Robust Monte Carlo Localization for Mobile
Robots.” Artificial Intelligence, 101:99-141, 2000.

[Wauchope, 1994] K. Wauchope. Eucalyptus: Integrating
Natural Language Input with a Graphical User
Interface. Tech. Report NRL/FR/5510-94-9711, Naval
Research Laboratory: Washington, DC, 1994.

