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Abstract

The World Wide Web is a powerful and readily avail-
able text corpus that can be used effectively to vali-
date the output of an information extraction system. We
present experiments that explore how pointwise mutual
information (PMI) from search engine hit counts can
be used in an Assessor module that assigns a proba-
bility that an extracted fact or relationship is correct,
thus boosting precision. We find that thresholding on
PMI scores is more effective in creating features for the
Assessor than using probability density models. Boot-
strapping can be effective in finding both positive and
negative seeds to train the Assessor, performing better
than hand-tagging a sample of actual extractions.

Introduction
The World Wide Web is a powerful and readily available
text corpus that researchers are beginning to exploit for sta-
tistical natural language processing. This has already proved
effective in testing possible synonyms (Turney 2001), find-
ing semantic orientation of phrases (Turney 2002), and val-
idating question-answer pairs (Magniniet al. 2002). More
recently, KNOWITALL (Etzioni et al. WWW-2004; Etzioni
et al. AAAI-2004) has shown that search engine hit counts
can be used to assign probability of correctness to automat-
ically extracted facts, for a large boost in precision of an
information extraction (IE) system.

But in order to use Web-scale statistics as an IE valida-
tion tool, a number of questions arise. How can search en-
gine queries be formulated that will provide corroboration
for an extracted fact or relation? How can these queries be
generated automatically for new domains? How can the hit
counts thus obtained be transformed into features for a clas-
sifier? Can bootstrapping be used to obtain seeds to train the
classifier, in particular obtaining negative seeds?

In this paper, we report on experiments that explore an-
swers to these questions. These experiments use data ex-
tracted by the KNOWITALL system, but apply broadly to
IE systems in general. KNOWITALL validates extracted in-
stances of a class or relation by computing pointwise mutual
information (PMI) from hit counts as defined by (Turney
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2001). LetI be an instance andD be a discriminator phrase
that is a strong indicator of the target class or relation.

PMI(I, D) =
|Hits(D + I)|
|Hits(I)| (1)

The PMI score is the number of hits for a query that com-
bines the discriminator and instance, divided by the hits for
the instance alone. This can be viewed as the probability
that(D + I) will be found on a Web page that containsI.

We describe the KNOWITALL system briefly and how its
Assessor module uses PMI scores as features for a naive
Bayesian probability update. We present a series of experi-
ments to evaluate the following:

• Continuous probability densities as features for the As-
sessor

• Thresholded PMI scores as features: either single thresh-
old, or one threshold near positive training and one near
negative training

• The optimal number of discriminators to use

• Bootstrap training of the Assessor and sensitivity to noise
in the training

• Source of negative training: sample from extraction er-
rors, or use positive training from other classes

We found thresholding of PMI scores to be superior to
using a continuous probability density. A single threshold
gives high precision up to around 0.80 recall, and reclassify-
ing the remaining instances with two thresholds maintains
higher precision for the tail of the recall-precision curve.
Both recall and precision increase as more discriminators are
added, as this helps overcome the bias inherent in individual
discriminators.

A combination of generic patterns and bootstrapping are
effective in tailoring the validation to specific domains, al-
though manual inspection of the bootstrapped seeds may be
needed as noisy seeds can hurt performance. We were sur-
prised to find that selecting negative training from among
the seeds of other classes is more effective than using ac-
tual “near misses” of the IE system. Overall, we find that
Web-based statistics can be highly effective in boosting the
precision of an IE system.



NP1 "such as" NPList2
& head(NP1)= plural(Class1)
& properNoun(head(each(NPList2)))

=> instanceOf(Class1, head(each(NPList2)))
keywords: "plural(Class1) such as"

Figure 1: This generic extraction pattern can be instantiated au-
tomatically with the (pluralized) class name to create a domain-
specific extraction rule. For example, ifClass1 is set to “City”
then the rule spawns the search engine query “cities such as”,
downloads the Web pages, and extracts every proper noun imme-
diately following that phrase as a potential city.

KnowItAll System
KNOWITALL is an autonomous, domain-independent sys-
tem that extracts facts, concepts, and relationships from the
Web. The input to KNOWITALL is a set of classes and rela-
tions that constitute itsfocusand a set of generic extraction
patterns, some of which were adapted from the hyponym
patterns of (Hearst 1992). A bootstrap phase instantiates ex-
traction rules for each class or relation from these generic
patterns, and uses them to find seeds to train the Assessor
module. KNOWITALL ’s PatternLearning module (Downey
et al. 2004) takes extractions from generic rules as seeds,
and learns domain-specific patterns that serve as both ex-
traction rules and discriminator phrases. The experiments
presented here focus on generic rules and discriminators,
and on unary predicates, although KNOWITALL rules can
extract N-ary predicates as well.

The Extractor module automatically formulates queries
based on its extraction rules. Each rule has an associated
search query composed of the rule’s keywords. For exam-
ple, if the pattern in Figure 1 were instantiated for the class
City , it would lead KNOWITALL to 1) issue the search-
engine query “cities such as”, 2) download in parallel all
pages named in the engine’s results, and 3) apply the extrac-
tion rules to the appropriate sentences on each downloaded
page.

The Assessormodule uses statistics computed by query-
ing search engines to assign a probability to each extracted
fact or relation. The Assessor uses a form ofpointwise mu-
tual information(PMI) between words and phrases that is
estimated from Web search engine hit counts in a manner
similar to Turney’s PMI-IR algorithm (Turney 2001). The
Assessor computes the PMI between each extracted instance
and multiplediscriminator phrasesassociated with the class
(such as “city of” for the classCity ). These mutual in-
formation statistics are treated as features that are input to a
Naive Bayes Classifier.

Experiments reported in (Etzioniet al. WWW-2004)
tested KNOWITALL on five classes:City , USState ,
Country , Actor , andFilm . Web-based validation was
effective in maintaining high precision at high recall levels
for these classes. In this paper we present experiments using
alternate versions of the Assessor on two of these data sets:
City with 19,090 instances of which71% are true posi-
tives, andCountry with 551 instances of which34% are
true positives.

These classes were the most convenient for experiments

that evaluate a range of parameter settings and methods,
since we could use the Tipster Gazetteer in creating tagged
data for evaluation. Only about70% of the correct city
names extracted by KNOWITALL were found in Tipster, so
we needed to hand-tag at least a sample of the entries not in
Tipster. We were unable to use the Internet Movie Database
as an oracle forActor and Film , because of the high
false negative rate of the code we developed to automatically
query IMDB.

We now describe the Assessor in more detail.

Using PMI to Validate Extractions
The Web is a rich source of co-occurrence statistics, com-
puting pointwise mutual information (PMI) from search en-
gine hit counts as in Equation 1. Where Turney used the
AltaVista NEAR operator for PMI computation, we found
that embedding the instance directly in the discriminator
phrase provides stronger evidence. Consider the discrimina-
tor phrase “cities such as X”, taken from the search query as-
sociated with an extraction rule forCity , and two proposed
instances: “Los Angeles”, and “California”. Each instance
has about 12 million hits, but “cities such as Los Angeles”
has 4,340 hits, giving a PMI score of 3.6E-4, while “cities
such as California” has only 22 hits, giving PMI 1.9E-6.
This would cause a system to have much higher belief that
Los Angeles is a city than that California is a City.

Discriminator phrases can also be used to validate bi-
nary predicates. For example the predicateStars-
In(Actor, Film) might have discriminators such as “X
in Y” or simply “X Y”, where X is replaced by the actor’s
name and Y by the film. The phrase “Harrison Ford in Star
Wars” will have relatively high hit counts, while “Harrison
Ford in Jurassic Park” has hardly any hits. The Assessor
combines evidence from binary discriminators together with
the probability that each argument in a binary predicate is of
the proper class.

The PMI-IR algorithm is sufficient to compare the relative
likelihoods of two instances, but needs to be extended to
compute the probability that a given instance is correct. To
do this, we calibrate PMI scores for each discriminator on a
training set of known positive and negative instances (seeds).
We explore alternate ways to do this in the following section.

KNOWITALL combines evidence from multiple discrim-
inators (and possibly other evidence) in a “naive Bayesian”
probability update. Givenn observed featuresf1 . . .fn,
which are assumed conditionally independent, the Assessor
uses the following equation to calculate the expected truth
of an atomic formulaφ, whereP (φ) is the prior probability
of the rule producing correct extractions:

P (φ|f1, f2, . . . fn) =
P (φ)

∏
i
P (fi|φ)

P (φ)
∏

i
P (fi|φ) + P (¬φ)

∏
i
P (fi|¬φ)

(2)

To use this equation, we need to transform raw PMI score
into two conditional probabilitiesP (fi|φ) andP (fi|¬φ), and
train these on a set of positive and negative seeds. These
represent the probability of seeing a given PMI score if the
instance is valid, and the probability if it is incorrect. We
now turn to methods of implementing this.
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Figure 2: Using a single threshold to turn PMI scores into
Bayesian features gives higher precision than two thresholds ex-
cept for the highest recall levels.

Creating Features for the Assessor

Our method to turn a PMI score into the conditional prob-
abilities needed for Equation 2 is straightforward. The As-
sessor takes a set of 10 positive and 10 negative seeds for
each class and finds a threshold on PMI scores that splits
the positive and negative seeds. It then uses a tuning set
of another 10 positive and 10 negative seeds to estimate
P (PMI > thresh|class) andP (PMI > thresh|¬class), by
counting the positive and negative seeds (plus a smoothing
factor) that are above or below the threshold.

One vs. Two Threshold Method: For many discrimina-
tors there is a large gap between the lowest PMI score for
positive seeds and the highest PMI for negative seeds (recall
the two orders of magnitude difference between “Los An-
geles” and “California” for the discriminator “cities such as
X”). The Assessor finds two thresholds:threshAthat max-
imizes the ratio (p + 1) / (n + 1), wherep is the number
of positive seeds with PMI≥ threshA andn is the number
of negative seeds with PMI≥ threshA. SimilarlythreshB
maximizes the ratio of negative to positive seeds with PMI
≤ threshB. KNOWITALL takes the average of threshA and
threshB as the threshold for the discriminator.

We noticed a problem with using a single threshold: an
instance with PMI just below the threshold and one just
above might get radically different probabilities, leading to
some misclassifications. We experimented with an alternate
method that uses two thresholds. The Assessor estimates
the conditional probabilities for PMI> threshA, for PMI
≤ threshB, and for PMI between the two thresholds. In
cases where there are no training instances between the two
thresholds, the conditional probability is the same forclass
and¬class, adding no information to the probability calcu-
lation in Equation 2.

Figure 2 compares the single threshold method with the
two threshold method for the classCity . In each case the
Assessor trained a set of 24 generic discriminators that were
derived from the class names “city” and “town” to the right
or left of the instance (singular and plural) and from the
search queries associated with each generic extraction rule
derived from those class names. The Assessor retained the
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Figure 3:The results from Figure 2 hold for the classCountry
as well.
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Figure 4: A hybrid method begins with single thresholds, then
falls back to double thresholds. This raises precision at high recall
while maintaining high precision at low recall.

five best discriminators to use in classifying new instances.
The graph measures precision and recall where the ranking
function is the probability assigned by the Assessor.

The single threshold method gives superior precision for
instances up to about recall 0.80, but has difficulty dis-
tinguishing the positive instances beyond that. The two-
threshold method is more effective with the low-PMI in-
stances at the high recall end of the graph. The results are
similar for the classCountry as shown in Figure 3.

We tried a hybrid approach that begins by classifying all
instances with a single threshold, then takes the instances
that are below threshold for more than half of the discrim-
inator and reclassifies them using two thresholds. Figure
4 shows that this does have the desired effect. With two-
threshold reclassification, the curve forCity is identical
to the single threshold curve up to recall 0.81. The two-
threshold method is able to further distinguish positive from
negative instances, maintaining precision of 0.86 at recall
0.97. The classCountry has similar results, with preci-
sion raised from 0.57 to 0.73 at recall 0.96 and from 0.34 to
0.67 at recall 1.0.

Continuous Probability Density Method: Modeling the
conditional probabilities as continuous probability density
functions seems more attractive than probabilities that jump
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Figure 5:Using a continuous probability density function causes
a drop in precision at both ends of the recall-precision curve.

abruptly at PMI thresholds. Fitting such a model to limited
training, on the order of 20 positive and 20 negative seeds,
proves difficult, however. We computed a probability den-
sity function (PDF) by smoothing a Gaussian kernel with
bandwidth computed using a rule of thumb suggested by
(Turlach 1993)1. We truncated the PDF for values less than 0
and rescaled the remaining area such that it would integrate
to 1. Similar PDFs were done for the negative training.

PDFfi,φ(x) =
1

N

N∑
j=1

1

σ
√

2π
e

(x−xj)2

2σ2 (3)

The results of using this continuous PDF equation on the
classCountry is shown in Figure 5, with a comparison to
the single-threshold method. Each used the same five dis-
criminators trained on the same seeds. Similar results for
City were reported in (Etzioniet al.WWW-2004).

The point at which the positive and negative PDFs for a
given discriminator intersect (midpoint) is analogous to the
thresholds described earlier. As PMI scores move farther
from this midpoint, the ratio between PDFs change, giving
different levels of confidence.

Although in principle, accounting for the magnitude of
the PMI score is advantageous, we found a drop in preci-
sion at both ends of the recall-precision curve. In practice
the PDF for the negative training points is particularly non-
representative of the underlying distribution and results in
extreme and unpredictable ratios for PMI scores too far from
the midpoint. One PMI score that is an outlier can dominate
the overall classification which results in the clumps we see,
as well as some of the errors.

Synergy of Multiple Discriminators
Another decision in Web-scale validation is the number of
discriminators to use. This is partly an efficiency issue: val-
idating an extraction usingk discriminators requiresk + 1
hit count queries, one for the instance itself and one each for
the discriminators; each additional discriminator means an

1h = 1.06(min(σ̂, R̂/1.34))N−1/5 whereσ̂2 andR̂ are the
variance and interquartile range over theN = 20 positive training
points{xj}

extra query to a search engine. Processing time in KNOW-
ITALL is dominated by the time taken for validation queries.
There is another issue as well that involves synergy between
discriminators.

Discriminators that use a variety of words associated with
a class or relation can help overcome a problem of poly-
semy. The term “country” might refer to countryside or to
a music genre. We used discriminators with the plural form
“countries” as well as an alternate class name “nation” and
“nations”. Instances that fool one discriminator phrase are
not likely to fool all discriminators.

Another artifact of discriminators is the difference be-
tween left-handeddiscriminators that form a prefix of the
instance andright-handeddiscriminators that form a suffix.
The incorrect instance ofCity “Los” will have high PMI
for a left-handed discriminator (“city Los”), but low PMI
for a right-handed discriminator (“Los city”). The fragment
“Angeles” will fool right-handed discriminators, but not left-
handed. The Assessor keeps a balance between right-handed
and left-handed discriminators when automatically selecting
thek best discriminators.

We ran an experiment where the number of discrimina-
tors was varied from 1 to 24. Figure 6 shows the results for
Country for 1, 3, 5, and 10 discriminators. Performance
increases only slightly after 5 discriminators. (Downeyet al.
2004) found good results from dynamically deciding how
many discriminators to use for each extraction, favoring
those with greatest uncertainty.
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Figure 6:Adding more discriminators raises both recall and pre-
cision, with smaller increases after 5 discriminators.

Bootstrapping and Noise Tolerance
Another important issue is robustness and noise tolerance,
particularly when bootstrapping is used to select training for
the Assessor. KNOWITALL begins with a bootstrap step that
instantiates a set of extraction rules and a set of discrimina-
tors from generic patterns. To select seeds for the Asses-
sor, KNOWITALL extracts a batch of unverified instances
using the generic rules and computes the PMI for each of
the generic discriminators. This produces a set of instances
ranked by average PMI over all the discriminators.

KNOWITALL selectsn seeds from the topm instances,
then trains all discriminators on those seeds and selects the
bestk discriminators (we usedk = 5, n = 20, andm = 60).



This process can be iterated by reranking the instances by
the probability computed from thosek discriminators and
picking a new set of seeds to retrain all discriminators. We
discuss the source of negative seeds later in this section.

Figure 7 compares performance forCountry trained on
three different sets of seeds. The first pass of bootstrapping
had30% noise: 6 errors out of 20 seeds (“EU”, “Middle East
Countries”, “Iroquois”, and other instances semantically re-
lated to nation or country). A second bootstrap pass pro-
duced seeds with10% noise. Manual review to reject incor-
rect seeds produced the set with no noise. The set of seeds
with 10% noise produced precision comparable to no noise
up to about recall 0.75, then degraded badly. A single boot-
strapping pass produced seeds with no errors for the classes
City , USState , andActor , however. More research is
needed to find a bootstrapping method that eliminates noise
across all classes.
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Figure 7: The Assessor can tolerate10% noise in bootstrapped
training seeds up to recall 0.75, but performance degrades after
that.

Another question that troubled us is the source of nega-
tive seeds. No automatic means of producing useful “near
misses” comes to mind. Our solution was to train the As-
sessor on multiple classes at once; KNOWITALL finds neg-
ative seeds for a class by sampling positive seeds from other
classes, as in (Linet al.2003). We take care that each class
has at least one semantically related class to provide near
misses. In these experiments,Country gets negative seeds
from City , USState , Actor , andFilm , and so forth.

We tried the following alternative method of finding neg-
ative seeds. KNOWITALL runs its Extractor module to pro-
duce a set of unverified instances, then takes a random sam-
ple of those instances, which are hand-tagged as seeds. This
training set has the added advantage of a representative pro-
portion of positive and negative instances.

Figure 8 shows an experiment where a random sample of
40 extractions were hand-tagged as seeds. These seeds were
then removed from the test set for that run. Surprisingly,
the recall-precision curve is somewhat worse than selecting
negative seeds from the other classes.

Related Work
KNOWITALL builds on work of (Turney 2001, 2002, 2003)
whose PMI-IR uses search engine hit counts to compute
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Figure 8:Using negative seeds that are taken from seeds of other
classes works better than tagging actual extraction errors as nega-
tive seeds.

pointwise mutual information that measures the degree of
non-independencebetween a pair of words. Turney used
PMI from hit counts to select among candidate synonyms of
a word, and to detect the semantic orientation of a phrase
by comparing its PMI with positive words (e.g.“excellent”)
and with negative words (e.g.“poor”).

Other researchers have recently made use of PMI from hit
counts. (Magniniet al. 2002) validate proposed question-
answer pairs for a QA system by learning “validation pat-
terns ” that look for the contexts in which the proposed ques-
tion and answer occur in proximity. Like Turney, they use
the AltaVista NEAR operator to allow a limited amount of
arbitrary text between terms in their queries.

(Uryupina 2003) classifies proposed instances of geo-
graphical classes by embedding the instance in discrimina-
tor phrases, much as KNOWITALL does. Both the raw hit
counts and normalized counts (PMI scores) are then given
as features to the Ripper classifier. Uryupina’s system in-
cludes a bootstrapping cycle that begins with 100 hand-
tagged seeds, then alternately learns patterns to find and val-
idate more instances, and learns new patterns from those in-
stances.

KNOWITALL is also related to a growing body of research
on bootstrapping methods for natural language processing.
(Joneset al. 2003) gives a good overview of the choices of
methods in bootstrap learning. Bootstrap is an iterative ap-
proach that alternates between learning rules from a set of
instances, and finding instances from a set of rules (Riloff
and Jones 1999; Agichtien and Gravano 2000; Brin 1998).
Where previous bootstrapping methods begin with a small
set of hand-tagged seeds, KNOWITALL begins with a small
set of domain-independent extraction patterns and uses that
to find its initial set of seeds.

Discussion and Open Questions
We have found that Web-based pointwise mutual informa-
tion (PMI) statistics can be effective in validating informa-
tion extraction (IE). This paper explores alternate choices in
implementing PMI in an IE system.

The lessons learned were:



• Thresholding of PMI scores produce better features for
the Assessor than a continuous probability density model.

• A single threshold gives better precision than setting two
thresholds (a lower bound on positive seeds and an upper
bound on negative seeds). This holds on all but the tail
of the recall-precision curve, where two thresholds give
higher precision.

• Both recall and precision improve as the number of
discriminators increases, although there are smaller in-
creases after 5 discriminators.

• Bootstrap training can be effective in finding seeds to train
the Assessor, although manual inspection of the seeds is
important. The Assessor is sensitive to noise in its train-
ing.

• Selecting negative training from positive seeds of other
classes gives better classification than hand-tagging ex-
traction errors as negative seeds.

Several open questions remain about the use of PMI for IE
systems. Even with the entire Web as a text corpus, the prob-
lem of sparse data remains. The most precise discriminators
tend to have low PMI scores for positive instances, often as
low as10−5 or 10−6. This is not a problem for prominent
instances that have several million hits on the Web. If an
instance is found on only a few thousand Web pages, the
expected number of hits for a positive instance will be less
than 1 for such a discriminator. This leads to false negatives
for the more obscure positive instances.

Several levels of backing off are possible to help over-
come this. If a discriminator produces 0 hits, a more general
discriminator can be tried. If the discriminator “X is a city”
with threshold 2.2E-5 is too specific for a low frequency in-
stance, more general discriminators such as “X city” with
threshold 9.5E-3 may be informative. If further backing off
is needed, “X NEAR city” is more general, and sending X
and “city” as separate query terms is the most general dis-
criminator query.

A different problem with using PMI is homonyms —
words that have the same spelling, but different meanings.
For example, Georgia refers to both a state and country, Nor-
mal refers to a city in Illinois and a socially acceptable con-
dition, and Amazon is both a rain forest and an on-line shop-
ping destination. When a homonym is used more frequently
in a sense distinct from the one we are interested in, then the
PMI scores may be low and may fall below threshold. This
is because PMI scores measure whether membership in the
class is themost commonmeaning of a noun denoting an in-
stance, not whether membership in the class is alegitimate
but less frequentusage of that noun.

Another issue is in the choice of a Naive Bayes Classifier,
which has flexibility in combining varied evidence, but gen-
erates probabilities that tend towards 0.0 and 1.0 since the
independence assumption about features is usually unrealis-
tic. We are considering using SVD techniques to reduce the
dimensionality of the feature space to compensate for non-
independent features, and a nearest-neighbor recalibration
of the probability estimates.
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