
Handling Irregularities in ROADRUNNER

Valter Crescenzi
Universistà Roma Tre – Italy

crescenz@dia.uniroma3.it

Giansalvatore Mecca
Universistà della Basilicata – Italy

mecca@unibas.it

Paolo Merialdo
Universistà Roma Tre – Italy

merialdo@dia.uniroma3.it

Abstract

We report on some recent advancements on the devel-
opment of the ROADRUNNER system, which is able to
automatically infer a wrapper for HTML pages. One of
the major drawbacks of the ROADRUNNER approach
was its limited ability in handling irregularities in the
source pages. To overcome this issue, we have devel-
oped a technique to deal with chunks of unstructured
HTML code. Several experiments have been conducted
to evaluate the effectiveness of the approach, producing
encouraging results.

Introduction
Motivated by the observation that many web sites contain
now large collection of pages that share the same struc-
ture, several approaches have been recently proposed for
automatically inferring a wrapper for structurally similar
pages (Chang & Shao-Chen 2001; Crescenzi, Mecca, &
Merialdo 2001; Arasu & Garcia-Molina 2003; Wang & Lo-
chovsky 2002).

In (Crescenzi & Mecca 2004) we have developed a the-
oretical framework of our approach, explicating its con-
nections with the more traditional field of grammar infer-
ence. Based on that theoretical study we have framed the
problem of inferring wrappers into a search problem in a
space of states. This setting has been used to implement the
ROADRUNNER system, originally described in (Crescenzi,
Mecca, & Merialdo 2001), whose source code has been re-
cently released under GPL.1

This paper presents some recent advances that allow the
original approach to handle pages containing local irregu-
larities. In particular, we have introduced techniques, which
have been included in the prototype, to improve the expres-
siveness of the inferred wrapper without compromising per-
formances.

The paper is organized as follows. First, we revisit the
core technique underlying the ROADRUNNER approach.
Then, we show how the original framework has been ex-
tended in order to handle irregularities, and we report on
some experimental results that show how the new features

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1http://www.dia.uniroma3.it/db/roadRunner

have improved the effectiveness of the system. Finally, we
briefly mention some evolutions we are working on.

The Matching Technique
In ROADRUNNER wrappers are represented by union–free
regular expressions (UFRE). To generate a wrapper we use
a small set of sample pages to progressively infer a common
grammar.

Let us briefly introduce our notation for describing
UFREs. Given a special symbol #PCDATA, and an alpha-
bet of symbols T not containing #PCDATA, a union-free
regular expression over T is a string over alphabet T ∪
{#PCDATA, ·,+, ?, (,)} defined as follows. First, the empty
string, ε and all elements of T ∪ {#PCDATA} are union-free
regular expressions. If a and b are UFRE, then a·b, (a)+, and
(a)? are UFRE. The semantics of these expressions is de-
fined as usual, + being an iterator and (a)? being a shortcut
for (a|ε) (denotes optional patterns). #PCDATA is a special
symbol we use to denote attributes to extract.

Figure 1 shows a regular expression, which can be used
as a wrapper for a hypothetical web page.

The core of the ROADRUNNER approach for infer-
ring wrappers expressed as UFRE is the matching tech-
nique (Crescenzi, Mecca, & Merialdo 2001).

MATCH treats HTML sources as lists of tokens, each to-
ken being either an HTML tag or a string, and works on two
objects at a time: (i) a sample, i.e., a list of tokens corre-
sponding to one of the sample pages, and (ii) a wrapper,
i.e., a regular expression. The idea is to parse the sample
with the wrapper: whenever the wrapper fails MATCH tries
to generalize it. To start, one of the sample pages is taken as
the initial version of the wrapper.

Figure 2 shows a simple example in which two HTML
sources have been transformed into lists of 30 and 23 tokens,
respectively.

The algorithm consists in parsing the sample by using the
wrapper. Parsing can fail for mismatches between the wrap-
per and the sample: a mismatch happens when some token
in the sample does not comply with the grammar specified
by the wrapper. Whenever one mismatch is found, the algo-
rithm tries to solve it by generalizing the wrapper. This is
done by applying suitable generalization operators. The al-
gorithm succeeds if a common wrapper can be generated by
solving all mismatches encountered during the parsing.

<html>. . .(. . .Model:#PCDATA<hr>. . .<div>Price:
#PCDATA</div>. . .)+
. . .(<i>#PCDATA</i>)?</html>

Figure 1: A UFRE as a wrapper

<HTML>
<I MG / >

J o h n S m i t h
</ B >
<A >

<TT>
s m i t h @ d o t . c o m

</ TT>
</ A >
<U L>

<I MG / >
<I >

D a t a b a s e P r i m e r
</ I >

</ LI >
</ U L>

<HR / >
… </ HTML>

<HTML>
<I MG / >

P a u l J o n e s
</ B >
<A >
</ A >

<U L>

<I MG / >
<I >

HTML a n d S c r i p t s
</ I >

</ LI >

<I MG / >
<I >

J a v a S c r i p t
</ I >

</ LI >
</ U L>
<HR / >

… </ HTML>

parsing

Data mismatch
(PCDATA)

Schema mismatch
(Hook)

Data mismatch
(PCDATA)

Schema mismatch
(Plus)

Wrapper (Page 1) Sample (Page 2)
0 1 :
0 2 :
0 3 :
0 4 :
0 5 :
0 6 :
0 7 :
0 8 :
0 9 :
1 0 :
1 1 :
1 2 :
1 3 :
1 4 :
1 5 :
1 6 :
1 7 :
1 8 :

1 9 :
2 0 -3 0 :

0 1 :
0 2 :
0 3 :
0 4 :
0 5 :
0 6 :
0 7 :

0 8 :
0 9 :
1 0 :
1 1 :
1 2 :
1 3 :
1 4 :
1 5 :
1 6 :
1 7 :
1 8 :
1 9 :
2 0 :
2 1 :
2 2 :

2 3 -3 4 :

Figure 2: One Simple Matching

After a first wrapper is produced by matching two sam-
ples, it can be refined by iteratively applying MATCH against
the other samples.

The Generalization Operators

There are essentially two kinds of mismatches that can be
generated during the matching. The simplest case is that of
data mismatches, i.e., mismatches that happen when two dif-
ferent strings occur in corresponding positions of the wrap-
per and of the sample. Their presence may be due only to
different values of the same attribute. This case is solved by
applying the operator addPCDATA.

More complex mismatches that involve either two dif-
ferent tags, or one tag and one string on the wrapper and
on the sample are called schema mismatches. These mis-
matches, can be due to the presence of iterators (i.e., lists)
and optional patterns. Whenever it is possible, we general-
ize zero or one repetition by introducing an optional, one or
more repetitions by introducing a list. Schema mismatches
are solved by applying the operators addHook and addPlus.
These ideas are clarified in the following with the help of an
example, shown in Figure 2.

Applying Operator addPCDATA: Discovering Attributes
Figure 2 shows several examples of data mismatches dur-
ing the first steps of the parsing. Consider, for example,
strings ’John Smith’ and ’Paul Jones’ at token 4. To
solve this data mismatch, we apply operator addPCDATA,
i.e., we generalize the wrapper by replacing string ’John

Smith’ by #PCDATA. The same happens a few steps after
for ’Database Primer’ and ’HTML and Scripts’.

Applying Operator addHook: Discovering Optionals
Schema mismatches are used to discover both lists and op-
tionals. This means that whenever one of these mismatches
is found, the algorithm needs to choose which operator to
apply. Let us for now ignore the details of this choice, and
concentrate first on the discovery of optionals, i.e., the ap-
plication of operator addHook. Lists will be discussed in the
following.

Consider again Figure 2. The first schema mismatch hap-
pens at token 7 due to the presence of the email in the wrap-
per and not in the sample, i.e., the mismatch is due to an op-
tional which has been instantiated in different ways. To ap-
ply operator addHook and generalize the wrapper, we need
to carry out the following steps:

1. Optional Pattern Location by Cross–Search With respect
to the running example, given the mismatching tags at token
7 – <TT> and , a simple cross-search of the mismatch-
ing tags leads to the conclusion that the optional pattern is
located on the wrapper.

2. Wrapper Generalization the optional is intro-
duced in the wrapper. In this case, the wrapper is
generalized by introducing one pattern of the form
(<TT>smith@dot.com</TT>)?, and the parsing is re-
sumed by comparing tokens (11 and 8 respectively).

Applying Operator addPlus: Discovering Iterators
Consider again Figure 2; it can be seen that the two HTML
sources contain, for each author, one list of book titles.
During the parsing, a schema mismatch between tokens 18
and 15 is encountered; it is easy to see that the mismatch
comes from different cardinalities in the book lists (one
book on the wrapper, two books on the sample). To solve
the mismatch, we need to identify these repeated patterns,
called squares, by applying the operator addPlus. In this
case three main steps are performed:

1. Square Location by Delimiter Search A schema mis-
match due to presence of a repeated pattern gives key hints
about the involved square: we can identify the last token of
the square by looking immediately before the mismatch po-
sition, i.e. , and the first token of the square by looking
at mismatching token, i.e. on the wrapper and
on the sample. However, this originates two possibilities that
we resolve by searching first the wrapper and then the sam-
ple for occurrences of the last token of square ; in our
example, this lead to conclude that the sample contains one
candidate square occurrence at tokens 15 to 20.

2. Candidate Square Matching To check whether this can-
didate occurrence really identifies a square, we try to match
the candidate square occurrence (tokens 15–20) against
some upward portion of the sample. This is done backwards,
i.e., it starts by matching tokens 20 and 14, then moves to 19
and 13 and so on. The search succeeds if we manage to find
a match for the whole square, as it happens in Figure 2.

3. Wrapper Generalization It is now possible to generalize
the wrapper; if we denote the newly found square by s, we
do that by searching the wrapper for contiguous repeated oc-
currences of s around the mismatch point, and by replacing
them by (s)+.

Recursion
In general, the number of mismatches to solve may be high,
mainly because the mismatch solving algorithm is inher-
ently recursive: when trying to solve one mismatch by find-
ing an iterator, during the candidate square matching step
more mismatches can be generated and have to be solved.

To see this, consider Figure 3, which shows the process
of matching two pages inspired from our previous example
with the list of editions nested inside the list of books. The
wrapper (page 1) is matched against the sample (page 2).
After solving a couple of data mismatches, the parsing stops
at token 25, where a schema mismatch is found. It can be
solved by looking for a possible iterator, following the usual
three steps: (i) the candidate square occurrence on the wrap-
per is located (tokens 25–42) by looking for an occurrence of
the possible end delimiter (at token 24); then (ii) the
candidate is evaluated by matching it against the upward
portion of the wrapper (tokens 25–42 against the portion
preceding token 25); and finally, (iii) the wrapper is gen-
eralized. Let us concentrate on the second step: remember
that the candidate is evaluated by matching it backwards,
i.e., starting from comparing the two occurrences of the end
delimiter (tokens 42 and 24), then move to tokens 41 and 23
and so on.

This comparison has been emphasized in Figure 3 by du-
plicating the wrapper portions that have to be matched. Since
they are matched backwards, tokens are listed in reverse or-
der. Differently from the previous example – in which the
square had been matched by a simple alignment – it can be
seen that, in this case, new mismatches are generated when
trying to match the two fragments. These mismatches are
called internal mismatches. The first internal mismatch in
our example involves tokens 35 and 17: it depends on the
nested structure of the page, and will lead to the discovery
of the list of editions inside the list of books.

These internal mismatches have to be processed exactly
in the same way as the external ones. This means that the
matching algorithm needs to be recursive, since, when try-
ing to solve some external mismatch, new internal mis-
matches may be raised, and each of these requires to start a
new matching procedure, based on the same ideas discussed
above. The only difference is that these recursive matchings
do not work by comparing one wrapper and one sample, but
rather two different portions of the same object, i.e. either
wrapper or sample.2

MATCH as a state space search problem
The matching of a wrapper and a sample can be consid-
ered as a search problem in a particular state space. States
in this space correspond to different versions of the wrapper,
i.e. regular expressions. The algorithm moves from one state
to another by applying instantions of operators addPCDATA,
addPlus, addHook. A final state is reached whenever the cur-
rent version of the wrapper can be used to correctly parse the
given sample.

It can be seen that this recursive nature of the problem
makes the algorithm quite involved. During the search in
the state space, in order to be able to apply addPlus oper-
ators it is necessary to trigger a new search problem, which
corresponds to matching candidate squares. In this respect,
the state space of this new problem may be considered at
a different level: its initial state coincides with the candi-
date square of the operator while the final state, if any, is the
square which will be used to generalize the wrapper in the
upper level. The search in this new space may in turn trig-
ger other instances of the same search problem. These ideas
are summarized in Figure 4, which shows how the search
is really performed by working on several state spaces, at
different levels.

As a search space, the algorithm sketched in this section
might be subjected to backtracking. This is due to the fact
that, in general, to solve a mismatch the algorithm needs
to choose among several alternatives, which are not guaran-
teed to lead to a correct solution. When, going ahead in the
matching, these choices prove to be wrong, it is necessary to
backtrack and resume the parsing from the next alternative
until the wrapper successfully parses the sample.

2Internal mismatches may lead to matchings between portions
of the wrapper; since the wrapper is in general one regular expres-
sion, this would require matching two regular expressions, instead
of one expression and one sample. The solution of this problem,
which is out of the scope of this paper, can be found in (Crescenzi
& Mecca 2004).

<HTML> J o h n S m ith
<A > <TT> sm ith @ do t.c o m </TT>
<U L>

<I>C o m p u te r S y ste m s</I>
<P >

First Ed., 1995

</P >

<I>D a ta b a se P rim e r</I>
<P >

First Ed., 1998

S e c o n d Ed., 2 0 0 0

</P >

</U L>
</HTML>

<HTML> Fra n k D o e
<A > <TT> do e @ do t.c o m </TT>
<U L>

<I>D istrib u te d S y ste m s</I>
<P >

First Ed., 2 0 0 2

</P >

</U L>
</HTML>

Initial Wrapper (Page 1) Sample (Page 2)
0 1-0 5:
0 6 -10 :

11:
12 :

13 -16 :
17 :
18 :

19-2 1:
2 2 :
2 3 :
2 4 :
2 5:

2 6 -2 9:
3 0 :
3 1:

3 2 -3 4 :
3 5:
3 6 :

3 7 -3 9:
4 0 :
4 1:
4 2 :
4 3 :
4 4 :

0 1-0 5:
0 6 -10 :

11:
12 :

13 -16 :
17 :
18 :

19-2 1:
2 2 :
2 3 :
2 4 :
2 5:
2 6 :

</P >

S e c o n d Ed., 2 0 0 0

First Ed., 1998

<P >
<I>D a ta b a se P rim e r</I>

4 2 :
4 1:
4 0 :

3 7 -3 9:
3 6 :
3 5:

3 2 -3 4 :
3 1:
3 0 :

2 6 -2 9:
2 5:

</P >

First Ed., 1995

<P >
<I>C o m p u te r S y ste m s</I>

… … …

2 4 :
2 3 :
2 2 :

19-2 1:
18 :
17 :

13 -16 :
12 :
11:

internal
mismatch

external
mismatch

Figure 3: A More Complex Matching

square candidate
square

…

…

addPlus

initial
wrapper
(page 1)

final
wrapper

…addPlus

addSubtree

addHook

Figure 4: Matching as a search problem in a state space

In the following we exploit the framing of the matching
technique into a search problem to augment the expressive-
ness of wrappers.

Handling irregularities
A key point of our approach is that a wrapper can be inferred
only for pages that comply to a union-free regular grammar.
Unfortunately, several web pages do not fall in this class. To
give an example, consider the customer reviews that are usu-
ally published with the products sold by e-commerce web
sites. Reviews are pieces of free text including HTML tags
that may occur in different ways in every reviews just for
presentational purposes. These tags would lead our approach
to a failure, since none of our operators could suitably gener-
alize the wrapper to continue the parsing. It is worth noting

that the approach fails, even if the structures of the input
pages strongly overlap in every section but the reviews. An-
other typical example that arise the same issue is related to
the presence of banners, advertising, and personalized head-
ers: we have pages whose structures largely overlap, but dif-
fer in few details.

With respect to our framework, we may say that it is
not always possible to solve the differences of the pages
with optional and iterative patterns. To address this issue we
have extended ROADRUNNER with a further operator, called
addSubtree. By introducing a subtree in the generalization of
a wrapper, we somehow desist to model in detail the differ-
ences of specific regions, but we let the matching continue
on the remainder.

The idea is to avoid a mismatch by skipping a region con-
taining it. In order to identify such a region, it is conve-
nient to rely on the DOM tree representation of the page: we
choose the smallest DOM subtree containing the mismatch.

Applying Operator addSubtree: Handling
Irregularities
Consider Figure 5: it shows the bottom parts (lines 20-29
and 23-33, respectively) for the two pages of our first ex-
ample (Figure 2). It is likely that these pieces of text, which
represent the authors’ biographies, come from a database in
which they are stored directly as fragments of HTML code.
Note that tags are inserted in these fragments uniquely for
presentation purposes, and they do not follow any predefined
order. Then, the schema mismatch involving tokens 22 and

<HTML> …
<HR / >
<S MA LL>

Th e crea tor of th e W onder
<S U P >

TM
</ S U P >
D B MS . J oh n S m ith founded th e
<A >

S m ith & S m ith C o.
</ A >

</ S MA LL>
</ HTML>

<HTML>…
<HR / >

<S MA LL>
P a ul J ones is a
<I >

www certified developer.
</ I >
He work s a s
<I >

web desig ner
</ I >
since 1998. He is cofounder…

</ S MA LL>
</ HTML>

Schema mismatch
(Subtree)

Wrapper (Page 1) Sample (Page 2)
1-18:

19:
2 0 :
2 1:
2 2 :
2 3 :
2 4 :
2 5 :
2 6 :
2 7 :
2 8:
2 9:
3 0 :

1-2 1:
2 2 :
2 3 :
2 4 :
2 5 :
2 6 :
2 7 :
2 8:
2 9:
3 0 :
3 1:
3 2 :
3 3 :
3 4 :

Figure 5: Solving mismatches by applying subtree

25 cannot be solved by the operators explained so far.
In this case the mismatch can be solved by isolating the

whole fragment, as follows:

1. Subtree Location It is chosen the shortest well-formed
region on the wrapper containing the mismatch, in this case
tokens 20 to 29 which cover the subtree under the <SMALL>.

2. Wrapper Generalization Once the subtree has been
identified, we may generalize the wrapper accordingly
and then resume the parsing. In this case, the wrapper
is generalized by introducing one pattern of the form
<SMALL>4</SMALL>, and the parsing is resumed by com-
paring tokens </HTML> (30 and 33 respectively).

4 is a special symbol we use to represent a subtree in a
regular expression, it is always placed between an open tag
and the corresponding closing tag and it matches with a list
of tokens in a region likewise placed within the same open
and close tag.3 Figure 6 shows the final wrapper produced.

< HTML >< IMG/ >< B > #PCDATA < /B >
< A > (< TT > smith@dot.com < /TT >)? < /A >
< UL >
(
< LI >< IMG/ >< I > #PCDATA < /I >< /LI >
)+
< /UL >
< HR/ >< SMALL > 4 < /SMALL >
< /HTML >

Figure 6: Final Wrapper

Observe that whenever a mismatch occurs, a subtree can
always solve it. Therefore, in the worst case, we could in-
sert a subtree rooted at HTML – i.e., treat the input as 100%
noise. To avoid such undesired solutions, we only add 4 as
a last resort. As discussed in the following, ROADRUNNER
applies the operators according to a priority system, and 4
is applied only if neither addPlus nor addHook can solve the
mismatch.

3The semantics of4 refers to the concept of open and close tag,
and it makes sense only within expressions over alphabets which
model this concept.

Expressiveness and Performances
The presence of backtracking makes the algorithm exponen-
tial.4 However, from a practical point of view, even if expo-
nential behaviors are possible, they rarely occur if a solution
exists. Intuitively, this may be motivated by the fact that the
matching is a process quite delicate, and whenever a wrong
operator is chosen, it usually leads to expressions which
quickly generate unsolvable mismatches. In other words,
most of dead-paths in the search space are quickly recog-
nized without too much backtracking.

Another relevant issue is that the augmented expressive
power of inferrable expressions entails a larger number of
possible solutions. We solve this issue by ordering opera-
tors according to a heuristic, which gives higher priority to
operators that most likely lead towards more precise solu-
tions. The management of priorities is rather complex and
configurable; in general, we may say that addPlus are al-
ways preferred to addHook; addHook are always preferred
to addSubtree.

Experiments
We have evaluated the impact of subtrees with several exper-
iments, in order to evaluate their effectiveness. In this paper,
to summarize the significance of subtrees, we report on the
result obtained when running the prototype against the Wien
test-bed (Kushmerick 2000).

We have used the same system configuration for all sites,
selecting ten pages from every source. If after twenty sec-
onds the prototype was still running, we stopped it and con-
sider the test failed (we assume that the system is not able to
produce a wrapper).

For each dataset, we have computed the number of val-
ues a wrapper should extract (column #values).5Then, we
have generated the wrappers, and we have used them in or-
der to extract data from the source pages. Finally, we have

4In (Crescenzi & Mecca 2004) it has been identified a class of
languages, called prefix mark-up languages, for which the match-
ing can be performed in polynomial time with respect to the length
of input samples. Unfortunately, prefix mark-up languages are not
sufficiently expressive for several real-life web pages.

5When available, we have used the set of labels provided with
the dataset.

counted the number of values the generated wrapper ex-
tracts. We distinguish extracted and partially extracted val-
ues. The former represent values that have been exactly ex-
tracted by the system; the latter are values that, though ex-
tracted, have been grouped together with other values.6

Sample # values Extracted
Partially

Extracted
Extracted

Partially
Extracted

1 1612 1612
2 1010* 1010 1010
3 1044 522 522 522 522
4 400 400
5 144 144 144
6 100* 100
7 1688 1688
8 654 654 654
9 572 80 492
10 400 295 42 295 42
11 400* 400
12 888 862 862
13 400 290 108 290 108
14 2910 2899 10 2899
15 708 708 708
16 100* 100 100
17 1891 1891 1891
18 2436 389 2047
19 1000 794 200 794 200
20 1962 1308 1308
21
22 3000 3000 3000
23 1635 1635
24 1550* 1550
25 654 654 654
26 386* 10 376 10 376
27 60 30 30 30 30
28
29 425* 425
30 240 30 210 30 210

* not labeled in the wien dataset, estimated by the authors of the present paper

no wrapper
no wrapper

no wrapper

no wrapper

without Subtrees

no wrapper

no wrapper
no wrapper

with Subtrees

no wrapper

no wrapper

no wrapper

no wrapper

no wrapper
no wrapper

no wrapper

Figure 7: Experimental results: the effects of subtrees on the
Wien dataset

Figure 7 reports the results of our experiment. Disabling
the addSubtree operator, ROADRUNNER generated 18 wrap-
pers. Enabling the addSubtree operator, the situation im-
proved, as the system correctly generated wrappers for 28
datasets, and only in 2 cases (sources 21, 28) it failed.

However, we observe that the solution generated for
sources 4, 7, 9, 11, 26, 29 cannot be consider satisfactory,
as the system generated wrappers that extract most of the
expected values into a unique attribute (a subtree). On the
contrary, the introduction of subtrees allowed the system to
correctly generate “good” wrappers for sources 1, 6, 23, 24.

We discuss the failures starting from a general observa-
tion: the HTML code of pages from this test-bed are quite
poor compared to modern web sites (the dataset is rather
old). Poor HTML code may confuse ROADRUNNER, be-
cause the same tags are extensively used to mark completely

6It is important to say that often this happens because of the
alphabet of ROADRUNNER includes only HTML tags, while in the
Wien dataset several values are separated by symbols like punctu-
ation marks.

different attributes, thus originating ambiguities.
As for the single sources, the ambiguity due to the poor

HTML motivates the low quality of wrappers obtained on
sources 7, 9 and 11; source 26 presents main contents as
untagged text (text within <PRE> tags). Source 21, which
reports acts of Shakespeare’s operas, is poorly structured.

Finally, we report that by manually tuning the system con-
figuration, we have improved the overall results as the sys-
tem generated wrappers also for sources 4, 28, 29.

Future Work
We believe there are at least two different reasons why sub-
trees deserve more work. First, even if we have introduced
them in order to improve the expressiveness of inferrable
wrappers, they can be used to enhance the robustness of
the wrappers (Davulcu et al. 2000), as well. If the struc-
ture of the HTML code of samples changes, even slightly,
it is likely that a wrapper for that source stops working.
Since ROADRUNNER models every single token of input
samples, the inferred wrappers are sensitive to changes in
any portions of samples. For example, they may fail even
if changes involve the formatting of advertisements, or ir-
relevant attributes. In order to make wrappers more resilient
to changes, during a post-generation phase we can relax its
regular expression by replacing regions which do not involve
attributes of interest with subtrees that model as loosely as
possible that regions. If we are interested in a subset of the
attributes associated with the inferred wrapper, this tech-
nique can be even more effective, since larger regions can
be pushed under a subtree.

Second, we are studying how to enhance further expres-
siveness and precision of our formalism in order to introduce
a restricted form of disjunction. This possibility is based on
the observation that whenever a disjunction occurs, the sys-
tem introduces a subtree.

References
Arasu, A., and Garcia-Molina, H. 2003. Extracting struc-
tured data from web pages. In ACM SIGMOD 2003.
Chang, C.-H., and Shao-Chen, L. 2001. Iepad: Information
extraction based on pattern discovery. In WWW2001.
Crescenzi, V., and Mecca, G. 2004. Automatic informa-
tion extraction from large web sites. Journal of the ACM.
Accepted for publication.
Crescenzi, V.; Mecca, G.; and Merialdo, P. 2001. ROAD-
RUNNER: Towards automatic data extraction from large
Web sites. In VLDB2001.
Davulcu, H.; Yang, G.; Kifer, M.; and Ramakrishnan, I.
2000. Computational aspects of resilient data extraction
from semistructured sources. In PODS2000.
Kushmerick, N. 2000. Wrapper induction: Efficiency and
expressiveness. Artificial Intelligence 118:15–68.
Wang, J., and Lochovsky, F. 2002. Data-rich section ex-
traction from html pages. In WISE 2002.

