
Lexical Semantics Domain Model for Information Extraction

Patricia Lutsky

Arbortext, Inc.
 1000 Victors Way

Ann Arbor, MI 48108
plutsky@arbortext.com

Abstract
The domain of operating system reference manuals uses
linguistic constructs that are difficult to process since many
terms are similar and most concepts are abstract software
engineering constructs. The SIFT system for automatic test
generation from these documents uses a natural-language-
based formalism for software domain models. The
formalism is based on the generative lexicon framework
(Pustejovsky 1995). Examples show how this model is used
for information extraction from texts in the software
engineering domain.

1 Introduction
SIFT, which stands for "specification information from
texts," is a natural-language-based information extraction
tool that can extract test-related information from the free-
text portion of semi-formatted software engineering
documents. This information is then used to generate tests
for the domain. It uses simple techniques for information
extraction yet has been shown to improve tests for the
domain of OpenVMS operating system regression testing
(Lutsky 2000b)(Jones 1984) and in improving the
documentation of an XML editor (Lutsky 2000a). For the
operating system documents, required input formats and
data ranges, prerequisites, and parameter
interdependencies described in the reference manual can
be mechanically transformed into tests for the routines. A
domain model based on the linguistic constructs of the
sublanguage of the domain is used in SIFT. Given the
nature of software engineering, where most concepts are
abstract data structures, this model is important to
understanding the semantics of the texts of the domain.
 The text inside the free-text sections of software
reference manuals uses a restricted sublanguage (Kittredge
and Lehrberger 1982), so simple domain-specific parsing
techniques can be effective. A sublanguage is a
semantically constrained version of a natural language
spoken by a particular group of people. A sublanguage is
not a subset of a natural language, but rather has its own
grammar that reflects the way the group of people
communicates. For reference manuals, linguistic
constructs such as puns and fanciful metaphors will not be
used. The tone is simple and uniform. Specific concepts
tend to be described the same way throughout a document.
However, processing of these texts can be difficult because

software concepts are almost all abstract, taking place
inside the workings of a computer. The lack of physical
entities means that verbs such as "specify," "use," "has," or
"is" are prevalent and these require domain knowledge to
understand their meaning in this sublanguage.

1.1 The Domain Model
The domain model is built using the Generative Lexicon
framework (Pustejovsky 1995) for representing semantic
information. Although it was developed for computational
linguistics applications, the Generative Lexicon formalism
was used because it is a systematic and complete way to
represent semantics of objects and actions. It includes
multiple inheritance hierarchies, elegant handling of
events, and coercion operators to handle semantic
phenomena such as metonymy (when a subpart of an event
or entity represents the event or entity in the sentence)
(Lapata et al. 2003). With this domain model, the
linguistic constructs are the core modeling medium for the
model.
 In the generative lexicon, each lexical item is described
in terms of its argument structure, qualia structure,
inheritance structure, and event structure. The qualia has
four fields: constitutive (what the entity consists of),
agentive (how the entity can be created), telic (what
operations can be done to the entity), and formal (what
type of entity it is). The fields of the qualia describe both
the structure of the entity and the operations in which it
can be involved. This integration of objects and actions
allows domain concepts to be modeled concurrently with
the operations that work on them, similar to object-
oriented modeling techniques.
 Inheritance can be identified along one of the
perspectives (i.e. telic inheritance or formal inheritance).
Type coercion mechanisms for polymorphic composition
of lexical items have been developed. The generative
lexicon also contains an event structure that represents
how different operations can be combined and how
operations must be sequenced.
 As Grishman (2001) points out, there are similarities in
work that was done to automatically produce sublanguage
models (Grishman et al. 1986) and that being done to
automatically generate information extraction patterns
(Yangarber et al. 2000). Although this domain model was
not generated automatically, the lexical semantics

orientation could be incorporated into automatic discovery
methods.

2 Domain Model Specifics
The intangible nature of operating system components is
unusual for domain modeling. There are few physical
objects, and these (such as disk drives) are tangential to the
domain. The model must focus on the conceptual level of
the entities, rather than their physical characteristics. For
example, the following are example domain model entries
for two OpenVMS (Digital 1988) operating system
concepts:
Access mode:
 Constitutive value
 Formal inherits from enumerated list
 Telic specify access for an entity
 Agentive agent specifies value
Logical name:
 Constitutive name, access mode, equivalence string
 Formal software entity
 Telic translate to a file or device
 Agentive $CRELNM system service, DEFINE

acl command

The constitutive and formal fields describe the entity itself:
what the sub-parts are and what type it is. Access modes
are enumerated lists that have a value and logical names
are software entities that have three fields: name, access
mode, and equivalence string.
 The telic and agentive fields concern the actions in which
the entity takes part: what operations it does and how it can
be created. Access modes are used to specify an access
level and logical names are used to translate to a file or
device. Access modes are created when a value is
specified for them, and logical names are created either by
a call to a system routine or by a DCL command.

3 Use of XML tagging
XML (WWWC 1998) tags in the subject documents
provide domain-specific information for generated section
headings and this context information is used in
information extraction. The following tags for
descriptions of arguments to an OpenVMS operating
system routine include the name, logical type (vms-usage),
data type, access method, and parameter passing
mechanism.

<ARGITEM
 name="pidadr"
 vms-usage ="process_id"
 type="longword (unsigned)"
 access ="write only"
 mechanism ="by reference"/>

<ARGITEM

 name ="image"
 vms-usage ="logical_name"
 type="character-coded text string"
 access="read only"
 mechanism ="by descriptor"/>

For example, if the sentence

All undefined bits in the longword
must be 0.

occurs in the description of the PIDADR argument that is
headed by the above PIDADR ARGITEM, the SIFT
document parser would know from the

type="longword (unsigned)"

information in the ARGITEM tag that the type of the
argument is longword (unsigned). Then, when the parser
identifies the referent of the phrase "the longword," the
heading correctly directs the semantic processing to choose
the argument that is being described.

4 Use of Lexical Semantics
For operating system documents, specific facts that can be
used to test the software were extracted. These facts are
conveyed either with generic sentences as in

The maximum length of the table
name is 31 characters.

modal sentences as in
All unused bits in the longword must
be 0.

or conditional sentences as in
If the value of buffer length is too
small, the service truncates the data.

The prevalence of these three types of sentences is due
partially to the nature of the information being conveyed
and partially to style preferences. For instance, modal
verbs are often encouraged in technical writing as a way to
avoid using the passive voice.
 Sentences are first translated into an annotated syntax
tree, and that tree is passed to the semantic processor that
uses the domain model entries to determine the meaning of
the sentence. As the following two examples show, lexical
coercion and inheritance are often needed to access the
appropriate semantics for lexical items in this domain.

4.1 Example Generic sentence
One of the sentences that conveys an argument restriction
is:

This argument is required.

The sentence is identified as a generic because of the bare
"is" as the main verb. Since "this argument" is the subject
of the sentence, the xml tag from the section header

indicates that the argument being described is the
TABNAM argument of the $CRELNM system service.
There is a domain model entry for TABNAM that can be
used for further processing. The object clause is then
evaluated. Since it is just the descriptor "required", the
qualia roles for TABNAM are searched for a REQUIRED
boolean in the constitutive role. This is not found, so the
entry is checked for inheritance in the constitutive role.
There is none, so coercion of the entry to its formal role is
tried and the formal role is scanned for the REQUIRED
attribute. The formal role is ARGUMENT, so the
constitutive role of the ARGUMENT domain model entry
is scanned for a REQUIRED attribute. It is found and it is
a boolean value, so this is the boolean that the sentence
says is true.

4.2 Example conditional sentence
An example sentence that contains a conditional testable
fact is:

If you omit this argument, the access mode of
the caller is associated with the logical name.

While "you" refers directly to the reader and the referent of
"this argument" comes from the context of the sentence as
identified in the XML markup, "the caller" and "the logical
name" require domain knowledge.
 To process this sentence, the system starts with the verb
"omit" which in the sublanguage requires a human subject
and a value argument. The human subject comes from
"you" and the value argument from coercing "this
argument" to the value of the current argument,
ACMODE, using the XML context information and the
constitutive role of ACMODE.
 Then, "associate" requires two value arguments. The
first is the value of the access mode of the caller and the
second is the value of the access mode of the logical name.
To locate the first argument, we must know from the
sublanguage domain model that "caller" refers to the
process making the $CRELNM call from the formal role of
"caller." Further, the constitutive role of "process"
contains an access mode. To locate the second argument,
we must know from the context that the routine being
described is $CRELNM, the result of which will be the
creation of a new logical name. Then, we use the
constitutive role of logical name to know that it also has an
access mode. The value of this access mode is the second
argument to "associate." The processing uses the telic role
of "caller," to call the routine, and the telic role of
"$CRELNM," to create a logical name. It also uses the
constitutive role of "process," " ACMODE," and "logical
name," and the formal role of "caller."

5 Conclusions
This paper showed examples where the generative lexicon-
based domain model was useful for information extraction

tasks in the domain of automatic test generation from
software system documents. This technique would be
useful for other domains where a model of the sublanguage
is needed in order to extract facts from texts. Building the
complete domain model is an expensive undertaking;
perhaps adaptive text extraction discovery methods could
be used to seed a lexical semantics model automatically.

References
Digital Equipment Corporation. 1988. OpenVMS System
Services Reference Manual Version 5.0.

Grishman, Ralph. 2001. Adaptive Information Extraction
and Sublanguage Analysis. IJCAI-2001 Workshop on
Adaptive Text Extraction and Mining.

Grishman, R., Hirschman, L., & Nhan, N. 1986. Discovery
procedures for sublanguage selectional patterns: Initial
experiments. Computational Linguistics. 12. 205-215.

Jones, Larry. 1984. Regression testing of VMS.
Proceedings of the Digital Equipment Computer Users
Society. 611-618.

Kittredge, R., & Lehrberger, J. (Eds.). 1982.
Sublanguage: Studies of language in restricted semantic
domains. New York:Walter de Gruyter.

Lapata, Mirella, Keller, Frank, and Scheepers, Christoph.
2003. Intra-sentential context effects on the interpretation
of logical metonymy. Cognitive Science. 27. 649-668.

Pustejovsky, James. 1995. The Generative Lexicon. MIT
Press.

Lutsky, Patricia. 2000a. Information Extraction for
Validation of Software Documentation. Proceedings of the
13th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and
Expert Systems. 583-590.

Lutsky, Patricia, 2000b. Information extraction from
documents for automating software testing. Artificial
Intelligence in Engineering. 14. 63-69.

World Wide Web Consortium 1998. Extensible Markup
Language (XML) 1.0. W3C Recommendation 10-
February-1998. http://www.w3c.org/TR/REC-xml.

Yangarber, Roman, Grishman, Ralph, Tapanainen,
Huttunen, Silja, 2000. Automatic Acquistion of Domain
Knowledge for Information Extraction. Proc. of the 18th
International Conference on Computational Linguistics
(COLING 2000) 940-946.

