
Role-Based Access Control in MAS
using Agent Coordination Contexts∗

Alessandro Ricci and Mirko Viroli and Andrea Omicini
DEIS, Universit̀a degli Studi di Bologna

Via Venezia 52
47023, Cesena, Italy

{aricci,mviroli,aomicini}@deis.unibo.it

Abstract

Role-Based Access Control models (RBACs) – and their
extensions – are currently considered the most effective
approach for engineering access control in complex infor-
mation systems and dynamic organisations. In this paper
we consider their application in the context of Multi-Agent
Systems (MAS) – in particular for models and infrastructures
supporting role-based organisation models – by means of
the notion of Agent Coordination Context (ACC). Here the
ACC is used as organisation abstraction released by the MAS
infrastructure, defining the runtime context of an agent in
terms of its actions/perceptions, according to the roles it is
playing inside an organisation. In the paper, we discuss how
the ACC abstraction has been used inTuCSoN coordination
infrastructure to implement an RBAC-like model, making it
possible to dynamically specify and enact articulated role
policies, including also interaction protocols.

RBAC-like models for MAS
In contexts such as information systems, Role-Base Access
Control (RBACs) models are currently considered the most
effective way to engineer security for complex organisations
(Ferraiolo & Kuhn 1992; Sandhuet al. 1996). Their major
properties concern the ability to articulate and enforce en-
terprise (system) specific security policies and to streamline
the burdersome process of security management (Ferraiolo
& Kuhn 1992). With respect to the previous approaches
(discretionary and mandatory access control), they allow for
more flexible and detailed control and management of secu-
rity.

Because of this flexibility, extensions have been layered
on top of the basic RBAC model for effectively integrat-
ing security and organisation issues in the context of open,
dynamic and complex systems, such as inter-organisational
workflow management (Kang, Park, & Froscher 2001) and
pervasive computing environments (Tripathiet al. 2004).

∗Research under the auspices of: MIUR (the Italian Ministry of
Education, University and Research), COFIN 2003 project “Fidu-
cia e diritto nella società dell’informazione”, paper no. 4; and EC
(the European Community), FP6 project “AgentLink III”.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

These are application scenarios that – given their complexity
– are suitable to be designed and developed using the agent
paradigm, in particular for what concern the coordination
and organisation issue (Ricci, Omicini, & Denti 2002). We
claim then that RBAC-like model can be suitably introduced
in MAS models & infrastructures, integrating a high level
role-based security (access control) approach with MAS co-
ordination and organisation, where the role abstraction is al-
ready at play.

MAS organisational models based on roles are typically
exploited as analysis and design tools, in particular in AOSE
methodology: conversely, conceiving an RBAC-like model
into MAS shifts (or completes) the focus on the runtime as-
pects: roles, sessions, policies become runtime issues of a
MAS organisation, manageable dynamically by suitable ser-
vices provided by the infrastructure. More generally, RBAC
approaches have brought at the infrastructure level security
issues which previously were faced (in a similar way) by
each individual applications; analogously, we aim at fac-
torising security issues that frequently emerge in the engi-
neering of a distributed systems in terms of agents, extend-
ing the MAS infrastructure with suitable services, integrated
with the MAS organisation/coordination model.

So, the question is: how to introduce an RBAC-like ap-
proach in MAS (models/infrastructures)? And, how can it
be integrated with possible MAS role-based models?

In this paper we provide an answer based on the notion
of Agent Coordination Context (ACC). Briefly, ACCs have
been introduced as a mean to model explicitly presence of an
agent inside an (organisational) environment, both in terms
of the actions/perceptions the agent can do (as a kind of
environment interface) and their effects. In this paper, the
ACC abstraction – and related infrastructure support – is
shown to be effective for embeding an RBAC-like model in
the context ofTuCSoN, a MAS coordination infrastructure
(Omicini & Zambonelli 1999).

The remainder of the paper is organised as follows: in the
first section we provide an overview of the RBAC approach
and of the reference architecture considered a standard in
literature; in the second section, after recalling the notion
of ACC, we discuss its application to develop an RBAC-like
model in MAS, in particular describing how the basic RBAC
reference architecture is mapped using an ACC-based ap-
proach. Then, in the third section we discuss a concrete

realisation of the ACC framework inTuCSoN infrastruc-
ture, so as to have an RBAC-like model in the context of our
coordination infrastructure. Finally, in the last section we
provide the conclusions, briefly discussing also related and
future work.

RBAC Models Overview
In RBAC, arole is properly viewed as a semantic construct
around which access control policy is formulated, bringing
together a particular collection of users and permissions, in
a transitory way (Sandhuet al. 1996). The role concept
assumes several manifestations, which RBAC aims at acco-
modate and capture. A role can represent competency to do
specific tasks, such as a physician or a pharmacist; but also
the embodiement of authority and responsibility, such as in
the case of a project supervisor. Authority and responsibility
are distinct from competency.

The RBAC approach provides the capability to establish
relations between roles as well as between permissions and
roles and between users and roles. For example, two roles
can be established as mutually exclusive, so the same user
is not allowed to take on both roles. By means of inheri-
tance relations, one role can inherit permissions assigned to
a different role. These inter-role relations can be used to en-
force security policies that includeseparation of dutiesand
delegation of authority. Separation of duties is achieved by
ensuring that mutually exclusive roles must be invoked to
complete a sensitive task, such as requiring an accounting
clerk and account manager to participate in issuing a check.

With separation of duty, RBAC directly supports other
two well-known security principles:least privilegeanddata
abstraction. Least privilege is supported because RBAC can
be configured so that only those permissions required for
the tasks conducted by members of the role are assigned
to the role. Data abstraction is supported by means of ab-
stract permissions such as credit and debit for an account
object, rather than the read, write, execute permissions typi-
cally provided by the operating system. In spite of the sup-
port for these principles, RBAC is said to bepolicy neutral,
since it does not enforce itself any specific access policy.

Summing up, RBAC provides an encapsulation of secu-
rity policy. Access control strategy is encapsulated in var-
ious components of RBAC such as role-permission, user-
role and role-role relationships. These components, con-
figurable dynamically by system administrators, collectively
determine whether a particular user will be allowed to access
a particular piece of data in the system. Moreover, RBAC
approach makes it possible & easy to incrementally evolve
the access control policy over the system life cycle, to meet
the changing needs of an organisation.

The Reference Architecture
According to the reference architecture formally defined in
(Ferraioloet al. 2001), the main components of an RBAC
model are depicted in Figure 1, defined in terms of basic ele-
ment sets and their relationships. The basic element sets are
users (USERS), roles (ROLES), objects (OBJS), operations
(OPS), permissions (PERMS) and sessions (SESSIONS).

Figure 1: RBAC Reference Model (Ferraioloet al. 2001)

Users are assigned to roles and permissions to roles. Arole
is understood as a job function within the context of an or-
ganisation with some associated semantics regarding the au-
thority and responsibilities conferred to the user assigned to
the role (Ferraioloet al. 2001). Apermissionis an approval
to perform an operation on one or more protected objects.
The semantics of the termoperationandobjectdepends on
the specific cases. Each session is a mapping between a user
and an activated subset of roles that are assigned to the users.
Each session is associated with a single user and each user is
associated with one or more sessions. Hierarchies are a nat-
ural means for structuring roles to reflect an organisation’s
line of authority and responsibilities, and define an inheri-
tance relationship among the roles: roleR1 inherits roleR2
if all the privileges ofR2 are also privileges ofR1.

Security policies are defined in terms of relationships be-
tween the element sets. User assignment relationships define
which users are assigned of a specific role, which means that
they are allowed to play it inside the organisation; permis-
sion assignment defines which permissions are assigned to
each role. Static separation of duty properties (SSD) are ob-
tained by enforcing constraints on the assignment of users to
roles; instead, dynamic separation of duty properties (DSD)
are obtained by placing constraints on the roles that can be
activated within or across a user’s sessions.

Agent Coordination Contexts for RBAC
In this section we discuss how we exploited the Agent Co-
ordination Context (ACC) abstraction to port an RBAC-like
model in the context of MAS. Before going into details of
the RBAC-like architecture based on ACC, it is useful to re-
call the basic features of the ACC abstraction.

The Notion of Agent Coordination Context
The notion of ACC has been introduced in (Omicini 2002)
as a way to model MAS environment from the individual
agent viewpoint, more precisely theobjectiveandsubjective
relationships between an agent and the (organisational) en-
vironment in which he is immersed.

As reminded by the name, an ACC is meant to represent a
context, factorising the many meanings that emerge from the
several research areas where it is commonly used (language,
philosophy, logic, artificial intelligence, . . .): an abstraction

aimed at modelling the effect of the environment – in its
most general acceptation, including the spatial and temporal
interpretation of the terms – on the interaction and commu-
nication occurring among active (and typically intelligent)
entities, such as humans or artificial agents. Within agent
societies, the notion of context can be used as a first-class
abstraction for modelling and engineering the environment.
The full characterisation of ACC is obtained then by identi-
fying the context abstraction as the conceptual place where
to set the boundary between the agent and the environment,
so as to encapsulate theinterfacethat enables agent actions
and perceptions inside the environment.

More precisely, an ACC (i) works as a model for the agent
environment, by describing the environment where an agent
can interact, and (ii) enables and rules the interactions be-
tween the agent and the environment, by defining the space
of the admissible agent interactions.

A useful metaphor can be adopted as a conceptual exam-
ple of an ACC, thecontrol room metaphor(Omicini 2002).
According to this metaphor, an agent entering a new envi-
ronment is assigned its own control room, which is the only
way in which it can perceive the environment, as well as the
only way in which it can interact. The control room offers
the agent a set of admissible inputs (lights, screens,. . .), ad-
missible outputs (button, cameras,. . .). How many input and
output devices are available to an agents, of what sort, and
for how much time is what defines the control roomconfig-
uration, that is the specific ACC. More insights on the ACC
concept can be found in (Omicini 2002).

ACC for MAS Organisation
So, this characterisation makes the ACC a suitable abstrac-
tion modelling thepresenceor position of an agent within an
organisation, in terms of its admissible actions with respect
to organisation resources and its admissible communications
toward the other agents belonging to the organisation.

Two basic stages characterise the ACC dynamics:ACC
negotiationandACC use. An ACC is meant to be negotiated
by the agents with the MAS infrastructure, in order to start a
working sessioninside an organisation. The agent requests
an ACC specifying which roles to activate. If the agent re-
quest is compatible with (current) organisation rules, a new
ACC is created, configured according to the characteristics
of the specified roles, and then released to the agent for ac-
tive playing inside the organisation. The agent then can use
the ACC to interact with the organisation environment, by
exploiting the actions/perceptions enabled by the ACC.

ACC for RBAC
In the context of the RBAC reference architecture, the ACC
naturally embodies the concept of session, coupling dynam-
ically agents (as users) and the organisation environment.
Then, ACCs represent the runtime entities that physically
enable and constraint agent actions, according to rules which
in the RBAC framework correspond to the role-permission
relationships.

Figure 2 shows the use of the ACC for realising an RBAC
architecture. As already mentioned, agents are the users of
the systems and the ACCs play the role of sessions. An agent

Figure 2: An RBAC-like Model using ACCs

can hold multiple ACCs at a time, for each organisation in
which he is playing; the same ACC can involve the acti-
vation of multiple roles, and the same role can be played
simultaneously in different ACC.

ACC negotiation is ruled by both currently defined agent-
role relationships (defining the SSD rules in Figure 2) and
inter-role relationships (used for defining DSD rules). The
former are described with rules defining static agent-role as-
signment, so as to specify which agents are allowed to play a
role or what credentials or characteristics they must exhibit.
The latter, instead, describe constraints on agent entrance,
considering the dynamic roles which the agent aims to acti-
vate; examples of relatioships typically used for this purpose
are role exclusion rules (if an agent has activated a roleR1,
he can’t activate a roleR2) and role inclusion rules (in order
to activate the roleR1the agent must have activated also the
roleR2).

Once the properly configured ACC has been released to
the agent (after a successful negotiation), the relationships
defined among roles and policies as depicted in Figure 2
shape the agent action space enabled by the ACC, defining
what actions – as operations within the environment – the
agent is allowed to execute. Actually, the ACC model makes
it possible to specify not only rules on the individual actions,
but also articulated patterns of actions and interaction proto-
cols, introducing also timing constraints. For this purpose, a
formal semantics of ACC based on process algebra has been
defined (Omicini, Ricci, & Viroli 2003), providing a formal
specification of the individual role policies and of their com-
position.

Experiments in TuCSoN
The ACC abstraction has been exploited to bring an RBAC-
like model in theTuCSoN coordination infrastructure: In
TuCSoN the organisation resources accessed by agents are
tuple centres, coordination media (services) provided by the
infrastructure to support coordination activities of agents
(Omicini & Zambonelli 1999). Tuple centres are thought to
mediate agent access to organisation resources (e.g. printer),
acting as a kind virtual proxies of the resources and em-
bedding coordination policies governing their exploitation
(Omicini & Ossowski 2003).

Technically, tuple centres areprogrammable tuple spaces

Figure 3: An RBAC-like Model using ACCs inTuCSoN

– sort of reactive, logic-based blackboards that agents access
associatively by writing, reading, and consumingtuples–
ordered collections of heterogeneous information chunks –
via simple communication operations (out, rd, in, inp, rdp).
While the behaviour of a tuple space in response to commu-
nication events is fixed, the behaviour of a tuple centre can
be tailored to the application needs by defining a set ofspec-
ification tuplesexpressed in theReSpecT language, which
define how a tuple centre should react to incoming/outgoing
communication events (Omicini & Denti 2001). So, differ-
ently from tuple spaces – and related implementation such as
JavaSpaces (Freeman, Hupfer, & Arnold 1999) or T-Spaces
(Wyckoff et al. 1998)– tuple centres can be programmed
with reactions so as to encapsulate coordination laws di-
rectly in the coordination media. In other words, tuple cen-
tres can be conceived as general-purpose customisableco-
ordination artifacts, whose behaviour can be dynamically
specified, forged and adapted so as to support the coordina-
tion activities among agents (Ricci, Omicini, & Denti 2003;
Omicini et al. 2004). From a topological point of view, tu-
ple centres are collected in the node of the infrastructures,
spread over the network.

Figure 3 shows the RBAC-like architecture specialised
in the TuCSoN case. Tuple centres are the objects, and
the tuple centre coordination primitives are the operations.
The architecture includes also abstractions introduced in
TuCSoN to model and structure organisations (Omicini &
Ricci 2003): a system is defined as an organisation (ORGin
Figure 3), dynamically structured in societies, as instances
of society classes (acting as a template). A society class
groups a set of roles; each role is characterised by a pol-
icy, defining the actions and interaction protocols allowed
for agents playing such a role. An agent action has the
form: Tid @ Node ? op, whereTid is the tuple centre identi-
fier, Node is theTuCSoN node hosting the tuple centre and
op is the coordination primitive. So, permissions as found in
the RBAC model are expressed here in terms of rules on al-
lowed actions/interactions and their aggregation as protocols
– i.e. role policies.

Societies are dynamically composed by a set of agents and

tuple centres. An agent takes part actively to an organisation
by playing at least one role in a society.

From the dynamic point of view, an agent negotiates with
the infrastructure service of an organisation an ACC speci-
fying which roles to activate in which societies. The agent
request is accepted only if it is compatible with the agent-
role assignment and the inter-role relationships. After a suc-
cessful negotiation, the agent receives an ACC whose policy
reflects the composition of the policies defined for the indi-
vidual roles activated.

It is worth noting that ACCs are meant to be dynamically
negotiated with an organisation, as well as – dynamically – it
is possible for an agent to activate/deactivate roles, accord-
ing to the constraints and rules defined by specific organi-
sations. Also, the set of available roles is open: roles can
be added/removed/changed dynamically by actors (humans
as well as agents), playing administration roles with proper
permissions (enabled by suitable ACCs).

Role Policy Description
In TuCSoN the role policies are described using a Prolog
theory, as a set of rules defining what patterns of actions and
interactions are allowed. The theory – which is meant to be
(dynamically) specified by the agent/human administrator
of an organisation – is composed by a set ofcan do rules
defining role action space:

can do(CurrentState , Action , NextState):- Conditions .

This rule means that the actionAction can be executed
in the role stateCurrentState if conditionsConditions value,
and – in that case – next role state isNextState . Note
that each can do rule can be seen as the rule of a labelled
transition systems (Omicini, Ricci, & Viroli 2003).

The concept of role state is used as a way to easily ex-
press interaction protocols; any Prolog term – also struc-
tured, partially specified – can be used to denote the role
state. By default, the starting state is denoted by theinit

atom. CurrentState andNextState can be omitted, using the
any Prolog symbol (): omitting theCurrentState informa-
tion accounts for stating the validity of the rules for every
possible state; omitting theNextState information accounts
for keeping current state as next state. Finally,Action de-
notes an agent action, as described in previous subsection.

Actually, Conditions can contain also built-in predicates
useful to describe context-aware (with respect to local
time, space and identity/positions of the agents) policies.
Among the predicates, here we mention:agent id(-ID)

(which retrieves the identity of the agent owner the ACC),
local node(-Node) (retrieves the node hosting the agent),
session time(-TimeInMillis) (which retrieves the number of
milliseconds passed since the release of the ACC)1.

So, given a role policy theory, an action is admitted for
the specific role if and only if there is acan do rule which
holds for it; in other words, an actionAction is allowed
if the goalcan do(+CurrentState , +Action , -NextState) can be

1This value refers to the time in which the ACC accepts the
request execution for the action.

demonstrated, given the theory. So, for instance a rule of
the kind: can do(, ,). means that every action is allowed.
can do(, Action ,). means that the actionAction can be al-
ways executed.

By specifying the body of the rules it is possible to
express also specific forbidden actions:can do(,Act,):-

not(Act= Action). means that every action can be executed
but actions matching withAction template. Actually, this
Prolog encoding makes it easy to map the formal language
based on process algebras defined in (Omicini, Ricci, & Vi-
roli 2003).

The ACC policy is defined by composing the individual
policies of the roles which the ACC represents. Actually, the
Prolog theory defining the ACC overall policy is obtained
by simply composing the individual theories, and adding
the meta-rules which define composition:

can do(comp(S1, S2), Action ,comp(S1Next , S2)):-

can do(S1, Action , S1Next).

can do(comp(S1, S2), Action ,comp(S1, S2Next)):-

can do(S2, Action , S2Next).

comp(S1, S2) is the logic state of an ACC composing
two roles. The composition property is used recursively:
for three roles we havecomp(S1,comp(S2, S3)) , for four
comp(S1,comp(S2,comp(S3, S4))) , and so on. The semantics
of the composition is: an action is allowed if and only if
it is allowed according to the policy of the first role or, if
this condition is not satisfied, of the second. This is the
semantics of the parallel operator as defined in process
algebras, with a difference: the approach adopted here
implicitly specifies an order between the roles, affecting
also the order in which the rules are considered (which is
not the case in process algebras).

Simple Examples
Suppose to setup a blackboard society, where any agent
can insert and read tuplesmsg(M) as messages on thebboard

tuple centre, but only the administrators can remove them.
So, a suitable role policy for users can be :

can do(, bboard ? out(msg()),).

can do(, bboard ? rd(msg()),).

Instead for administrators:

can do(, bboard ? ,).

Then, consider a slightly variation of previous exam-
ple, in which the tuple centremsg box is used to exchange
messagesmsg(DestID , Content) . Any user can send messages
to any other one, but can retrieve only messages sent to him.
A suitable user policy can be then:

can do(, msg box ? out(msg(DestID , Content)),).

can do(, msg box ? in(msg(DestID , Content)),):-

agent id(DestID).

An ACC with a lease timeT can be easily modelled

with the rule:

can do(, ,):- session time(ST), ST < T.

Finally, as example of context-aware policy:

can do(, Tid ? out(),):- local node(Node).

The rule asserts that only agents located at the node
Node can insert tuples into the tuple centreTid .

A Case Study: Contract Net Protocol
For sake of concreteness, we briefly illustrate the role poli-
cies with a simple version of a well-known agent interaction
protocol, the Contract Net (CNP) (Smith 1979).

Suppose to be in a task allocation scenario, inside an or-
ganisation calledacme.org . A society for task allocation co-
ordination activity is defined, calledtask distribution . The
society involves two roles,master andworker , and a coordi-
nation artifact used to support the task allocation coordina-
tion activity, thetasks tuple centre. This tuple centre encap-
sulates the coordination rules involved in the task allocation,
actually embodying a CNP-like protocol, where masters are
the managers and workers are the contractors. The coordi-
nating behaviour of the tuple centre is defined by the reac-
tions shown in Table 1 (bottom) expressed in theReSpecT
language, and is breafly described in the caption of the table.

The interactive behaviour of masters and workers is de-
scribed in the pseudo-code in Table 1 (top). Agents aim-
ing at playing the role of masters negotiate an ACC with
themaster role, instead workers specify theworker role (line
0). A master announces a task to be performed (line 1) and
waits for bids: when the related timeout expires, it retrieves
the list of bids from potential contractors (line 3), selects the
best bid according to its evaluation (line 4), awards the con-
tract (line 5), and receives the result of the performed task
(line 6).

On the other side, a worker (Table 1, right) waiting for
possibly-interesting task announcements (line 1) evaluates
its capability to respond to this request (line 2), issues its
bid, and starts waiting for an answer. If the bid is accepted
by the master (answerawarded), the worker performs the task
(line 5) and outputs the computed result (line 6).

Table 2 (top) shows a possible role policy for the master
role, specified by the society administrator and enacted by
the ACC. The policy actually enforces an interaction pro-
tocol, composed by four different role states, which corre-
spond to different protocol stages. Among the constraints,
the master agent can access only information concerning the
task he announced, both when reading / getting the bid list,
when announcing the winner and when retrieving the results.
The same artifact could then support several task allocation
activities, with proper separation of duty among masters.
Also, the policy constrains master agents to award an agent
which was necessarily among the bidders of the specific task
announcement.

Conversely, Table 2 (bottom) shows a possible role policy
for the bidder. Also for the bidder the policy enforces a pro-
tocol composed basically by two states (and related proto-

0 enterACC(’acme.org’, [role(master,task distribution)]) 0 enterACC(’acme.org’,[role(worker,task distribution])

1 tasks ? out(announcement(Task)) 1 tasks ? rd(announcement(Task))

2 wait(ExpireTime) 2 MyBid ← evaluate(Task)

3 tasks ? in(bids(Task,BidList)) 3 tasks ? in(bid(Task,MyBid,Answer))

4 Bid ← selectWinner(BidList) 4 if (Answer==’awarded’) {
5 tasks ? out(award(Task,Bid)) 5 Result ← perform(Task)

6 tasks ? in(result(Task,Result) 6 tasks ? out(result(Task,Result) }

1 reaction(in(bid(Task,MyBid,Answer)), (

pre,out r(contractor(Task, MyBid)),

in r(bids(Task, L)),

out r(bids(Task, [MyBid|L])))). 5 reaction(out r(refuse others(Task)), (

in r(refuse others(Task)),

2 reaction(out(announcement(Task)), (in r(contractor(Task,TheBid)),

out r(bids(Task,[])))). out r(bid(Task,TheBid,’not-awarded’)),

out r(refuse others(Task)))).

3 reaction(in(bids(Task,L)), (post,

in r(announcement(Task)))). 6 reaction(out r(refuse others(Task)), (

in r(refuse others(Task)),

4 reaction(out(award(Task,TheBid)), (no r(contractor(,)))).

in r(award(Task,TheBid)),

in r(contractor(Task,TheBid)),

out r(bid(Task,TheBid,awarded)),

out r(refuse others(Task)))).

Table 1: (Top) The behaviour of master (left) and worker (right) agents in the CNP example(Bottom)The ReSpecT code defining the
behaviour of the tuple centretasks , implementing the coordination rules of the Contract Net Protocol. A brief explanation: When a master
issues a task announcement, reaction 2 is triggered and coordination data are set up in the g. Each time a worker makes a bid, reaction
1 stores information about the new proposal and updates the bid list. When the master eventually collects the bids, reaction 3 removes
the task announcement tuple: so, no more bids are considered. Finally, when a master awards the contract, reaction 4 emits the tuple
bid(Task, TheBid, awarded) to notify the specific worker waiting for that answer, then triggers reaction 5 and 6: the first places the
refuse others tuple, which is used to collect and remove the information about other bidders (tuplescontractor), while reaction 6
notifies the other contractors by emitting thebid(Task, TheBid, ’not-awarded’) tuple.

can do(init, tasks ? out(announcement(Task)), task announced(Task)).

can do(task announced(Task), tasks ? rd(announcement(Task)),).

can do(task announced(Task), tasks ? rd(bids(Task),)),).

can do(task announced(Task), tasks ? in(bids(Task),BidList)),choose bidder(Task,BidList)).

can do(choose bidder(Task,BidList), tasks ? out(award(Task,Bid)), get result(Task,Bid)):- element(Bid,BidList).

can do(get result(Task,)), tasks ? rd(result(Task,)),).

can do(get result(Task,)), tasks ? in(result(Task,)),init).

can do(init, tasks ? rd(announcement()),).

can do(init, tasks ? in(task(Task, ,awarded)),awarded(Task)).

can do(awarded(Task), tasks ? out(result(Task,),init)).

Table 2:Role policy for the master role(Top)and worker role(Bottom).

col stages). Moreover, the constraints provided by the ACC
avoid non-awarded bidders (workers) to provide fake results
of the task to be allocated: only the awarded bidder is al-
lowed to insert the tuple concerning task results.

Of course the example considers only a simplified version
of the contract net: more complex cases – for instance in-
volving time constraints – would need more articulated role
policy specifications.

Conclusion
In this paper we introduced the RBAC model for engineer-
ing some security and organisation aspects in the context of
MAS. For this purpose, we exploited the Agent Coordina-
tion Context notion to extend theTuCSoN coordination in-
frastructure with an RBAC-like architecture.

Adopting an RBAC-like approach makes it possible to
gain all the benefits of the approach in engineering secu-
rity inside complex MAS organisations, mainly in terms of
encapsulation of the security policies, and flexibility in their
management. ACCs have been the key for porting the model
on top of our existing infrastructure, integrating coordina-
tion, organisation and security in a coherent way. The re-
sulting security & organisation model provides features that
are essential for the engineering of open MAS, namely:

• Dynamism/Flexibility. Agents can enter and exit dynami-
cally from organisations, activativating/deactivating roles
by (re)negotiating ACCs. Also, the organisation struc-
ture is meant to be changeable/adaptable at runtime, by
adding and removing roles (societies and society classes)
and changing the role policy.

• Support for Heterogeneity. Analogously toTuCSoN co-
ordination model, the RBAC-like model is neutral with
respect to the specific agent computational model and
platform. Then, the approach can be used to define
and enforce access control both for reactive and intelli-
gent/cognitive agents, belonging to different agent plat-
form and usingTuCSoN for coordination purposes.

• Formal Property Verification. The RBAC architecture
makes it easy to conceive a framework for verification
of security & organisation properties, by well separating
and encapsulating security policies. Properties concern-
ing role activation and separation of duties can be verified
focussing on the agent-role and role-role relationships,
ruling the ACC negotiation process. In our framework
this will be possible after a formalisation of the organi-
sation model (structures and rules) reported in (Omicini
& Ricci 2003), which is an ongoing work. Instead, prop-
erties concerning access control and, more generally, the
safe/correct execution of interaction protocols can be ver-
ified focusing on ACC behaviour, as composition of in-
dividual role policies. This is already possible, given the
formal semantics defined for ACC (Omicini, Ricci, & Vi-
roli 2003).

According to the knowledge of the authors, this is the first
work considering the application of RBAC models in the
context of MAS. Abundant literature exists concerning role-
base approaches for MAS analysis and design (Zambonelli,

Jennings, & Wooldridge 2001; Ferber & Gutknecht 1998;
Kendall 2000), on the role concept and formalisation in
open agent societies (Odell, Parunak, & Fleischer 2003;
Dastani, Dignum, & Dignum 2003; Odellet al. 2003), and
for MAS development and runtime (Ferber, Gutknecht, &
Michel 2003; Cabri 2001). Mainly, these approaches are fo-
cussed on the organisation issues, without taking into the
account – at a model and engineering level – the integration
with security and access control.

Roles and organisation/social rules are main issues also in
the context electronic Institutions (Estevaet al. 2000): actu-
ally, we aim at investigating the application of our approach
also in that context, providing an infrastructure with first
class entities (coordination artifacts and ACCs) for mod-
elling, specifying and enacting the role of the institution.

Agent Coordination Contexts are somewhat similar in
their ruling and controlling action toControllersas defined
in Law Governed Interaction (LGI) (Minsky & Ungure-
anu 2000). However, the LGI does not consider explicitly
any role based model, and concerns mostly (low level) dis-
tributed systems, rather than MASs.

Future work accounts for moving from theory to practice,
completing the implementation of theTuCSoN extension
with ACCs and the RBAC-like model, and stressing the va-
lidity of the model by implementing MASs on top of it. In
particular, we will reconsider systems previously engineered
on top ofTuCSoN, such as distributed workflow manage-
ment systems (Ricci, Omicini, & Denti 2002), and the we
will re-engineer them – or better, their organisation and se-
curity asset – with the new RBAC support. Also, future work
will be devoted to continue the formal investigation of these
issues, adding to the formalisation of the ACC the formal
specification of the RBAC architecture as defined in this pa-
per.

References
Cabri, G. 2001. Role-based infrastructures for agents. In
Proceedings of the 8th IEEE Workshop on Future Trends
of Distributed Computing Systems (FTDCS 2001). IEEE.

Dastani, M.; Dignum, V.; and Dignum, F. 2003. Role-
assignment in open agent societies. InProceedings of
the second international joint conference on Autonomous
agents and multiagent systems, 489–496. ACM Press.

Esteva, M.; Rodrguez-Aguilar, J. A.; Arcos, J. L.; Sierra,
C.; and Garcia, P. 2000. Institutionalising open multi-agent
systems. InProceedings of the 4th International Confer-
ence on MultiAgent Systems (ICMAS 2000), 381–383.

Ferber, J., and Gutknecht, O. 1998. A meta-model for anal-
ysis and design of organizations in multi-agent systems. In
Proceedings of ICMAS ’98. IEEE Press.

Ferber, J.; Gutknecht, O.; and Michel, F. 2003. From
agents to organisations: an organizational view of multi-
agent systems. InProceedings of the 2nd International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2003). Melbourne, Australia: ACM
Press.

Ferraiolo, D., and Kuhn, R. 1992. Role-based access

control. InProceedings of the NIST–NSA National (USA)
Computer Security Conference, 554–563.

Ferraiolo, D. F.; Sandhu, R.; Gavrila, S.; Kuhn, D. R.; and
Chandramouli, R. 2001. Proposed NIST standard for role-
based access control.ACM Transactions on Information
and System Security (TISSEC)4(3):224–274.

Freeman, E.; Hupfer, S.; and Arnold, K. 1999.JavaSpaces:
Principles, Patterns, and Practice. The Jini Technology
Series. Addison-Wesley.

Kang, M. H.; Park, J. S.; and Froscher, J. N. 2001. Access
control mechanisms for inter-organizational workflow. In
Proceedings of the sixth ACM symposium on Access con-
trol models and technologies, 66–74. ACM Press.

Kendall, E. A. 2000. Role modelling for agent systems
analysis, design and implementation.IEEE Concurrency
8(2):34–41.

Minsky, N. H., and Ungureanu, V. 2000. Law-
governed interaction: a coordination and control mecha-
nism for heterogeneous distributed systems.ACM Transac-
tions on Software Engineering and Methodology (TOSEM)
9(3):273–305.

Odell, J.; Parunak, H. V. D.; Brueckner, S.; and Sauter,
J. 2003. Temporal aspects of dynamic role assignment.
In Giorgini, P.; Müller, J. P.; and Odell, J., eds.,Agent-
Oriented Software Engineering IV, 4th International Work-
shop, AOSE 2003, Melbourne, Australia, July 15, 2003,
Revised Papers, volume 2935 ofLecture Notes in Com-
puter Science, 201–213. Springer.

Odell, J.; Parunak, H. V. D.; and Fleischer, M. 2003.
The role of roles in designing effective agent organiza-
tions. In Garcia, A.; Lucena, C.; Zambonelli, F.; Omicini,
A.; and Castro, J., eds.,Software Engineering for Large-
Scale Multi-Agent Systems, volume 2603 ofLecture Notes
in Computer Science, 27–28. Springer.

Omicini, A., and Denti, E. 2001. From tuple spaces to tu-
ple centres.Science of Computer Programming41(3):277–
294.

Omicini, A., and Ossowski, S. 2003. Objective versus sub-
jective coordination in the engineering of agent systems.
In Klusch, M.; Bergamaschi, S.; Edwards, P.; and Petta,
P., eds.,Intelligent Information Agents: An AgentLink Per-
spective, volume 2586 ofLNAI: State-of-the-Art Survey.
Springer-Verlag. 179–202.

Omicini, A., and Ricci, A. 2003. Reasoning about
organisation: Shaping the infrastructure.AI*IA Notizie
XVI(2):7–16.

Omicini, A., and Zambonelli, F. 1999. Coordination for
Internet application development.Autonomous Agents and
Multi-Agent Systems2(3):251–269.

Omicini, A.; Ricci, A.; Viroli, M.; and Castelfranchi, C.
2004. Coordination artifacts: Environment-based coordi-
nation for intelligent agents. InProceedings of the 3rd In-
ternational Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2004). New York, USA:
ACM Press.

Omicini, A.; Ricci, A.; and Viroli, M. 2003. Formal spec-
ification and enactment of security policies through Agent
Coordination Contexts. In Focardi, R., and Zavattaro, G.,
eds.,Security Issues in Coordination Models, Languages
and Systems, volume 85(3) ofElectronic Notes in Theoret-
ical Computer Science. Elsevier Science B. V.
Omicini, A. 2002. Towards a notion of agent coordination
context. In Marinescu, D., and Lee, C., eds.,Process Coor-
dination and Ubiquitous Computing. CRC Press. 187–200.
Ricci, A.; Omicini, A.; and Denti, E. 2002. Virtual en-
terprises and workflow management as agent coordination
issues. International Journal of Cooperative Information
Systems11(3/4):355–379.
Ricci, A.; Omicini, A.; and Denti, E. 2003. Activity
Theory as a framework for MAS coordination. In Petta,
P.; Tolksdorf, R.; and Zambonelli, F., eds.,Engineering
Societies in the Agents World III, volume 2577 ofLNCS.
Springer-Verlag. 96–110. 3rd International Workshop
(ESAW 2002), Madrid, Spain, 16–17 September 2002. Re-
vised Papers.
Sandhu, R.; Coyne, E. J.; Feinstein, H. L.; and Youman,
C. E. 1996. Role-based control models.IEEE Computer
29(2):38–47.
Smith, R. G. 1979. The contract net protocol: High-level
communication and control in a distributed problem solver.
In Proceedings of the 1st International Conference on Dis-
tributed Computing Systems, 186–192. Washington D.C.:
IEEE Computer Society.
Tripathi, A.; Ahmed, T.; Kulkarni, D.; Kumar, R.; ; and
Kashiramka, K. 2004. Context-based secure resource ac-
cess in pervasive computing environments. InProceed-
ings of the 1st IEEE International Workshop on Perva-
sive Computing and Communications Security(IEEE Per-
Sec’04). IEEE.
Wyckoff, P.; McLaughry, S. W.; Lehman, T. J.; and Ford,
D. A. 1998. T Spaces.IBM Journal of Research and
Development37(3 - Java Techonology):454–474.
Zambonelli, F.; Jennings, N. R.; and Wooldridge, M.
2001. Organisational rules as an abstraction for the analy-
sis and design of multi-agent systems.International Jour-
nal of Software Engineering and Knowledge Engineering
11(3):303–328.

