

An Organizational Model for Designing Adaptive Multiagent Systems

Scott A. DeLoach Eric Matson

Multiagent and Cooperative Robotics Laboratory
Department of Computing and Information Sciences, Kansas State University

234 Nichols Hall, Manhattan, Kansas 66506, USA
{sdeloach, matson}@cis.ksu.edu

Abstract
This paper describes how to design adaptive multiagent
systems using an organizational model, which defines the
entities and relationships of a typical organization. The
major elements of the model consist of goals, roles, agents,
capabilities, and the relationships between them. By
designing a system using the model, the system can
determine the best mapping of agents to roles, based on
their current capabilities, for the current system goals.
Specifically, we show how to use the model in developing
an adaptive information system, which is an information
system that can modify its processing algorithms or
information sources to provide required information at
various levels of efficiency and effectiveness.

Introduction
The field of multiagent systems has long been interested in
using social and biological concepts to help create
architectures for adaptive systems architectures. Social
structures, specifically organizations, provide a framework
for analyzing the roles various individuals play and how
they interact to achieve organization-wide goals. This
framework is closely related to the overall goal of
multiagent systems, which is to build intelligent systems
that can adapt effectively to changes internally within the
system or externally within their environment. The
organizational framework also provides a method for
describing the relationships between organizational goals
and individual goals.

Our approach to using organizational concepts in
building multiagent systems is to provide an organizational
framework in the form of an organizational model from
which organization-based multiagent systems can be
developed. Our model defines the set of entities required
in an organization as well as the valid relationships that
exist between those entities.

The organizational framework presented here was
derived from the underlying object model associated with
the Multiagent Systems Engineering methodology and its
associated development tool, agentTool (DeLoach &
Wood 2001). In MaSE, goals are derived from the initial

description, which are then assigned to a set of roles to
achieve. Finally, agent classes are designed that can
actually play the required roles. Thus, the organization
model captures the notions central to agent-oriented
software engineering, namely goals, roles, and agents.

In the remainder of this paper, we shall first discuss
other work related to building multiagent teams. Then, we
briefly discuss the problem that we will use as an example
of how to use our organizational model, that of an adaptive
information system. Next we present our organizational
model followed by an example of using the model to
develop an adaptive information system. We end with a
discussion of our current conclusions and future work.

Related Work
Computational organization theory uses mathematical and
computational techniques to study both human and
artificial organizations (Carley 1998). While
organizational concepts are not exclusive to computational
organization theory, results from the field are illuminating.
Specifically, they suggest that organizations tend to adapt
to increase performance or efficiency, that “the most
successful organizations tend to be highly flexible” (Carley
1998), and that the best organizational designs are highly
application and situation dependent (Lawrence and Lorsch
1967). It also provides findings about the conditions under
which certain organizations work best. For instance, as the
number of hierarchical levels in an organization increases,
efficiency and effectiveness tends to decrease while
decentralized organizations tend to have higher
performance. However, hierarchical organizations tend to
exhibit higher reliability (Carley 1995). These insights
seem to suggest that allowing teams to determine their
organization at runtime, as we propose, could have
positive effects on team performance.

There have been several attempts at formalizing the
concepts of teamwork within an organization in the area of
multiagent systems. While efforts such as Joint Intentions
(Cohen and Levesque 1990, 1991) (Jennings 1993, 1995),
Shared Plans (Grosz and Kraus 1996), and Planned Team

Activity (Kinny et. al. 1992), have been proposed and even
implemented (Tambe 1997), they fail to provide
straightforward and easily adaptable concepts for wide
spread development of such systems.

Other closely related work includes the CoDA project at
the University of Maine (Turner and Turner 2001). The
CoDA project deals with a team of autonomous
underwater vehicles that must self-organize and reorganize
using a two level strategy where a meta-level organization
designs a task-level organization to carry out team goals.

Problem
Our goal is to develop an adaptive information system
(AIS) based on our organizational model. An AIS is an
information system that can modify its processing
algorithms or information sources to provide required
information at various levels of efficiency and
effectiveness. In general, an AIS selects the best available
data and fuses it in an attempt to answer queries from AIS
users. For this problem, we pursue a simple example,
which might be only part of a typical AIS. Specifically,
we assume we are interested in answering only one
possible query from a battlefield commander: produce a
list of the enemies moving vehicles within a given area. To
answer this query, the AIS must be able to use appropriate
sensors to provide information about moving vehicles and
vehicle identification. In our example, we have three types
of information sources at our disposal: moving vehicles
sensors, vehicle identification sensors, and a database of
enemy/friendly vehicle types. Ideally, the AIS will take
information from one or more of information sources to
produce the required information for a specific area of
interest. Here we assume the only reason to use multiple
sensors is that their area of coverage does not cover the
entire area of interest. However, if a single sensor does
cover that area, we will use the single sensor to provide the

required information. In general, the information fusion
process follows the flow shown in Figure 1.

Organization Model
To implement teams of autonomous, heterogeneous agents,
we created an organizational model, which defines and
constrains the required elements of a stable, adaptable and
versatile team. While most people have an intuitive idea of
what an organization is, there is not a universal definition.
However, in most organizational research, organizations
have typically been understood as including agents playing
roles within a structure in order to satisfy a given set of
goals. Our proposed organizational model (O) contains a
structural model, a state model and a transition function.

O = < Ostruct, Ostate, Otrans>

Figure 2 shows the combined structural and state models
using standard UML notation. The structural model
includes a set of goals (G) that the team is attempting to
achieve, a set of roles (R) that must be played to attain
those goals, a set of capabilities (C) required to play those
roles, and a set of rules or laws (L) that constrain the
organization. The model also contains static relations
between roles and goals (achieves), roles and capabilities
(requires), individual roles (related), and goals (subgoal
and precedes). Formally, we model the organization
structure as a tuple.

Ostruct = <G, R, L, C, achieves, related,
requires, subgoal, precedes>

where
achieves: R, G → 0 .. 1
related: R, R → Boolean
requires: R, C → Boolean
subgoal: G, G → Boolean
precedes: G, G → Boolean

The team goals include the goal definitions, goal-
subgoal decomposition, and the relationship between the

Organization
oaf()

Role
rcf(Agent) Agent

Law

related coord

Capabilities

assigned

requires

Possesses
- capabilityScore

Achieves
- goalSatScore

Capable
- roleScore

Assignment
- score constrains

Goal
conjunctive : Boolean

precedes

subgoal

Figure 2. Organization Model

Movement &
ID fusion
process

Movement
sensor

ID sensor

ID sensor

Movement
fusion

process

ID fusion
process

Movement
Sensor

Enemy / friendly
vehicle database

Figure 1. AIS Information Flow

goals and their subgoals, which are either conjunctive or
disjunctive.The subgoal predicate defines whether a goal,
g1, is the parent goal of the second goal, g2. In general, a
subgoal relationship is 1 to many (0 or more). We can
define the children of a goal as

children(g) = {g1:G | subgoal(g,g1)}

The children of a goal may be either conjunctive or
disjunctive, which is denoted by the conjunctive
predicate attached to each goal. If a goal is a conjunctive
goal (g.conjunctive = true), then that goal may only be
satisfied if each goal in children(g) are satisfied.
Conversely, if a goal is disjunctive (g.conjunctive = false),
then that goal is satisfied when any goal in children(g) is
satisfied. If a goal does not have any subgoals (children(g)
= {}), then the goal is a leaf node and is neither
conjunctive or disjunctive. There is also a time-based
relationship that exists between goals. We say goal, g1,
precedes goal, g2, if g1 must be satisfied before any part of
g2 can be satisfied. This allows the organization to work
on one part of the goal tree at a time. If g1 precedes g2
(precedes(g1,g2) = true), then the organization can put its
full effort into satisfying g1 without worrying about g2
until it has achieved g1.

 Roles define parts or positions that an agent may play in
the team organization. In general, roles may be played by
zero, one, or many agents simultaneously while agents
may also play many roles at the same time. Each role
requires a set of capabilities, which are inherent to
particular agents and may include data access capabilities,
data manipulation capabilities, or computational
capabilities. Typically, an agent’s capabilities are
dynamic; they may improve or degrade over time, often
causing team reorganization.

Organizational rules are used to constrain the
assignment of agents to roles and goals within the
organization. Generic rules such as “an agent may only
play one role at a time” or “agents may only work on a
single goal at a time” are common. However, rules are
often application specific, such as requiring particular
agents to play specific roles.

The structural model relations define mappings between
the structural model components described above. A role
that can be used to satisfy a particular goal is said to
achieve that goal, while a role requires specific capabilities
and may work directly with other roles, thus being related
to those roles. Achieves is modeled as a function to
capture the relative ability of roles to satisfy a given goal.

The organizational state model defines an instance of a
team’s organization and includes a set of agents (A) and
the actual relationships between the agents and the various
structural model components.

Ostate= <A,possesses,capable,assigned,coord>

where
possesses: A, C → 0 .. 1
capable: A, R → 0 .. 1
assigned: A, R, G → 0 .. 1
coord: A, A → Boolean

An agent that possesses the required capabilities for a
particular role is said to be capable of playing that role.
Since not all agents are created equally, possesses is
modeled as a real valued function, where 0 would
represent absolutely no capability to play a role while a 1
indicates an excellent capability. In addition, since agent
capabilities may degrade over time, this value may actually
change during team operation. The capable function
defines the ability of an agent to play a particular role and
is computed based on the capabilities required to play that
role. During the organization process, a specific agent is
selected to play a particular role in order to satisfy a
specific goal (however, this does not limit agents from
playing multiple roles). This relationship is captured by
the assigned function, which includes a real valued score
that captures how well an agent, playing a specific role,
can satisfy a given goal. When an agent is actually
working directly with another agent, it is coordinating
(coord) with that agent. Thus, the state model defines the
current configuration for a particular organization within
the structure provided by the structural model.

The organization transition function defines how the
organization may transition from one organizational state
to another over the lifetime of the organization, Ostate(n) →
Ostate(n+1). Since the team members (agents) as well as their
individual capabilities may change over time, this function
cannot be predefined, but must be computed based on the
current state, the goals that are still being pursued, and the
organizational rules. In our present research with purely
autonomous teams, we have only considered
reorganization that involves the state of the organization.
However, we have defined two distinct types or
reorganization: state reorganization, which only allows the
modification of the organization state, and structure
reorganization, which allows modification of the
organization structure (and may require state
reorganization to keep the organization consistent). To
define state reorganization, we simply need to impose the
restriction that

Otrans(O).Ostruct = O.Ostruct

Technically, this restriction only allows changes to the
set of agents, A, the coord relation, and the possesses,
capable, and assigned functions. However, not all these
components are actually under the control of the
organization. For our purposes, we assume that agents
may enter or leave organizations or relationships, but that
these actions are triggers that cause reorganizations and are

not the result of reorganizations. Likewise, possesses (and
thus capable as well) is an automatic calculation on the
part of an agent that determines the roles that it can play in
the organization. This calculation is totally under control
of the agent (i.e. the agent may lie) and the organization
can only use this information in deciding its organizational
structure. Changes in an agent’s capabilities may also
trigger reorganization. That leaves the two elements that
can be modified via state reorganization: assigned and
coord. Thus, we define state reorganization as:

Otrans(state) : O → O

where
Otrans(state)(O).Ostruct = O.Ostruct
 ∧ Otrans(state)(O).Ostate.A = Ostate.A
 ∧ Otrans(state)(O).Ostate.possesses
 = Ostate.possesses
 ∧ Otrans(state)(O).Ostate.capable
 = Ostate.capable

Validity and Viability Constraints
This section describes the concepts of valid and viable

organizations. In general, a valid organization is one in
which the structure satisfies all the constraints of the
organization model. A viable organization, on the other
hand, is one in which the appropriate agents and roles exist
such that an assignments of agents to roles to goals exists
that can reasonably be expected to allow the team to reach
its overall team goals.

Validity. As described above, to be valid, an organization
must have a structure that would allow it to form an
organization, given the right collections of goals, roles, and
agents. Thus, these constraints are further restrictions on
the model presented above. First, we deal with the
capabilities required by roles and agents. Since the
objective of the model is to define teams of agents that can
work together, it only makes sense that agents have some
capability, even if it is purely computational or
communicative. Likewise, each role must have some basic
requirements as well. Therefore, we require that all roles
require at least one capability and that all agents possess at
least one capability, the later being denoted by a capability
score greater than zero (# is the cardinality of the set).

∀ r:R #{c | requires(r,c)} ≥ 1 (C1)
∀ a:A #{c | possesses(a,c) > 0} ≥ 1 (C2)

The next set of constraints deal with capabilities of
agents and roles as they relate to assignments. To be
capable of playing a role in the current organization, an
agent must possess all the capabilities that are required of
that role. It also follows that an agent must be capable of
playing a role before it can be assigned to play that role.

∀ a:A, r:R
 capable(a,r) > 0 ⇔ {c | requires(r,c)}
 ⊆ {c | possesses(a,c)} (C3)
∀a:A, r:R, g:G (assigned(a, r, g) > 0)
 ⇒ capable(a,r) > 0 (C4)

In order to allow the preceding constraints to be true, it
is necessary that the set of capabilities in an organization
(C) include all the capabilities required by all roles within
the current organization.

∀ r:R | {c | requires(r,c)} ⊆ C (C5)

The next constraint concerns the relationship between
the related relationship between roles and the coord
relationship between agents. Because roles define the part
the agents will be playing and the related relationship
defines valid relationships between those roles, agents
should only have coordination relationships (coord) if they
are playing the appropriate roles.

∀ a1, a2:A coord(a1, a2) ⇒
 (∃ r1, r2:R, g1, g2:G
 ((assigned(a1,r1,g1) > 0) ∧
 (assigned(a2,r2,g2) > 0) ∧
 related(r1, r2))) (C6)

The final validity constraints are straightforward
structural constraints that require the related and coord
relations to be symmetric. That is, if one role is related to
another role, then the second role must also be related to
the first role.

∀ r, r1:R related(r,r1) ⇒ related(r1,r) (C7)
∀ a, a1:A coord(a, a1) ⇒ coord(a1, a) (C8)

Viability. Even though an organization may be valid
(using the constraints above), it does not mean that there
will actually be an instance of the organization that can
actually satisfy the goals of the organization. In order to
satisfy the organizational goals, the team must have the
right mix of roles to satisfy the goals and agents to play the
required roles. The viability constraints presented below
are only the base viability constraints. Often, viability
constraints are application specific and are embedded in
the organization in the form of organizational rules.

The first viability rule ensures that there is some real
organization that actually exists to solve some goal. Thus
we require that there must be at lest one element each of
goals, roles, and agents to have a viable organization.
However, since this requirement follows for roles and
agents given the definition of viability below (which
requires an that some role be available to achieve each goal
and an agent that is capable of playing that role) we can
simply require the organization to have at least one goal.

G ≥ 1 (C9)

For an organization to be truly viable, one would expect
it to be able to achieve its overall goal. Therefore, we
define a viable organization as an organization that is able
to show that the overall organization goal is achievable by
some set of assignments of goals, roles, and agents. Thus
given some overall goal, go, we can define organization
viability as

satisfiable(go) (C10)

where the satisfiable predicate as defined below.

 satisfiable(g) =
children(g) = {} ⇒

 (∃ a:A r:R
 achieves(r, g) ∧ capable(a, r) > 0))

children(g) != {} ⇒

 (g.conjunctive

 ⇒ ∀ g’:children(g) satisfiable(g’)
 ¬g.conjunctive
 ⇒ ∃ g’:children(g) satisfiable(g’))

Notice that this does not require all goals be satisfied
(since we allow the notion of disjunctive goals in which
only one subgoal must be satisfied) nor does it ensure that
there are enough of the right types of agents to achieve the
organization’s goal. It merely states that it might be
possible to find a suitable set of assignments so that the
overall goals of the organization may be achieved.

Capability
So far, we have used the term capability generically.
However, we need to define it more precisely before
preceding. A capability’s existence is based on the
collective sense in which it is viewed. To specify this we
further define capabilities in relation to agent and roles that
exist within a self-reorganizing multiagent team. As
described above, an agent possesses specific capabilities
while roles require particular capabilities, each with
specific scores.

The capability set of an agent, Ca, varies from the empty
set, if the agent possesses no capability, to a complete set
of the capabilities that the agent intrinsically possesses.
Normally even a simple agent has multiple capabilities.

Ca(a) = {c | possesses(a,c)}

Likewise, the capability set of a role, Cr, is the set of
capabilities required to play that specific role. All non-
trivial roles must have at least one capability in order to
accomplish some task or goal.

Cr(r) = {c | requires(r,c)}

The capability of an agent, a, to play a specific role, r,
are application and role specific. To capture this concept,
we have defined a role capability function, rcf, which is
defined uniquely for each role. This allows the designer of

each role to specify how specific capabilities affect the
ability of an agent to play that role. Some capabilities may
be extremely important, while others are not. If an agent
does not possess a required capability (possesses(a,c) = 0),
then the agent has no capacity to play that role and thus the
rcf = 0. Thus, the capability score of an agent playing a
particular role is defined as

capable(a,r) = r.rcf(a)

Organization Selection
We generally assume that an organization strives to
operate using an optimal configuration. Ideally, an
organization will select the best set of assignments to
maximize its ability to achieve its goals, which requires
maximizing its organizational capability score, Os. As in
the case of determining the ability of agents to play
specific roles, the selection of assignments is also
application specific. Thus, each organization has its own
organization assignment function, oaf, which computes the
organizational capability score, Os, based on individual
sets of assignments. Using the oaf, the organization
developer can specify how to make assignments based on a
variety of organization specific constraints such as the
importance of the specific goals or whether the assignment
of multiple agents to a given role and goal will improve
goal satisfaction. In the absence of an organization-
specific organizational assignment function, we often just
sum the assignment scores as shown below.

∑
∀

=
g,r,a

)g,r,a(assignedOs

where assigned(a,r,g) = 0 if that agent is not assigned to
play a specific role to satisfy a goal.

Reorganization Triggers
There are a variety of events that may occur in the lifecycle
of a multiagent team that may require it to reorganize. In
general, reorganization is initiated when an event occurs
such that the team (1) has reached a goal or subgoal, (2) is
no longer capable of reaching its overall goal, or (3)
realizes that it could reach its goal in a more efficient or
effective manner. When the team is no longer capable of
reaching its overall goal, we call this a goal failure. We
have currently identified three role-related goal failure
scenarios:

1. When a required role has not been assigned
2. When an agent relinquishes some required role
3. When an agent suffers a failure that keeps it from

accomplishing its role
When a team reorganizes for efficiency, it is accomplishing
its goals; it is just not doing so as efficiently as possible. In
an information system, we equate efficiency to timeliness.
Thus, if we have a requirement to produce new

information by a set deadline, or consistently every few
minutes, it may have to reorganize in order to meet those
deadlines. Reorganizing for effectiveness can be equated to
information quality. In an intelligence gathering system,
this is often quantified in terms of a confidence level. In
this case, a commander might need a certain confidence
level in a piece of information before making a decision
and timeliness may be traded for quality.

Assuming efficiency and effectiveness requirements are
modeled as goals, then the capable function captures all
the data necessary to assess organizational effectiveness
and efficiency. Triggering an efficiency/effectiveness
based reorganization requires roles to monitor conditions,
such as those discussed above.

Organization Design
This section presents a design of an adaptive information
system meeting the requirements described above. To
design an appropriate organization, we must define the
goals, roles, capabilities, and agent types. After defining
the organization, we present an example of how the
organization would select the appropriate set of agent
instance assignments to achieve a specific goal.

Goal Definition
Using a conjunctive goal tree (where the arc between
subgoals represents conjunctive subgoals), we have
developed a goal structure for our AIS as shown in Figure
3. From Figure 3, we can extract the leaf goals that must
be satisfied by roles and agents within the system.

G1 – validate enemy vehicle (1.1.1)
G2 – access moving vehicle sensor (1.1.2.1.1)
G3 – combine moving vehicles into list (1.1.2.1.2)
G4 – combine moving & ID vehicles (1.1.2.2)
G5 – access ID sensor (1.1.2.3.1)
G6 – combine vehicle IDs into list (1.1.2.3.2)

For the sake of this example, we will assume that the

parameter, interestArea, is an attribute of the top level
goal, and is available to the organization for use in
determining the appropriate sensor to choose.

Role Definition
For simplicity, we map each leaf goal to a single role.

In general, however, we could create multiple roles for
each goal and the roles themselves could achieve multiple
goals. Thus, we define the following roles in a
straightforward manner:

R1 – enemy vehicle validator
R2 – moving vehicle sensor interface
R3 – moving vehicle list combiner
R4 – moving/ID combiner
R5 – ID sensor interface
R6 – ID list combiner

As described above, each role requires certain
capabilities and has a role capability function, which
describes how well an agent may play that role in light of
the capability it possesses. In this domain, we define
capabilities in terms of the ability to produce specific types
of information for some specific area of interest. The
required capabilities for each role are listed below.

R1 – enemy vehicle validator
o C1 - Capable of validation
o C2 - Access to enemy/friendly database

R2 – moving vehicle sensor interface
o C3 - Access to moving vehicle sensor
o C4 - Area of coverage

R3 – moving vehicle list combiner
o C5 - Capable of producing moving vehicles list

R4 – moving/ID combiner
o C6 - Capable of combining moving & ID lists

R5 – ID sensor interface
o C7 - Access to ID sensor
o C4 - Area of coverage

R6 – ID list combiner
o C8 - Capable of producing vehicle ID list

The role capability function (rcf) for each role is
straightforward, with the exception of R2 and R5, the
sensor interface roles. In each of the other roles, the rcf
has only two values: 0 if the agent does not possess the
appropriate capability and 1 if it does. However, the rcf
for R2 and R5 are more complex as they must take into
account the area that each sensor can coverage in relation
to the area of interest. Thus the rcf for R2 and R5 are
R2.rcf(a)= possesses(a,C3) * possesses(a,C4)
R5.rcf(a)= possesses(a,C7) * possesses(a,C4)

Since possesses(a,C3) and possesses(a,C7)
result in either a 0 or 1 value, multiplication with the
remaining possesses value for C4 effectively selects only

1.1.2 Produce
identified moving

vehicles

1.1.2.1 Produce
moving vehicles

1.1.2.3 Produce
identified
vehicles

1.1.2.2 Combine
moving and ID’d

vehicles

1.1.2.1.1 Access
moving vehicle

sensor

1.1.2.1.2
Combine moving
vehicles into list

1.1.2.3.1 Access
ID vehicle

sensor

1.1.2.3.2
Combine ID

vehicles into list

1.1.1 Validate
enemy vehicle

1.1 Produce
moving enemy

vehicles

Figure 3. Partial AIS Goal Model

agents with the appropriate information producing
capability. In case of possesses(a,C4), the calculation
is based on the current area of interest, as defined by the
value of interestArea. We define possesses(a,C4) as
the percentage of the interestArea covered by the particular
sensor attached to agent a. To ensure we get the
appropriate coverage area of sensors, we include an
organizational law that constrains the choice of
assignments such that

coverage(IDagents) ≥ interestArea (L1)

where

IDagents = {a:A | assigned(G5,R5,a) > 0}

and coverage returns the coverage area of a sensor set.

Agent Type Definition
The next step is to define the types of agents that exist
within the organization and their capabilities. To play each
role specified above, we define a specific type of agent for
each role as listed below:

Validator (R1)
MVID_combiner (R4)
MV_combiner (R3)
ID_combiner (R6)
MV_sensor (R2)
ID_sensor (R5)

Example
To show an example of the AIS in operation, we must first
populate the organization with an appropriate set of agents.
Again, to simplify the example, we define only a single
agent for each agent type except for the sensor type agents.
Thus, our exemplar AIS has the following 14 agents.

A1: Validator
A2: MVID_combiner
A3: MV_combiner
A4: ID_combiner
A5... A9: MV_sensor
A10... A14: ID_sensor

Due to space limits, we only describe the selection
process of the five ID_sensor agents. The selection of the
first four agents is trivial (they are mapped one-to-one to
roles), while the selection of the MV_sensor agents is
identical to the selection of the ID sensors. Thus, the
coverage area capabilties for the ID_sensor agents are:

A10 – coverage area = (0,1) … (3,3)
A11 – coverage area = (3,0) … (6,6)
A12 – coverage area = (0,4) … (3,8)
A13 – coverage area = (5,4) … (9,6)
A14 – coverage area = (4,7) … (9,9)

Given the defined goals, roles, and capabilities along
with our set of agents, we get the following sets in our
organizational model.

G = {G1, G2, G3, G4, G5, G6}
R = {R1, R2, R3, R4, R5, R6}
A = {A1, A2, A3, A4, … , A14}
C = {C1, C2, C3, C4, C5, C6, C7, C8}

A picture of the organization is shown in Figure 4. In
this organization, both the achieves and requires functions
are shown as defined above. Achieves is a one-to-one
mapping between roles (R1 ... R6) and goals (G1 ... G6)
and requires is a mapping between roles and capabilities
(C1 ... C8). The possesses function is shown as links
between agents (A1 ... A14) to capabilities.

Given the AIS organization definition above, we now
show how the organizational information is used to arrive

G1 G2 G3 G4

R1 R2 R3 R4

A1

G6

R6

G5

R5

C1 C2 C5 C6C7 C8

A5

A6 A7

A8

A9 A10

A11 A13

A12

A14

C4C3

A3 A2 A4

achieves

requires

possesses

Figure 4. AIS Organization

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

A10

A11

A13

A14

A12

Figure 5. Grid Area

at the optimum organization for a specific query. For this
example, we will assume that we are working in a 10 x 10
grid area. For our example, we assume the system receives
the query to find a list of moving enemy targets within the
rectangle bounded by the coordinates (4,5) and (7,8) as
denoted by the rectangle with the thick border in Figure 5.
From this diagram, we can see that the organization must
find a way of using multiple sensor to satisfy the query
goal while observing the coverage law (L1). Using the
definition of capable and the rcf specified above for R5,
we get the following capable values for each ID_sensor
agent to play role R5.

A10 = 1 * 0 = 0
A11 = 1 * 6/16 = .375
A12 = 1 * 0 = 0
A13 = 1 * 12/16 = .75
A14 = 1 * 4/16 = .25

Using these values, we can see that any subset of {A11,
A13, A14} that satisfies the coverage law (L1) will
produce the required information. If we take the smallest
subset that accomplishes the overall goal, we will select
two agents, A13 and A14, to play R5, the ID sensor
interface role.

Conclusions
In this paper, we presented an example of using our

organization model to define an adaptive information
system that is capable of selecting the best agents to play
the appropriate roles in achieving a set of goals, which in
this domain is based on user queries. Although the
example presented is simplistic as does not show the full
power of the approach, it does illustrate its effectiveness in
selecting the appropriate assignments.

The organization model, as presented in this paper, is
applicable to both multiagent systems as well as
cooperative robotic applications. Besides developing an
AIS simulation (Matson and DeLoach 2003), we have also
developed an application that controls the use of various
sensors within a single robot (Matson and DeLoach 2004).

Future enhancements to the organizational model
include the inclusion of sub-organizations. The concept
will allow specific roles to be played by teams of agents
that are based on their own organizational model. Other
related work includes developing distributed algorithms
for reorganizing when goals are not being met or agents
enter or leave the organization, merging of existing
organizations, and learning when and how to reorganize.
We also developing software engineering methods and
tools for creating organization-based multiagent and
cooperative robotic systems based on our Multiagent
Systems Engineering (MaSE) methodology (DeLoach et.
al. 2001). We plan to extend the MaSE methodology to

allow a principled and straightforward development of
organization based systems.

References
Carley, K. M. 1995. Computational and Mathematical
Organization Theory: Perspective and Directions.
Computational and Mathematical Organization Theory
1(1): 39 – 56.
Carley, K. M. 1998. Organizational Adaptation. Annals of
Operations Research 75:25-47.
Cohen, P.R., and Levesque, H.J. 1990. Intention is Choice
with Commitment. Artificial Intelligence 42(3).
Cohen, P. R. and Levesque, H. J. 1991. Teamwork. Nous
25(4):487-512.
DeLoach, S. A., Wood, M. F. and Sparkman, C. H., 2001.
Multiagent Systems Engineering. The International
Journal of Software Engineering and Knowledge
Engineering, 11(3):231-258.
DeLoach, S. A., & Wood, M. F, Developing Multiagent
Systems with agentTool. in Intelligent Agents VII. Agent
Theories Architectures and Languages, 7th International
Workshop (ATAL 2000), C. Castelfranchi, Y. Lesperance
(Eds.). LNCS Vol. 1986, Springer Verlag, Berlin, 2001.
DeLoach, S.A., Matson, E.T., and Li, Y., 2003. Exploiting
Agent Oriented Software Engineering in the Design of a
Cooperative Robotics Search and Rescue System. The
International Journal of Pattern Recognition and Artificial
Intelligence, 17 (5):817-835.
Grosz, B., and Kraus, S., 1996. Collaborative Plans For
Complex Group Action. Artificial Intelligence 86(2):269-
357.
Jennings, N. R. 1993. Commitments and Conventions: The
Foundation of Coordination in Multiagent Systems. The
Knowledge Engineering Review, 8(3):223-250.
Jennings, N.R., 1995.Controlling Cooperative Problem
Solving in Industrial Multi-Agent Systems Using Joint
Intentions. Artificial Intelligence, 75(2):195-240,
Kinny, D., Ljungberg, M., Rao, A. S., Sonenberg, E.,
Tidhar, G. and Werner, E., 1992. Planned Team Activity.
In Artificial Social Systems - Selected Papers from the
Fourth European Workshop on Modeling Autonomous
Agents in a Multi-Agent World (MAAMAW-92),
Castelfranchi, C. and Werner, E. eds. 226-256. Vol 830
LNAI, Springer-Verlag.
Lawrence, P.R., and Lorsch, J.W., Organization and
Environment: Managing Differentiation and Integration,
Division of Research, Graduate School of Business
Tambe, M. “Towards flexible teamwork”. Journal of
Artificial Intelligence Research, 7:83--124, 1997.
Matson, E. and DeLoach, S.A., 2003. An Organization-
Based Adaptive Information System for Battlefield
Situational Analysis. In Proceedings of the International
Conference on Integration of Knowledge Intensive Multi-
Agent Systems: KIMAS'03: Modeling, Exploration, and
Engineering, 46-51. IEEE.
Matson, E. and DeLoach, S.A., 2004. Enabling Intra-
Robotic Capabilities Adaptation Using an Organization-
Based Multiagent System. In Proceedings of the 2004
IEEE International Conference on Robotics and
Automation (ICRA 2004). IEEE.
Turner, R. M., and Turner, E. H., 2001. A Two-Level,
Protocol-Based Approach to Controlling Autonomous
Oceanographic Sampling Networks. IEEE Journal of
Oceanic Engineering, 26(4):654-666.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1240
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1240
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1240
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF0041004100410049002000530065007400740069006e006700730020002d0020006100730020006f00660020004d0061007900200032003000300034>
 >>
>> setdistillerparams
<<
 /HWResolution [1240 1240]
 /PageSize [612.000 792.000]
>> setpagedevice

