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Abstract

Using associative memories and sparse distributed rep-
resentations we have developed a system that can learn
to associate words with objects, properties like colors,
and actions. This system is used in a robotics context
to enable a robot to respond to spoken commands like
”bot show plum” or ”bot put apple to yellow cup”. The
scenario for this is a robot close to one or two tables on
which there are certain kinds of fruit and/or other simple
objects. We can demonstrate part of this scenario where
the task is to find certain fruits in a complex visual scene
according to spoken or typed commands. This involves
parsing and understanding of simple sentences and re-
lating the nouns to concrete objects sensed by the cam-
era and recognized by a neural network from the visual
input.

Introduction
When words referring to actions or visual scenes are pre-
sented to humans, distributed networks including areas of
the motor and visual systems of the cortex become active
(e.g., Pulverm̈uller, 1999). The brain correlates of words
and their referent actions and objects appear to be strongly
coupled neuron ensembles in defined cortical areas. The
theory of cell assemblies (Hebb, 1949; Braitenberg, 1978;
Palm, 1982, 1990, 1993) provides one of the most promis-
ing frameworks for modeling and understanding the brain in
terms of distributed neuronal activity. It is suggested that en-
tities of the outside world (and also internal states) are coded
in groups of neurons rather than in single (”grandmother”)
cells, and that a neuronal cell assembly is generated by Heb-
bian coincidence or correlation learning where the synaptic
connections are strengthened between co-activated neurons.
Models of neural (auto-) associative memory have been de-
veloped as abstract models for cell assemblies.

One of our long-term goals is to build a multimodal in-
ternal representation using cortical neuron maps, which will
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serve as a basis for the emergence of action semantics us-
ing mirror neurons (Rizzolattiet al., 1999). We have de-
veloped a model of several visual, language, planning, and
motor areas to enable a robot to understand and react to spo-
ken commands in basic scenarios of the project. The essen-
tial idea is that different cortical areas represent different as-
pects (and correspondingly different notions of similarity) of
the same entity (e.g., visual, auditory language, semantical,
syntactical, grasping related aspects of an apple) and that
the (mostly bidirectional) long-range cortico-cortical pro-
jections represent hetero-associative memories that translate
between these aspects or representations. This involves an-
choring symbols such as words in sensory and motor rep-
resentations where invariant association processes are re-
quired, for example recognizing a visually perceived object
independent of its position, color, or view direction. Since
word symbols usually occur in the context of other words
specifying its precise meaning in terms of action, goals, and
sensory information, anchoring words additionally requires
language understanding.

In this work we present a neurobiologically-motivated
model of language processing and visual object recognition
based on cell assemblies (Hebb, 1949; Braitenberg, 1978;
Palm, 1982, 1990). We have developed a system that can
learn to associate words with objects, properties like colors,
and actions. This system is used in a robotics context to en-
able a robot to respond to spoken commands like ”bot show
plum” or ”bot put apple to yellow cup”. The scenario for
this is a robot close to one or two tables on which there are
certain kinds of fruit and/or other simple objects. We can
demonstrate part of this scenario where the task is to find
certain fruits in a complex visual scene according to spoken
or typed commands. This involves parsing and understand-
ing of simple sentences and relating the nouns to concrete
objects sensed by the camera and recognized by a neural
network from the visual input.

In the first section we outline the concept of cell assem-
blies as a model for sequential associative processing in cor-
tical areas. Then we briefly describe our robot architec-
ture used for implementing simple scenarios of associating
words to objects, and detail the visual object recognition and
the language module. Finally, we summarize and discuss
our results.
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Figure 1: Comparison of a deterministic finite automate (DFA, left side) with a neural network (right side) implementing formal
language. Eachδ transitionδ(zi, ak) = zj corresponds to synaptic connections from neuronCi to Cj and from input neuron
Dk to Cj (see text for details).

Language and cell assemblies
A large part of our model is based on associative memory
and cell assemblies. Anchoring a symbol first requires un-
derstanding the context in which the symbol occurs. Thus,
one requirement for our system is language processing and
understanding.

Regular grammars, finite automates, and neural
assemblies
Noam Chomsky developed a hierarchy for grammar types
(Hopcroft & Ullman, 1969; Chomsky, 1957). For example,
a grammar is calledregular if the grammar can be expressed
by rules of the type

A → a

B → bC

where lower case letters areterminal symbols(i.e. elements
of an alphabetΣ), and upper case letters arevariables. Usu-
ally there is a starting variableS which can be expanded by
applying the rules. A sentences ∈ Σ∗ (which is a string
of alphabet symbols of arbitrary length) is calledvalid with
respect to the grammarif s can be derived fromS by apply-
ing grammatical rules and resolving all variables by terminal
symbols.

There are further grammar types in the Chomsky hierar-
chy which correspond to more complex rules, e.g. context-
free and context-sensitive grammars, but here we will focus
on regular grammars. It is easy to show that regular gram-
mars are equivalent to deterministic finite automata (DFA).
A DFA can be specified byM = (Z,Σ, δ, z0, E) whereZ =
{z0, z1, ..., zn} is the set of states,Σ is the alphabet,z0 ∈ Z
is the starting state,E ⊆ Z contains the terminal states, and
the functionδ : (Z,Σ) → Z defines the (deterministic) state
transitions. A sentences = s1s2...sn ∈ Σ∗ is valid with re-
spect to the grammar if iterated application ofδ onz0 and the
letters ofs transfers the automaton’s starting state to one of
the terminal states, i.e., ifδ(...δ(δ(z0, s1), s2), ..., sn) ∈ E
(cf. left side of Fig. 1).

In the following we show that DFAs are equivalent to
binary recurrent neural networks such as the model archi-
tecture described below (see Fig. 2). As an example, we
first specify a simpler model of recurrent binary neurons by
N = (C, I, W, V, c0), whereC = {C0, C1, ..., Cn} con-
tains the local cells of the network,D = {D1, D2, ..., Dm}
is the set of external input cells,W = (wij)n×n is a binary
matrix wherewij ∈ {0, 1} specifies the strength of the local
synaptic connection from neuronCi to Cj , and, similarly,
V = (vij)m×n specifies the synaptic connections from in-
put cellDi to cellCj . The temporal evolution of the network
can be described by

ci(t + 1) =
{

1, if
∑

j wjicj(t) +
∑

j vjidj(t) ≥ Θi

0, otherwise.

whereci(t) is the output state of neuronCi at timet, andΘi

is the threshold of cellCi. Figure 1 illustrates the architec-
ture of this simple network.

The network architecture can easily be adapted to simu-
late a DFA. We identify the alphabetΣ with the input neu-
rons, and the statesZ with the local cells, i.e. eachai ∈ Σ
corresponds to input cellDi, and, similarly, eachzi ∈ Z
corresponds to a local cellCi. Then we can specify the
connectivity as follows: Synapseswij and vkj are active
if and only if δ(zi, ak) = zj for the transition functionδ
of the DFA (see Figure 1). In order to decide if a sentence
s = ai(0)ai(1)ai(2)... is valid with respect to the language
we can specify the activation of the input units bydi(t) = 1
anddj = 0 for j 6= i(t). By choosing thresholdΘi = 2 for
choosing a starting activation where only cellc0 is active,
the network obviously simulates the DFA. That means, after
processing of the last sentence symbol, one of the neurons
corresponding to the end states of the DFA will be active if
and only ifs is valid.

The described neural network architecture for recogniz-
ing formal languages is quite simple and reflects perfectly
the structure of a DFA even on the level of single neurons.
However, such a network is biologically not very realistic



Figure 2: Cortical architecture involving several inter-connected cortical areas corresponding to auditory, grammar, visual, goal,
and motor processing. Additionally the model comprises evaluation fields and activation fields (see text).

since, for example, such an architecture is not robust against
partial destruction and it is not clear how such a delicate ar-
chitecture could be learned. The model becomes more real-
istic if we interpret the nodes in Fig. 1 not assingleneurons
but as groups of nearby neurons which are strongly intercon-
nected, i.e., local cell assemblies. This architecture has two
additional advantages: First, it enablesfault tolerancesince
incomplete input can be completed to the whole assembly.
Second, overlaps between different assemblies can be used
to express similarity, hierarchical, and other relations be-
tween represented entities. In the following subsection we
describe briefly a model of associative memory which al-
lows us to implement the assembly network analogously to
the network of single neurons in Fig. 1.

Cell assemblies and neural associative memory
We decided to useWillshaw associative memoryas a single
framework for the implementation of cell assemblies in cor-
tical areas (Willshaw, Buneman, & Longuet-Higgins, 1969;
Palm, 1980, 1982, 1991; Schwenker, Sommer, & Palm,
1996; Sommer & Palm, 1999). Acortical areaconsists ofn
binary neurons which are connected with each other by bi-
nary synapses. Acell assemblyor patternis a binary vector
of lengthn wherek one-entries in the vector correspond to
the neurons belonging to the assembly. Usuallyk is much
smaller thann. Assemblies are represented in the synap-
tic connectivity such that any two neurons of an assembly
are bidirectionally connected. Thus, an assembly consisting
of k neurons can be interpreted as ak-clique in the graph
corresponding to the binary matrixA of synaptic connec-
tions. This model class has several advantages over alterna-
tive models of associative memory such as the most popular
Hopfield model (Hopfield, 1982). For example, it better re-
flects the cortical reality where it is well known that activa-
tion is sparse (most neurons are silent most of the time), and
that any neuron can have only one type of synaptic connec-
tion (either excitatory or inhibitory).

Instead of classical one-step retrieval we used an im-
proved architecture based on spiking associative memory
(Knoblauch & Palm, 2001; Knoblauch, 2003). A cortical
area is modeled as a local population of n neurons which
receive input from other areas via Hebbian learned hetero-
associative connections. In each time step this external in-
put initiates pattern retrieval. The neurons receiving the
strongest external input will fire first, and all emitted spikes
are fed back immediately through the Hebbian learned auto-
associative connections resulting in activation of single as-
semblies. In comparison to the classical model, this model
has a number of additional advantages. For example, assem-
blies of different sizek can be stored, and input superposi-
tions of several assemblies can more easily be separated.

In the following section we present the architecture of our
cortical model which enables a robot to associate words to
visually recognized objects, and thereby anchoring symbolic
word information in sensory data. This model consists of a
large number of interconnected cortical areas, each of them
implemented by the described spike counter architecture.

Cell-assembly based model of cortical areas

We have designed a cortical model consisting of visual, tac-
tile, auditory, language, goal, and motor areas, and imple-
mented parts of the model on a robot. Each cortical area
is based on the spike counter architecture described in the
previous section. The model is simulated synchronously in
discrete time steps. That means, in each time stept each area
computes its output vectory(t) as a function of the output
vectors of connected areas at timet − 1. In addition to the
auto-associative internal connection within each area there
are also hetero-associative connections between theses areas
(see Fig. 4).



Figure 3: The visual object recognition system consists of three components: attention control, feature extraction and classi-
fication. The interconnection of the different components is depicted as well as the inputs and outputs of the miscellaneous
components. Starting with the camera image the flow of the classification process is shown.
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Figure 4: The language system consisting of 10 cortical areas (large boxes) and 5 thalamic activation fields (small black boxes).
Black arrows correspond to inter-areal connections, gray arrows within areas correspond to short-term memory.

Overall architecture

Figure 2 illustrates the overall architecture of our cortical
model. The model consists of auditory areas to represent
spoken or typed language, of grammar areas to interpret spo-
ken or typed sentences, visual areas to process visual input,
goal areas to represent action schemes, and motor areas to
represent motor output. Additionally, we have auxiliary ar-
eas or fields to activate and deactivate the cortical areas (ac-
tivation fields), to compare corresponding representations in
different areas (evaluation fields), and to implement atten-
tion. Each small white box corresponds to an associative
memory as described in the previous section. The visual
and auditory areas comprise additional neural networks for
processing of camera images and acoustic input. Currently,
we have implemented parts of the model on a robot. In the
following sections we describe visual object recognition and
language processing in more detail.

Visual object recognition

Figure 3 gives an overview of the object recognition system
which is currently used to classify fruits and hand gestures
(see Fayet al., 2004). The object recognition system con-
sists of three components: (1) Thevisual attention control
systemlocalizes the objects of interest based on an attention
control algorithm using top-down information from higher
cortical areas. (2) Thefeature extraction systemanalyzes a
clip of the camera image corresponding to the region of in-
terest. Scale and translation invariance is achieved by rescal-
ing the clipped window and using inherently invariant fea-
tures as input for the classification system. The extracted
features comprise local orientation and color information.
(3) Theclassification systemuses the extracted features as
input to a hierarchical neural network which is described in
the following in more detail:

The basic idea of using hierarchical neural networks is
the division of a complex classification task into several less
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Figure 5: System state of the language model after 30 simulation steps when processing the sentence “Bot put plum to green
apple”. (Processing of a word requires about 5-6 steps on average; during each simulation step the state of the associative
network is synchronously updated).

complex classification tasks by making coarse discrimina-
tion at higher levels of the hierarchy and refining the dis-
crimination with decreasing depth of the hierarchy. A hi-
erarchical neural network consists of several simple neural
networks that are arranged as a rooted directed acyclic graph
or a tree. Each node within the hierarchy represents a neural
network. A set of classes is assigned to each node where the
set of classes of one node is always a subset of the set of
classes of its predecessor node. Thus each node only has to
discriminate between a small number of subsets of classes
but not between various classes.

In our approach, the hierarchy is generated by unsuper-
vised k-means clustering (Hertz, Krogh, & Palmer, 1991).
The hierarchy emerges from the successive partition of class
sets into disjoint subsets. Beginning with the root node k-
means clustering is performed using data points of all classes
assigned to the current node. The partitioning of the classes
into subclasses is done by determining for each class to
which k-means prototype the majority of data points be-
longing to this class is assigned when presenting them to
the trained k-means network. Each prototype represents a
successor node. This procedure is recursively applied until
no further partitioning is possible. Then end nodes are gen-
erated that do not discriminate between subsets of classes
any longer but between single classes. As on each level
there is always a division into disjoint subsets of the classes
the resulting hierarchy is a tree. Once the hierarchy is es-
tablished, RBF (radial basis function) networks are used as
classifiers. They are trained with a three phase learning al-
gorithm (Schwenker, Kestler, & Palm, 2001).

For anchoring the feature-based sensory data in symbolic
word representations we remain to design a binary code for
each entity in order to express the hierarchy into the domain

of cell assemblies. This code should preserve similarity of
the entities as expressed by the hierarchy. A straight-forward
approach is to use binary vectors of length corresponding to
the total number of neurons in all RBF networks. Then in
a representation of a camera image those components are
activated that correspond to thel strongest activated RBF
cells on each level of the hierarchy. This results in sparse
and translation invariant visual representations of objects.

Language processing

Figure 4 shows 15 areas of our model for cortical language
processing. Each of the areas is modeled as a spiking asso-
ciative memory of 100 neurons. Similar as described for
visual object recognition, we defined for each area a pri-
ori a set of binary patterns constituting the neural assem-
blies stored auto-associatively in the local synaptic connec-
tions. The model can roughly be divided into three parts.
(1) Primary cortical auditory areas A1,A2, and A3: First,
auditory input is represented in area A1 by primary linguis-
tic features (such as phonemes), and subsequently classified
with respect to function (area A2) and content (area A3).
(2) Grammatical areas A4, A5-S, A5-O1-a, A5-O1, A5-O2-
a, and A5-O2: Area A4 contains information about previ-
ously learned sentence structures, for example that a sen-
tence starts with the subject followed by a predicate and cor-
responds roughly to the DFA network illustrated in Fig. 1.
In addition to the auto-associative connections, area A4 has
also adelayedfeedback-connection where the state transi-
tions are stored hetero-associatively corresponding to matrix
W in Fig. 1. The other grammar areas contain representa-
tions of the different sentence constituents such as subject
(A5-S), predicate (A5-P), or object (A5-O1,O1-a,O2,O2-a).
(4) Activation fields af-A4, af-A5-S, af-A5-O1, and af-A5-



Figure 6: System state of the goal/motor module after 24 further simulation steps when performing the command “put plum
(to) green apple!”. The robot is about to finish the subgoal of seeking the plum.

O2: The activation fields are relatively primitive areas that
are connected to the corresponding grammar areas. They
serve to activate or deactivate the grammar areas in a rather
unspecific way. Although establishing a concrete relation to
real cortical language areas of the brain is beyond the scope
of this work (e.g., Knoblauch & Palm, 2003; Pulvermüller,
2003), we suggest that areas A1,A2,A3 can roughly be in-
terpreted as parts of Wernicke’s area, and area A4 as a part
of Broca’s area. The complex of the grammatical role areas
A5 might be interpreted as parts of Broca’s or Wernicke’s
area, and the activation fields as thalamic nuclei.

Figure 5 shows the result of processing the sentence “bot
put plum to green apple” which means that the robot should
put the plum to the location of the green apple. The sentence
has been segmented into subject (A5-S), predicate (A5-P),
and the two objects (A5-O1/O2), and this information is
passed on to the goal areas where appropriate actions are
planned, such as first seeking and moving to the plum, then
picking the plum, seeking the apple, and moving to the ap-
ple, and then dropping the plum.

Integration of visual and language representations

Figure 6 illustrates the state of the cortical motor and goal ar-
eas when performing the command associated with the per-
ceived sentence “Bot put plum (to) green apple” (cf. Fig. 5).
The language representation has been interpreted as com-
mand and routed to the goal areas, where in area G1 a goal
sequence assembly is activated (with a similar organization
as grammatical area A4). In particular, object information
has been routed to area G3 where connections to the atten-
tion system initiates searching for the plum. This means
that the attention control system that searches for regions
of interest uses easily recognizable plum-features, e.g., blue
blobs. The search goes on until the classification system has
recognized a plum in the current region of interest. This will
lead the visual system to extract information about the plum

and its position from area V1 to areas V2 and V3. Next
E3 records the result of an associative matching between V2
and G3. Thereby it “realizes” that the “visual plum” is in-
deed the desired object (“the symbolic plum”). After rec-
ognizing that V2 contains the desired object, the sequence
assembly in G1 will switch to the next subgoal, from ’seek’
to ’pick’.

Discussion

We have presented a cell assembly based model for visual
object recognition and cortical language processing that can
be used for associating words with objects, properties like
colors, and actions. This system is used in a robotics con-
text to enable a robot to respond to spoken commands like
”bot put plum to green apple”. The model shows how sen-
sory data from different modalities (e.g., vision and speech)
can be integrated to allow performance of adequate actions.
This also illustrates how symbol grounding could be imple-
mented in the brain involving association of symbolic repre-
sentations to invariant object representations (see Fig. 6).

Although we have currently stored only a limited number
of objects and sentence types, it is well known for our model
of associative memory that the number of storable items
scales with(n/ log n)2 for n neurons (Willshaw, Buneman,
& Longuet-Higgins, 1969; Palm, 1980). However, this is
true only if the representations are sparse and distributed
which is a design principle of our model. As any finite sys-
tem, our language model can implement only regular lan-
guages, whereas human languages seem to involve context-
sensitive grammars. On the other hand, also humans can-
not “recognize” formally correct sentences beyond a certain
level of complexity suggesting that in practical speech we
use language rather “regularly”.
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