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Abstract

A framework for autonomous (human-like) learning of
object, event and protocol models from audio-visual
data, for use by an artificial “cognitive agent”, is pre-
sented. This is motivated by the aim of creating a syn-
thetic agent that can observe a scene containing un-
known objects and agents, operating under unknown
spatio-temporal motion protocols, and learn models of
these objects and protocols sufficient to act in accor-
dance with the implicit protocols presented to it. The
framework supports low-level (continuous) statistical
learning methods, for object learning, and higher-level
(symbolic) learning for sequences of events represent-
ing implicit temporal protocols (analogous to grammar
learning). Symbolic learning is performed using the
“Progol” Inductive Logic Programming (ILP) system to
generalise a symbolic data set, formed using the lower
level (continuous) methods. The subsumption learning
approach employed by the ILP system allows for gener-
alisations of concepts such as equality, transitivity and
symmetry, not easily generalised using standard statis-
tical techniques, and for the automatic selection of rele-
vant configural and temporal information. The system is
potentially applicable to a wide range of domains, and
is demonstrated in multiple simple game playing sce-
narios, in which the agent first observes a human play-
ing a game (including vocal facial expression), and then
attempts game playing based on the low level (contin-
uous) and high level (symbolic) generalisations it has
formulated.

Introduction
The perceived world may be thought of as existing on two
levels; the sensory level (in which meaning must be ex-
tracted from patterns in continuous observations), and the
conceptual level (in which the relationships between various
discrete concepts are represented and evaluated). We sug-
gest that making the link between these two levels is key to
the development of artificial cognitive systems that can ex-
hibit human-like qualities of perception, learning and inter-
action. This is essentially the classic AI problem of “Sym-
bol Grounding” (Harnad 1990). The ultimate aim of our
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work is truly autonomous learning of both continuous mod-
els, representing object properties, and symbolic (grammar
like) models of temporal events, defining the implicit tempo-
ral protocols present in many structured visual scenes. Much
work has been carried out in the separate areas of pattern
recognition and model building in continuous data (see for
example (Duda, Hart, & Stork 2000)) and symbolic learning
in various domains such as robotics/navigation (Bryant et
al. 1999), bioinformatics (Sternberg et al. 1994) and lan-
guage (Kazakov & Dobnik 2003). Several systems have
been presented that link low-level video analysis systems
with high-level (symbolic) event analysis in an end-to-end
system, such as the work of Siskind (Siskind 2000) that uses
a hand-crafted symbolic model of ‘Pickup’ and ‘Putdown’
events. This is extended in (Fern, Givan, & Siskind 2002)
to include a supervised symbolic event learning module, in
which examples of particular event types are presented to the
learner. Moore and Essa (Moore & Essa 2002) present a sys-
tem for recognising temporal events from video of the card
game ‘blackjack’. Multiple low level continuous temporal
models (Hidden Markov Models), and object models (tem-
plates) are learned using a supervised procedure, and activ-
ity is recognised using a hand defined Stochastic Context-
Free Grammar. A similar approach is used by Ivanov and
Bobick (Ivanov & Bobick 2000) in gesture recognition and
surveillance scenarios. However, none of these systems
is capable of autonomous (unsupervised) learning of both
continuous patterns and symbolic concepts. The motiva-
tion behind our research is to learn both low level contin-
uous object models and high-level symbolic (grammar like)
models from data in an arbitrary scenario with no human
interaction. Systems capable of unsupervised learning of
both continuous models of image patches and grammar-like
(spatial) relations between image patches have been pre-
sented by the static image analysis community (e.g. (Ak-
soy et al. 2003)). These involve the use of general (non-
scene specific) background knowledge of the type of re-
lations that may be important (e.g near, far, leftof etc.).
It is our aim to develop conceptually similar approaches
for the analysis of dynamic video data. These would be
similar to the grammars used in (Moore & Essa 2002;
Ivanov & Bobick 2000), which are currently manually de-
fined.

We separate learning into two parts: i) Low level learning



of patterns in continuous input streams, and ii) High level
(symbolic) learning of spatial and temporal concept relation-
ships. This separation of low level and high level processing
is motivated by our understanding of the human brain. The
visual cortex, and associated parts of the brain, are known
to provide initial pre-processing of continuous visual input
(Petkov 1995). The structure of this pre-processing devel-
ops as a child grows based on experience. This is very much
analogous to unsupervised / self-organising pattern recogni-
tion methods. There is also evidence, from the (possible)
existence of mirror neurons (Stamenov & Gallese 2002),
that perception of simple temporal events (e.g. smiling) and
the corresponding action are associated at a very low (sub-
conscious) level of brain processing, far removed from high
level conceptual reasoning and control. In our framework
this relationship between simple (vocal) action perception
and repetition is explicit. How much this relationship is in-
nate or learned in humans is unclear. However, in our frame-
work the important thing is that this relationship exists at the
low level. Currently this relationship is hard coded, however
it is possible to learn these type of relationships. In the work
of (Fitzpatrick et al. 2003), the link between visual percep-
tion of action and generation of the same action is learned
for a humanoid robot performing simple tasks. Initially the
action is performed by a human. The robot subsequently
learns to mimic this action by experimentation. It can then
copy an action observed at a later time. Such learning would
be a valuable addition to our system, but is beyond the scope
of this paper.

We propose a learning framework that consists of three
elements; an attention mechanism, unsupervised low-level
(continuous) object learning, and high-level (symbolic)
learning of temporal protocols. Egocentric learning is car-
ried out, meaning the models built are based on linking the
behaviour of an agent (e.g. a vocal utterance) to the ob-
served scenario, rather than being holistic models of the
complete scenario. This allows the models to easily drive
the behaviour of a synthetic agent that can interact with the
real world in a near-natural way. Multiple derived features
for each object identified by the attention mechanism are
grouped into semantic groups representing real-world cat-
egories such as position, texture and colour. Clusters are
formed for each semantic feature group separately using a
clustering algorithm. Classifying models are then built us-
ing cluster membership as supervision. These models al-
low novel objects (identified by the attention mechanism)
to be assigned a class label for each semantic group (tex-
ture, position, etc.). These symbolic labels are augmented
by an annotation of the corresponding vocal utterances of
the player(s), and used as input for symbolic learning (gen-
eralisation) based on the Progol Inductive Logic Program-
ming system (Muggleton 1995). The output of the contin-
uous classification methods can be presented in such a way
that instances of concepts such as equality, transitivity, sym-
metry etc. may be generalised, in addition to generalisations
about the protocols of temporal change. The advantage of
Progol’s learning approach is that learning can be performed
based on noisy (partially erroneous) data, using positive ex-
amples only.

Our prototype implementation has been applied to the
learning of the objects, and protocols involved in various
simple games including a version of “Snap”, played with
dice, and a version of the game “Paper, Scissors, Stone”
played with cards. Typical visual input is shown in Figure
1. It is a common argument (Hargreaves-Heap & Varoufakis
1995) that many real-world social interaction scenarios may
be modelled as games, which suggests our system is appli-
cable beyond this domain. We would make this argument.

Figure 1: Typical input data

Learning framework
Our framework divides learning into two parts; low-level
(continuous) object learning, and high-level (symbolic) pro-
tocol and relationship learning. To facilitate autonomous
(fully unsupervised) learning, a spatio-temporal attention
mechanism is required to determine ‘where’ and ‘when’
significant object occurrences and interactions take place
within the input video stream of the scenario to be learned
from. The object models produced during low-level learning
are used to produce a symbolic stream for use in the high-
level learning. This symbolic stream is augmented with the
vocal utterances issued by the player(s) participating in the
game. These vocal utterances may either take the form of
passive reactions (e.g. “snap”), or active statements of in-
tent (e.g. “pickup-lowest”). The latter generates an implicit
link between the vocal utterance and the subsequent action
in the data stream. Our high-level system can learn this link,
and thus an agent based on the learned model can gener-
ate these utterances as a command to actively participate in
its environment (as currently our framework is implemented
on a software only platform, with no robotic component).
It should be noted that this approach relies on a direct link
between the perception of a given vocal utterance and the
generation of this utterance by the agent. In the current im-
plementation of our framework the vocal utterance is “per-
ceived” by the agent via hand annotation of facial video se-
quences, and thus the link between the agents perception
and generation of an action is trivial. Automation of this



process could be performed using standard speech recogni-
tion software, with the link between action perception and
action generation (generation of speech using a standard
speech generator) being made via a pre-defined vocabulary
of words. Our eventual aim is to learn our own vocabulary
of utterances autonomously from the audio-visual face data.
Such a system would have to make its own link between ac-
tion perception and action generation. This is the subject
of current research, but is beyond the scope of this paper.
Figure 2 provides an overview of our learning framework.

Figure 2: Overview of the learning framework

It should be noted that conceptually the framework does
not limit the perception and generation of action to vocal ut-
terances; however a link is required between the perception
and generation of individual agent actions for learned mod-
els to be used in an interactive agent. Vocal utterances are
a good example of an action that can be perceived and gen-
erated without specialised hardware. It was for this reason
they were chosen for our example implementation. The re-
mainder of this section will be divided into sub-sections on
attention, continuous object model learning, and higher level
symbolic learning using Inductive Logic Programming.

Spatio-temporal attention
Video streams of dynamic scenes contain large quantities of
data, much of which is irrelevant to scene learning and in-
terpretation. An attention mechanism is required to identify
‘interesting’ parts of the stream, in terms of spatial location
(‘where’) and temporal location (‘when’). For autonomous
learning, models or heuristics are required to determine what
is of interest, and what is not. Such models could be based
on motion, novelty, high (or low) degree of spatial varia-
tion, or a number of other factors. In our framework it is
merely important that an attention mechanism exists to iden-
tify interesting areas of space and time. For this reason we
have chosen to use motion in our example implementation,
as this is straightforward to work with. We make no claim
that attention based on motion only is suitable in all scenar-
ios, however it is appropriate in our chosen domains. It is
highly likely that no single factor could provide a generic at-

tention mechanism for learning and interpretation in all sce-
narios. In the view of the authors it is much more likely that
multiple attention mechanisms would be required for fully
generic learning.

The spatial aspect of our attention mechanism is based
around a generic blob tracker (Magee 2004) that works on
the principle of multi-modal (Gaussian mixture) background
modelling, and foreground pixel grouping. This identifies
the centroid location, bounding box and pixel segmentation
of any separable moving objects in the scene in each frame
of the video sequence. If multiple objects are non-separable
from the point of view of the camera they are tracked as a
single object, until such time as they are separable. This
is not a significant drawback in the example scenarios we
present in this paper (and many others), however there are
situations where a more complex spatial attention method
would be required.

The temporal aspect of our attention mechanism identi-
fies key-frames where there is qualitatively zero motion for
a number of frames (typically 3), which are preceded by a
number of frames (typically 3) containing significant mo-
tion. Motion is defined as a change in any objects’ cen-
troid or bounding box above a threshold value (typically 5
pixels, determined from observed tracker positional noise).
This method for temporal attention is based on the assump-
tion that all objects remain motionless following a change
in state (and that the process of change is not in itself im-
portant). This is valid for the example scenarios we present
within this paper, however we are actively researching more
complex temporal attention mechanisms that do not make
these assumptions.

Continuous object learning and classification
In autonomous learning it is not in general possible to know
a-priori what types of visual (and other) object properties
are important in determining object context within a dy-
namic scene. For this reason the use of multiple (in fact
large numbers of) features such as colour, texture, shape,
position etc. is proposed. We group sets of features together
into manually defined semantic groups representing texture,
position etc.1 In this way (initial) feature selection within
these semantic groups is performed during continuous learn-
ing, and feature selection and context identification between
the groups is performed during the symbolic learning stage.

For each semantic group a set of example feature vectors
is partitioned into classes using a graph partitioning method
(an extension of (Strehl & Ghosh 2002)), which also acts
as a feature selection method within the semantic group
(see (Magee, Hogg, & Cohn 2003) for details). The num-
ber of clusters is chosen automatically based on a cluster
compactness heuristic. In other work (Santos, Magee, &
Cohn 2004) the number of clusters is deliberately selected
as overly large and cluster equivalence is determined dur-
ing symbolic learning. This will be our preferred approach

1In this paper we use a 96D rotationally invariant texture de-
scription vector (based on the statistics of banks of Gabor wavelets
and other related convolution based operations), and a 2D position
vector only.



in future work, as temporal context (in additional to spatial
appearance information) is taken into account.

Once a set of examples is partitioned, the partitions
may be used as supervision for a conventional supervised
statistical learning algorithm such as a Multi-layer per-
ceptron, Radial Basis Function or Vector Quantisation
based nearest neighbour classifier (we use the latter in our
implementation). This allows for the construction of models
that encapsulate the information from the clustering in such
a way that they can be easily and efficiently applied to
novel data. These models are used to generate training data
suitable for symbolic learning. For each object identified by
the attention mechanism, a property is associated with it for
each semantic group. For example:

state([obj0,obj1],t1).
property(obj0,tex0).
property(obj1,tex1).
property(obj0,pos1).
property(obj1,pos0).

indicates that there are two objects present at time t1.
The first belongs to texture class tex0 and position class
pos1, and the second to texture class tex1 and position
class pos0. These symbolic streams are a good represen-
tation of the input stream, however they are not noise free.
A fuller explanation of the symbolic representation used is
given in section .

Symbolic learning using Inductive Logic
Programming
The previous sections described how models are learned
that can convert continuous sensory input into a symbolic
data stream in an unsupervised way. We also wish to learn
models of the spatio-temporal structure of the resultant
(possibly noisy) symbolic streams obtained. I.e. we wish to
learn a model of any implicit temporal protocols presented
by the scene. (This is directly analogous to learning the
grammar of a language by example.) Structure in such
streams differs greatly from the structure learned by our
lower level processes, in that the data consists of variable
numbers of objects (and thus a variable length list of state
descriptions is available). In addition, concepts such as
equality, symmetry and transitivity exist in such streams.
Purely statistical learning methods, such as those used for
lower level learning, are not well suited to learning such
concepts. We employ a subsumption data generalisation
approach, implemented as the Progol Inductive Logic
Programming system (Muggleton 1995). Progol allows
a set of noisy positive examples to be generalised by
inductively subsuming the data representations by more
general data representations/rules (with the aim of reducing
representational complexity, without over-generalising).
Crucial in any inductive learning approach is the way
in which data is represented. Progol aims to reduce
representational complexity using a search procedure. In
realistic scenarios a search of all possible data represen-
tations is not possible, and Progol must be guided by
rules that define the general form of the solution, and a

suitable presentation of the data to be generalised. We
represent the data in a scenario independent/neutral form
using the generally applicable symbolic concepts of i)
time points (time()), ii) object instances (object()),
iii) object properties (proptype()), iv) actions/events
(actiontype(),actionparametertype()),
and v) relations between i)-iv). Each object instance
is unique in space and time2. Relations used in this
work are: temporal succession (successor(t2,t1),
indicating t2 directly follows t1), object-time rela-
tions (state([obj0,obj1],t1), indicating obj0
and obj1 occur at time t1), action-time relations
(action(act1,[param1],t1), indicating action
act1, with parameter param1 occurred at time t1),
and object-property relations (property(obj0,p0),
indicating obj0 has property p0). It is also possible to
use object-object relations (e.g. rel(leftof, obj1,
obj2), indicating object obj1 is to the left of object
obj2), however these are not used in this paper. A short
example of this representation is given below:

proptype(tex2).
proptype(tex3).
proptype(pos1).
proptype(pos2).
actiontype(utterance).
actionparametertype(roll).
actionparametertype(pickuplowest).

time(t10).
object(obj0).
state([obj0],t10).
property(obj0,tex3).
property(obj0,pos1).
action(utterance,[roll],t10).

time(t20).
successor(t20,t10).
object(obj1).
object(obj2).
state([obj2,obj3],t20).
property(obj1,tex3).
property(obj1,pos1).
property(obj2,tex2).
property(obj2,pos2).
action(utterance,[pickuplowest],t20).

The final element required for Progol to generalise the
data is a set of instructions (known as ‘mode declarations’)
on the general form of the data generalisation required.
These mode declarations separately constrain the sorts
of predicates in the head and body of generalisations
made (and how these predicates may be combined). As
we wish to use the generalisation to generate facial be-

2In this paper the fact that two object instances at different times
are the same object is not explicitly represented. This is not neces-
sary in many learning scenarios. However, it is possible to encode
this information using an object-object relation.



haviour it is desirable to force the generalisation to contain
action(utterance,...) in the head of all rules,
such that generalisations will be of the form:

action(utterance,...) :- ....

In this way the resultant generalisation can be fed (with
very minor, automatable, modification) into a Prolog inter-
preter as part of a program for an interactive cognitive agent
(see later). We currently put little restriction on the form of
the bodies of the rules.

The remainder of this section describes various exper-
iments carried out using variations on the approach de-
scribed. Appropriate vocal utterances are learned by obser-
vation of examples of the games.

Experiment 1 We define a simple, single player, two dice
game based on the card game snap. The two dice are rolled
one at a time. If the two dice show the same face the player
shouts “snap” and utters the instruction “pickup-both”. Both
dice are picked up. Otherwise the player utters “pickup-
lowest”, and the dice showing the lowest value face is picked
up. Before rolling the player utters the instruction “roll-
both” or “roll-one”, depending on if there is a dice already
on the table. This is illustrated in Figure 3.

Figure 3: Example of the game used in Exp. 1

Experiment 2 In this experiment the utterances relating to
the game in experiment 1 are made more specific by stating
the face of significance as a second utterance (e.g. “pickup
three” or “roll six”). Vocal utterances are represented as a
one or two parameter utterance (depending on the number
of words in the utterance), e.g.
action(utterance,[pickup,one],tN).
action(utterance,[snap],tN).
An example of this game is illustrated in Figure 4.

Figure 4: Example of the game used in Exp. 2

Experiment 3 An alternative game is used based on
the game ‘Paper, Scissors, Stone’, in which two players
simultaneously select one of these objects. Paper beats
(wraps) stone, scissors beats (cuts) paper, and stone beats

(blunts) scissors. Our version of this game is played with
picture cards, rather than hand gestures for simplicity.
Utterances (‘I win’, ‘draw’ and ‘go’) are represented as
a different action for each player. Learning is performed
for one player only, and fixed absolute playing positions
provide the link between players and cards. E.g. output
rules are of the form:
action(player1 utterance,[...],tN) :-
.....
Figure 5 illustrates an example of this game.

Figure 5: Example of the game used in Exp. 3

Agent behaviour generation
The rules generated by the ILP learning, and the object mod-
els, are used to drive an interactive cognitive agent that can
participate in its environment. With a small amount of ad-
ditional Prolog code this program has been made to take its
input from the lower level systems using network sockets,
and output its results (via a socket) to a face utterance syn-
thesis module (which simply replays a processed video of
the appropriate response). Figure 6 illustrates the operation
of the interactive cognitive agent with the objects in the real
world scene. A human participant is required to follow the
instructions uttered by the synthetic agent (as there is cur-
rently no robotic element to our system).

Figure 6: Using learned continuous models and symbolic
rules to drive a cognitive agent

Currently the rules produced by Progol (ordered from



most specific to most general if necessary3) directly form
part of a prolog program. We impose a limit of a single
action generation per timestep in the (automatic) formula-
tion of this program. We are working on an rule interpreter
which can handle a wider range of scenarios (multiple si-
multaneous actions, non-deterministic/stochastic outcomes
etc.), however this is not necessary for the scenarios pre-
sented in this paper.

Evaluation and results
Several minutes of footage of each game described previ-
ously (experiments 1-3) was recorded for training purposes,
with separate sequences recorded for evaluation purposes.
Training sequences were hand annotated with the actual vo-
cal utterances made. Table 1 gives training and test set sizes.

# utterances # utterances
(Training Set) (Test Set)

exp 1a/1b 61 35
exp 2a/2b 223 41
exp 3a/3b 176 105

Table 1: Training and test set sizes

Continuous object, and symbolic protocol models were
learned from each training sequence and used to drive an ar-
tificial cognitive agent. The performance of the agent was
evaluated using the (unseen) evaluation sequences. Each ex-
periment was repeated twice, once with a perfect annota-
tion of the vocal utterances for the training sequence (exper-
iment Na), and once with 10% of the utterances randomly
replaced with erroneous utterances to simulate error in a
speech recognition system (experiment Nb). The number
of correct and incorrect utterances generated for the eval-
uation sequences was recorded for each experiment/model
with respect to the actual utterance made (table 2, column
5), and with respect to the utterance that would be expected
based on the (possibly erroneous) low-level classification of
objects (table 2, column 6). These results are presented in
Table 2, with the (intermediate) low-level classification per-
formance (column 4) included for reference.

Although the low-level object classification models are
imperfect, a perfect rule-set is generated for experiment 1
when object noise, and when object noise plus utterance
noise, is present in the training data. A perfect rule-set is
generated for experiment 3 with object noise, however some
rules are lost with the introduction of utterance noise. Ex-
periment 2 is more complex, due to the increased utterance
possibilities, and so requires more rules than the other two.
Some rules are missing in both parts of this experiment, al-
though performance is still reasonable. However, an accu-
rate rule-set for experiment 2 was obtained using noise-free
(synthetic) training data, indicating that it is noise in the

3In the case that the body of one rule is a specialisation of an-
other, the most general rule is moved below the most specific one in
the ordering (if not the case already). This may be determined au-
tomatically using a subsumption check on each pair of rule bodies.
Otherwise rule ordering is as output by Progol.

Exp. frames classified correct utterances correct utterances
completely correctly compared to actual compared to

classification
1a 29 (83%) 32 (91%) 35 (100%)
1b 29 (83%) 32 (91%) 35 (100%)
2a 38 (93%) 31 (76%) 32 (78%)
2b 38 (93%) 31 (76%) 32 (78%)
3a 105 (100%) 105 (100%) 105 (100%)
3b 105(100%) 71 (68%) 71 (68%)
Note: Experiment Na: Object identity noise,
Experiment Nb: Object identity + Vocal Utterance noise

Table 2: Evaluation results

symbolic data that results in the loss of rules (rather than
the structure of the problem). These results demonstrate the
graceful degradation of the ILP generalisation with noise.
Less general rules are lost, rather than the entire process
failing, when noise is introduced. This is essential for fu-
ture work involving incremental and iterative learning. It is
worth examining the rule-set generated by experiment 1 to
illustrate the generalisation of the training data performed
(Figure 7).

action(utterance,[rollboth],A) :- state([],A).

action(utterance,[rollone],A) :- state([B],A).

action(utterance,[pickuplowest],A) :- state([B,C],A).

action(utterance,[snap],A) :- state([B,C],A),

property(B,D), property(C,D).

Figure 7: Progol output for experiment 1a

It can be seen from the snap rule in Figure 7 that the
concept of property equality has been used in the generali-
sation of the training data. The rule-set perfectly and con-
cisely represents the protocol of this game, despite errors in
the classification of objects in the training data. This may
be partially due to most of the erroneous classifications fit-
ting the generalisation, due to the nature of the utterances. It
should be noted that the ‘snap’ rule is a specialisation of the
‘pickuplowest’ rule. Currently rules are ordered from most
specific to most general for interpretation by the cognitive
agent, allowing only the most specific rule to be activated.
This is fine for the scenarios presented in this paper; however
work has commenced on a stochastic rule-interpreter that se-
lects overlapping rules based on statistics from the training
data. This will enable the modelling of more complex sit-
uations and non-deterministic outcomes. Figure 8 gives the
generalisation from experiment 1b.

It is interesting to note that the generalisation given in Fig-
ure 8 is identical to the generalisation in Figure 7, apart from
the addition of terms relating to (some of) the erroneous in-
puts4. These extra terms have no effect on the operation of a
cognitive agent because, as grounded-assertions, they refer
to specific times (which by definition will never recur).

4Progol retains these terms so that the generalisation represents
the entire data set



action(utterance,[rollboth],t600).

action(utterance,[rollone],t663).

action(utterance,[rollboth],t686).

action(utterance,[pickuplowest],t902).

action(utterance,[pickuplowest],t1072).

action(utterance,[rollboth],t1089).

action(utterance,[rollboth],A) :- state([],A).

action(utterance,[rollone],A) :- state([B],A).

action(utterance,[pickuplowest],A) :- state([B,C],A).

action(utterance,[snap],A) :- state([B,C],A),

property(B,D), property(C,D).

Figure 8: Progol output for experiment 1b

Discussion, current and future work

A framework for the autonomous learning of both low level
(continuous) and high level (symbolic) models of objects
and activity has been presented. It has been demonstrated
that a set of object and temporal protocol models can be
learned autonomously, that may be used to drive a cogni-
tive agent that can interact in a natural (human-like) way
with the real world. The application of this two stage ap-
proach to learning means the symbolic representation used
is explicitly grounded to the (visual) sensor data. Although
our synthetic agent has no robotic capability, it can issue vo-
cal instructions and participate in simple games. The com-
bination of low-level statistical object models with higher
level symbolic models has been shown to be a very power-
ful paradigm. It allows the learning of qualitative concepts
and relations such as equality, symmetry and transitivity as
well as relative spatial and temporal concepts.

While what is presented in this paper represents a sub-
stantial body of work, we are still a long way from where
we want to be in terms of developing an agent with true
human-like learning and interaction capabilities. Our sys-
tem currently views the world it perceives as a whole, and
cannot compartmentalise different experiences into different
categories. As an example, if the training data contained two
(or more) different games the system would try to generalise
them as a single theory. While this will eliminate a lot of
potential redundancy, this may not be the best, or most effi-
cient, way of representing this information. We would like
to investigate learning in multiple scenarios, while allow-
ing some generalisation between different scenarios (i.e. an
idea of shared concepts between scenarios). We wish to use
the non-generalised training instances from Progol output to
feedback to, and improve, the lower level object models. In
many scenarios this is essential as some objects may not be
easily discriminated using spatial appearance alone. In such
cases temporal context is essential. The current system is
based around single-shot ‘observe and generalise’ learning.
In order for temporal information to be usefully included,
learning must be extended to be iterative or incremental in
nature. This is also an important goal if learning is to be
more human-like (human learning continues throughout our
entire life). We would like to make this natural extension
to our system in due course. An advantage of incremental

learning is that there is an existing model during (much of)
the learning phase. This allows learning by experimentation,
or “closed-loop” learning. This would require the formula-
tion of a learning goal or motivation (e.g. the desire to map
an environment in robotics (Bryant et al. 1999)). Our cur-
rent system has no such explicit motivation. However, the
implicit motivation of accurate mimicry could be made ex-
plicit. This is an interesting avenue for research.

The practicalities of the ILP approach mean that the pre-
sentation of the symbolic data, and the output specification
rules, determine the types of generalisations made. Infor-
mal experiments have shown us that different rules and in-
put formulations may be required to learn different types of
generalisations. How different output rule sets are combined
in the context of a cognitive agent is a subject of current
research (Santos, Magee, & Cohn 2004). We believe such
combination of multiple generalisations is essential if learn-
ing in unconstrained scenarios is to be possible. In addition,
we are are currently building a rule-interpreter that deals
with non-deterministic/stochastic scenarios (where a given
input results in one of a range of actions) and overlapping
rule sets (where one rule takes precedence over another, as
in experiment 1). This is based on recording statistics from
the training set.

We plan to extend our system to include more object fea-
ture types (colour, spatial relationships, global and local
shape etc.). It should be possible for the ILP system to learn
which object features are relevant in a given scenario.

Conclusion

We have developed a framework that combines low level
(continuous) learning of object and gesture models with high
level (symbolic) learning of temporal protocols and concep-
tual relationships using Inductive Logic Programming. We
believe this is the first application of this form of symbolic
learning to visual protocol learning. Our prototype system
has been applied to learning of the multiple elements of var-
ious simple games. The models learned are used to drive
a synthetic cognitive agent that can interact naturally with
the world. Currently, once learning is performed, the cogni-
tive agent acts in a fully autonomous way. We aim to make
our system fully autonomous in the near future, and are de-
veloping an audio-visual facial gesture learning system to
remove the requirement for manual vocal utterance anno-
tation. We have shown the combination of continuous and
symbolic models to be a powerful paradigm which will open
up many further avenues of research over the coming years.
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