
Anchoring Symbols by Mapping Sequences of Distance
Measurements: Experimental Results

Erik Hoertnagl, Patrick M. Poelz, Erich Prem

Austrian Research Institute for Artificial Intelligence
Freyung 6/6, 1010 Wien, Austria

{erik, patrick, erich}@oefai.at

Abstract

In this paper we present an approach to symbol anchoring
that is based on mapping sequences of distance
measurements from simple sensors. The sensory space of
the mobile robot is pre-structured according to its
experiences when it first moves around in unexplored
environments. Such pre-structuring depends not only on
environmental features, but also on the type of behaviour
the robot exhibits. Object representations correspond to
streams of sensory signals that are mapped onto this sensory
space and classified by a sequence detection mechanism.
We report on novel experimental results using this
technique where we compare variants of the approach and
other more simple methods. We present data from
experiments with varied parameters and input data types
such as motor and distance sensor information. In our real
mobile robot scenario the robot successfully discriminates a
number of objects that can then be anchored in a second
step using input from a human supervisor.

Introduction

Robot perception of the world

The world according to a mobile robot which moves
around in pursuit of its tasks looks very different from the
human observer’s perception of the robot. While humans
quickly recognize objects regardless from viewing angle
and position and are able to correctly label such objects
with names, all this is very hard for a robot. This is
particularly true in cases where the robot is only equipped
with simple distance sensors rather than a camera. How-
ever, making such a robot recognize and label objects
which it encounters is an important goal, for example as a
basis for planning components or simply for
communication with the robot.
A considerable part of correctly connecting sensor streams
and symbolic names for perceived objects is to determine
which of the many object qualities are significant. In

humans this process of learning about the features of the
environment based on the sensory-motor inputs takes place
in the first 5 years and even earlier in the womb. In this
time span the human brain is highly dynamic and
mouldable. Each sensory impression and each thought
leaves its mark in the nervous system.

However, for robots it is not a trivial task to extract the
important qualities of an object. Mobile robots today are
often only equipped with relatively simple sensory systems
such as infrared or sonar distance measurements and a few
propriosensors e.g. for odometry. Recognition of objects
for such a robot moving around in its environment brings
up several problems including comparing multivariate time
series of sensory experiences or which sensors to focus
attention on. In the past, algorithms for multi-dimensional
scaling (MDS) have been used for this purpose including
PCA or SOM-based techniques. In [Prem et al. 2003] we
presented first ideas using the Isomap approach for MDS.
MDS-algorithms are useful in reducing the dimensions of
the input space without loosing the neighbourhood relations
of points in this input space. Reducing the dimensions
should reduce the complexity of the recognition task
without loosing important information or features of the
sensory data.

Overview of the approach
In our approach the robot first shapes its perception of the
world according to its behavioural and sensory experiences.
In a second step, it learns to anchor sensor streams of
objects based on its view of the world and in a third step to
relate this view to our human conceptualisation of the
world using symbols. This process is usually called symbol
anchoring [Coradeschi & Saffioti 2003] and related to
symbol grounding [Harnad 1990]. In this paper we focus
on the first of these steps, i.e. processing sensory data as a
basis for anchoring.

In a first step the robot explores its test environment and
collects data until its experiences cover most of its
environment and it encountered a majority of interesting
situations, e.g. objects. Then, an Isomap (cf. section “The

architecture”) is computed from its sensor input streams
and an experience-map is created. This map represents
sequences of high-dimensional sensory data on a lower
dimensional MDS-map. In this map, two experiences which
are similar will also generally lie in the same region of the
map and the trajectories of similar sensory experiences will
generate sequences on the map that look similar. This map
thus enables the robot to check whether an experience has
already occurred and whether two experiences are similar.
After the construction of the map and after the
identification of objects, a teacher can now label these
objects with symbols.

Anchoring in our case consists of two parts, first mapping
the sensor and motor inputs into the low dimensional
Isomap-space and then mapping these trajectories to named
objects. Still the process of anchoring according to
[Coradeschi & Saffioti 2003] involves one more issue,
namely the process of reacquiring and tracking the found
anchors. This aspect is only dealt with conceptionally in the
current state of our work. Based on the sensors with which
our robot is equipped, we are only able to deal with certain
kinds of object representations and thus allow anchoring
object classes rather than identifying single object entities.

Still there is a way of reacquiring single objects using
semantic probability maps. I.e. the identified objects are
linked together in a map in a way that allows the robot at
any time to make predictions about what objects will follow
depending on the object sequences it encountered in the
near past. In a world where just a few number of similar or
different objects exist, it is even possible to perform simple
tracking based on such a semantic probability map.

Note the difference between the old “perceive environment
– create model the world – develop plan” principle and
what happens here: The robot learns through experience in
its environment to interpret its sensors so as to detect
similarities and differences. The map is not a model of the
world, rather a model of how to perceive the world. Also,
the map is not a topological map, but a topology-preserving
record of the robot experiences. Learning to perceive
similarities is a vital key for anchoring as well as
recognition.

The test platform

In our experiments we use a wheeled mobile robot platform
originally designed for sewage pipe inspection (KURT2).
The robot is equipped with six wheels, twelve infrared, and
two ultrasonic sensors as well as other sensors not used in
the work described here. The robot carries a conventional
laptop, which runs the control software.

Fig. 1. The circular test bed with several objects

(triangles, cylinders and boxes).

The test environment of the robot consists of rooms at our
offices bounded with small wooden boards. It contains a
number of artificial and everyday objects such as boxes of
different shapes, bins, etc. as obstacles and objects.

Fig. 2. The sensor space of KURT2 is topologically
separated into two hemispheres and consists mainly of
infrared distance sensors (IR) and sonar distance
sensors (S)

For our experiments, the robot control software makes the
robot drive along walls and from time to time randomly
change direction to explore the whole space. Pre-wired
wall-following behaviour ensures that the robot experiences
the objects in similar ways whenever it passes them.

In the experiments described here, a teacher “pointed out”
objects such as boxes, bins, triangles etc. to the robot. The
teacher let the robot engage and then labelled the objects.
The more often an object was seen by the robot, the more
stable the object representation became through prototype
creation.

In our test assembly, the robot perceived each object three
times, but no prototypes were built. In this way, three
different representations of each object should be created.
The main purpose of the environment here was to prove
that learned objects can be anchored and recognised. We
used four different object types: a small cylinder, a large
box, a medium sized box and a triangular-shaped
cardboard. However, the two boxes were very similar for
the human observer as well as for the robot. The circular
shape of the environment as well as some characteristics of
the surroundings, such as slippery ground etc., forced the
robot to carry out many turns along its path to make sure
that the robot never actually passed an object in exactly the
same way twice.

Our mobile robot’s sensors provide measurements at a
frequency of 10 Hertz. We use an array of 16 sensors
(twelve infrared, two ultrasonic and odometric data of the
two motors) for further processing.

Fig. 3. The perception of an object produces a

strongly object related echo in the sensor readings.

Sensor readings now represent the distance between the
sensors’ position on the robot and objects in the
environment. To identify an object the robot needs to
move, because only based on the stream of sensors the
robot is able to separate objects from its surroundings. This
fact, of course, results in a strong coupling between the
robot’s actions and its perceptions. Anytime the robot
passes an object, the sensors show a strongly object related
pattern, which is dependant on the robot’s speed, the
distance to the object, the objects shape, and (for some
objects) the robot’s heading direction. Figure 3 depicts an
idealized representation of the sensor readings for a trash
bin. The sensor stream indicates a tube-like shape (i.e. it

represents also depth information about the perceived
object.).

Problems arise if objects are positioned too close to each
other, i.e. one object gets into the range of the front sensors
while another one is perceived by the rear ones etc. This
means, objects should be positioned isolated from each
other or at least in a way so that none of them is located in
front of each other.

In case that objects are to close to another to be perceived
separately we have conceived two mechanisms to still
enable object categorisation and anchoring.

On the one hand, sensor readings are weighted by their
positions inside the object. We use a stretched sinus curve
to provide higher weights to points that are near to the
center of objects sequences and vice versa (Fig 4. depicts
the weighting function on a typical sensor stream that
results from perceiving a box).

Fig. 4. Weighting of the compared object segments.

On the other hand we use features of the Isomap (cf. next
section) to compute object probabilities. Based on the
position on the sensor map we are able to make predictions
about the certainty of perceiving one object against all
others. This probability rises with the number of points that
are detected by one specific object. Using this mechanism
also enables us to separate objects from each other by
having a point sequence that belongs to one object as well
as to another by using their specific sequence probabilities.

The architecture

Isomap
The Isomap Algorithm was originally developed by Joshua
Tenenbaum [Tenenbaum et al. 2000] and [Tenenbaum et
al. 2002]. The underlying idea is to extract meaningful
dimensions from multidimensional data based on
measuring the distance between the data points within the

geometric form that arises through the particular properties
of the non-linear data. Basically, the algorithm captures the
intrinsic geometry of the data surface based on this
geodesic distance measurement. The transformation is then
realised by combining a classical MDS-algorithm with this
geodesic distance. Like in MDS, data points which are
close in the original space will be close in the lower-
dimensional embedding.

Measuring the intrinsic geometry would be relatively
simple for linear relationships in the data, because linear
data are a set of plains in the geometric space. Here a
number of reliable methods such as PCA (principal
component analysis) exist [Jollie, 1986]; non-linear data,
however, generates more complex structures.

Most existing non-linear MDS algorithms are tuned to
specific shapes. This is also true for Tenenbaum’s
algorithm which is best suited for data point shapes that can
be flattened out, e.g. cylinders. The Isomap algorithm tries
to capture the global structure of the data which makes it
useful for our application. Nevertheless, in further work,
other MDS algorithms should be tested and compared
against the Isomap.

The underlying (or intrinsic) structure of the data can be
assumed to be on a manifold, a non-linear lower
dimensional subspace embedded in the input space. Using
this assumption, [Tenenbaum et al., 2002] defines the
Isomap algorithm to perform non-linear data reduction and
uses the following three main steps:

1. Construct spatially local neighbourhoods (using a
radius threshold or nearest neighbours).

2. Compute a matrix of all-pairs shortest paths
distances.

3. Perform classical MDS using the matrix.

Mapping algorithm
After the robot has built the Isomap and has learned an
object representation, it starts moving around and tries to
detect objects. Each data-point will be mapped onto the
Isomap. Through this mapping the data becomes less
complex and noisy and therefore easier to work on. The
now acquired low-dimensional point will then be compared
to the first points of the Isomap representation of the
learned objects. If they are similar further data points will
be compared to the following points of the affected objects.

If a sequence of points cannot be mapped onto the Isomap,
because it was not seen before, then the sequence and its
local environment are stored in a list. If this list of
unmapped points grows too large the Isomap needs to be
rebuilt.

Fig. 5. The mapping algorithm maps sequences of

high dimensional sensor streams onto the Isomap and
compares the mapped representation with the objects
witch have been learned.

Mapping is the process by which a data point (known or
unknown) is projected on the map using the Isomap
algorithm. The process should be able to map objects in the
robot’s environment onto the map in way that is robust with
respect to interference. In this state objects are sequences
of points that have been labelled by a teacher. Currently,
for points in the Isomap their high-dimensional
representation is still saved for practical reasons. Each
point thus consists of its lower dimensional Isomap
representation and the original data point. For any new
point, the mapping algorithm now searches for the nearest
data point in the original space among all stored points.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Fig. 6. Multivariate data stream (10 sensors)

If the distance to the nearest point is above a specific
empirical threshold, this means that the point cannot be
mapped.

−250 −200 −150 −100 −50 0 50 100 150 200 250
−250

−200

−150

−100

−50

0

50

100

150

200
A1

Fig. 7. Isomap (mapped stream, two dimensions)

Preprocessed data stream of a perceived object and its
representation on the Isomap.

Comparison of sensor segments
Objects are compared by incrementally comparing
sequences of points. For sequence comparison, sequences
of data points are mapped onto the Isomap; we then
compare these resulting sequences.

Points that are generated when the robot passes similar
objects will in many cases generate similar sequences of
points on the Isomap. The advantage of the resulting
sequence is their lower dimensionality and, of course, the
possibility of an easy visualization of the mapped data.
Since points are usually mapped on already existing points
on the map, the mapping is quite robust as long as the
robot’s behaviour does not change significantly. For
example, the sensor data generated as the robot passes a
tube at two different levels of speed will generally look
different from each other since it includes noise. In the
Isomap, sequences will often look quite similar to each
other. The mapping of single data points eliminates a great
deal of noise; however, in some case the quantisation may
actually produce additional errors. Such situations are
depicted in Figure 8:

Fig. 8. Typical errors when comparing stored

sequences of points on the Isomap for an object. a.)
Mapping error: a point may come to lie on another
point on the map through quantisation. b.) Objects

result in similar but not the same sequences, e.g. when
passing the object at a different angle. c.) Time warping
error: after passing the same object at different speeds
the segments are highly similar but differ in the number
of points.

If we would take a simple point-wise Euclidean distance
measure, these errors can severely affect recognition of
sequences representing the same object. Such errors should
be taken into account, but only to a limited extent. The
algorithm for comparison must clearly discriminate
between different objects which is simply not achievable by
a point-to-point comparison. Instead, we use a simplified
variant of dynamic time warping [Oates et al., 2000].
Sequences are compressed and dilated so as to minimize
the errors between the compared sequences. The amount of
compression and dilation must operate within certain
plausible limits given by system properties such as typical
speed of the robot, sensor properties, object size, etc.

In the following description of the algorithm there are two
sensor segments A, B (point lists) which should be
compared and for which the error should be returned. The
algorithm works like a “pair-wise Euclidian distance”
measure, but tries to minimize errors between small
segments by skipping over parts in which segments are
dissimilar.

While (there are some points left in A
and B)
{

1. a = first point of A,
b = first point of B

2. d = D(a, b)
3. error = error + d
4. if (D(first point of A, first

point of B) > smooth threshold))
a. then search a similar point

to a in the next 5 points
in B,

b. and search a similar point
to b in the next 5 points
in A

5. errorT = 0, errorA=0, errorB=0;
6. if a point is found in 4a then

errorB = mean(D(ignored points,
a))

7. if a point is found in 4b then
errorA = mean(D(ignored points,
b))

8. if errorA > errorB then
a. errorT = errorB

set point found in 4a, as
current point in list B

b. else errorT = errorA
set point found in 4b, as
current point in list A

9. error = error + errorT

10. A = A.next, B = B.next
}

Where D(x, y) denotes Euclidian
distance.

Results

As an evaluation of the performance of the algorithm we
compared four different algorithms using four different
objects: a box (a), a triangle (b), and two very similar tubes
(c, d). The algorithm should discriminate the box, the
triangle and the tubes, but the tubes should be recognized
as the same object. In the test run, the robot performed
three circles in the test bed. It perceived each object three
times from different angles and therefore generated three
different but highly similar representations of each of the
objects. Each representation was then compared to all the
other representations.

The contingency table shows a summary of the results: It
depicts how often a representation of an object was
correctly recognised. The diagonal line and the cells “d-c”
(or “c-d”) should contain only values close to 9, meaning
that all cases were classified correctly. All other cells
should be close to zero, respectively.

We used 4 algorithms for comparison:

IsoDTW: Our pseudo DTW algorithm (descript in the
section before) comparing the two representations
mapped on to the Isomap (2 dimensional).

IsoECL: Euclidian distance calculated on the shapes of
the Isomap representation of the object sensor streams.

DatDTW: Our pseudo DTW algorithm calculated on the
object sensor streams (dimension of sensor space was
10).

DatECL : Euclidian distance calculated on the object
sensor streams (dimension of sensor space was 10).

In the following we refer to the experimental setup where
we used only ten of the robot’s sixteen sensors (the six
infrared sensors of its right hemisphere, plus the front and
rear ultra sonic and two motor values). All sensors have
been pre-processed to minimize errors and noise and to
map the sensors to the same value range using the
following two methods:

o Normalisation: zi = (xi - µι) / σi
o Low pass filter: Smoothen and cut low sensor

values (set to zero)

For the computation of the error we normalise to the length
of the shorter of the two compared sequences. If the
resulting error falls below a certain threshold the two
objects are regarded as similar. These thresholds have been
chosen in a way that the number of wrongly classified
objects of the most homogeneous objects is minimised and
the number of correctly classified objects are maximised.
This leads to a very high specificity.

IsoECL b c a d DatECL b c a d
b 8 - - - b 6 - - -
c - 6 - 6 c - 7 - 1
a 2 - 9 - a - - 5 -
d - 5 - 8 d - - - 5

IsoDTW b c a d DatDTW b c a d

b 8 - - - b 6 - - -
c - 7 - 6 c - 8 - 1
a 1 - 8 - a - - 5 -
d - 5 - 8 d - - - 5

Tab. 1. Confusion Matrix: Comparison of the four
algorithms measuring the similarity of 4 objects. A
minus sign ‘-‘ denotes no similarity.

The table clearly shows that by mapping onto the Isomap
particularly the two similar objects (c and d), respectively
the two cylinders are correctly classified. This
classification is based on the characteristics of the Isomap
to project similar sensor vectors to neighbouring points.
Similar perceptions result in Isomap trajectories that have a
small geodesic distance.

The mapping to the “grid” of known points, i.e.
quantisation, amplifies similarities and dissimilarities of the
categorised objects. However, quantisation also is a not
neglectable source of error. Our pseudo dynamic time
warping algorithm (see above) helps to minimise this error.
The pseudo DTW raises specificity and at the same time
reduces sensitivity of the categorisation process, as can be
seen in the following table:

IsoECL similarity No similarity
No similarity 2 88

similarity 42 12

IsoDTW Pos No similarity
No similarity 1 89

similarity 42 12

Tab. 2a. This table shows the summarised confusion
matrix for the two Isomap algorithms.

DatECL similarity No similarity

No similarity 0 90
similarity 24 30

DatDTW similarity No similarity

No similarity 0 90
Similarity 25 29

Tab. 3b. This table shows the summarized confusion
matrix for the two algorithms that operate on the
unmodified sensor streams.

IsoECL
Specificity 0,98
Sensitivity 0,78

IsoDTW

Specificity 0,99
Sensitivity 0,78

DatECL

Specificity 1
Sensitivity 0,44

DatDTW

Specificity 1
Sensitivity 0,46

Tab. 4. The algorithm on the Isomap representation
exhibits higher sensitivity.

These results (Table 2a, 2b and Table 3) emphasize the
features of our approach. The two algorithms (IsoECL,
IsoDTW) for comparing the segment on the Isomap have
both a very high sensitivity and also a high specificity. On
the Isomap, the algorithms were able to detect similarities,
which the algorithms do not detect in the multidimensional
sensor stream.

Conclusion

We have presented an approach for anchoring multivariate
motor and distance sensor data streams based on real-world
robot experiments. The presented algorithm for sequence
comparison promises to robustly group sequences for
clustering similar objects. These clusters can be labelled
with category names given from a teacher. We presented
first evaluations of our algorithms in comparison to others.

Further work will extend the testing of our algorithm: it is
necessary to study other MDS-algorithms to decide which
suits best to our problem. More tests will also be necessary
to investigate different environments and numbers of
sensors and the way in which they affect the construction of
the Isomap. Further work will also extend the method with
a recombination algorithm so that it will be possible to
construct prototypes which would make the recognition of
objects more stable. Finally, Isomap could be combined
with some sort of Markov model so as to predict
experiences.

Acknowledgements

This research is supported by the European Commission’s
Information Society Technology Programme project
SIGNAL, IST-2000-29225. Partners in this project are the
University of Bonn (D), Napier University (UK), Istituto di
Elettronica e di Ingegneria dell’Informazione e delle
Telecomunicazioni at Genoa (I), and the Austrian Research
Institute for AI, which is also supported by the Austrian
Federal Ministry for Education, Science, and Culture and
the Austrian Federal Ministry for Transport, Innovation,
and Technology.

References

Coradeschi, S., Saffioti, A. 2003. Perceptual anchoring –
anchoring symbols to sensor data in single and multiple
robot systems. Special issue of Robotics and Autonomous
Systems, Vol. 43 (1-2).

Harnad, S. 1990. The Symbol Grounding Problem, Physica
D, 42, pp. 335-346.

Prem, E., Hoertnagl, E., Poelz, P.M. 2003. Anchoring
symbols in hybrid autonomous systems using Isomap
sequences. Proc. Third Int. Conf. on Hybrid Intelligent
Systems, Melbourne.

Tenenbaum, J.B., de Silva, V., Langford, J.C. 2000. A
global geometric framework for nonlinear dimensionality
reduction. Science, 290(5500):2319-2323.

Tenenbaum, J.B., de Silva, V., Langford, J.C. 2002. The
Isomap Algorithm and Topological Stability. Science,
295(5500):7a.

Jollie, I.T. 1986. Principal Component Analysis. Springer-
Verlag, New York.

Oates, T., Schmill, M., Cohen, P. 2000. A Method for
Clustering the Experiences of a Mobile Robot that Accords
with Human Judgments. University of Massachusetts,
Amherst, MA, USA.

