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Abstract 

 
In this paper we present an approach to symbol anchoring 
that is based on mapping sequences of distance 
measurements from simple sensors. The sensory space of 
the mobile robot is pre-structured according to its 
experiences when it first moves around in unexplored 
environments. Such pre-structuring depends not only on 
environmental features, but also on the type of behaviour 
the robot exhibits. Object representations correspond to 
streams of sensory signals that are mapped onto this sensory 
space and classified by a sequence detection mechanism. 
We report on novel experimental results using this 
technique where we compare variants of the approach and 
other more simple methods. We present data from 
experiments with varied parameters and input data types 
such as motor and distance sensor information. In our real 
mobile robot scenario the robot successfully discriminates a 
number of objects that can then be anchored in a second 
step using input from a human supervisor. 

Introduction 

Robot perception of the world 

 
The world according to a mobile robot which moves 
around in pursuit of its tasks looks very different from the 
human observer’s perception of the robot. While humans 
quickly recognize objects regardless from viewing angle 
and position and are able to correctly label such objects 
with names, all this is very hard for a robot. This is 
particularly true in cases where the robot is only equipped 
with simple distance sensors rather than a camera. How-
ever, making such a robot recognize and label objects 
which it encounters is an important goal, for example as a 
basis for planning components or simply for 
communication with the robot.  
A considerable part of correctly connecting sensor streams 
and symbolic names for perceived objects is to determine 
which of the many object qualities are significant. In 

humans this process of learning about the features of the 
environment based on the sensory-motor inputs takes place 
in the first 5 years and even earlier in the womb. In this 
time span the human brain is highly dynamic and 
mouldable. Each sensory impression and each thought 
leaves its mark in the nervous system. 
 
However, for robots it is not a trivial task to extract the 
important qualities of an object. Mobile robots today are 
often only equipped with relatively simple sensory systems 
such as infrared or sonar distance measurements and a few 
propriosensors e.g. for odometry. Recognition of objects 
for such a robot moving around in its environment brings 
up several problems including comparing multivariate time 
series of sensory experiences or which sensors to focus 
attention on. In the past, algorithms for multi-dimensional 
scaling (MDS) have been used for this purpose including 
PCA or SOM-based techniques. In [Prem et al. 2003] we 
presented first ideas using the Isomap approach for MDS. 
MDS-algorithms are useful in reducing the dimensions of 
the input space without loosing the neighbourhood relations 
of points in this input space. Reducing the dimensions 
should reduce the complexity of the recognition task 
without loosing important information or features of the 
sensory data. 

Overview of the approach 
In our approach the robot first shapes its perception of the 
world according to its behavioural and sensory experiences. 
In a second step, it learns to anchor sensor streams of 
objects based on its view of the world and in a third step to 
relate this view to our human conceptualisation of the 
world using symbols. This process is usually called symbol 
anchoring [Coradeschi & Saffioti 2003] and related to 
symbol grounding [Harnad 1990]. In this paper we focus 
on the first of these steps, i.e. processing sensory data as a 
basis for anchoring. 
 
In a first step the robot explores its test environment and 
collects data until its experiences cover most of its 
environment and it encountered a majority of interesting 
situations, e.g. objects. Then, an Isomap (cf. section “The 



architecture”) is computed from its sensor input streams 
and an experience-map is created. This map represents 
sequences of high-dimensional sensory data on a lower 
dimensional MDS-map. In this map, two experiences which 
are similar will also generally lie in the same region of the 
map and the trajectories of similar sensory experiences will 
generate sequences on the map that look similar. This map 
thus enables the robot to check whether an experience has 
already occurred and whether two experiences are similar. 
After the construction of the map and after the 
identification of objects, a teacher can now label these 
objects with symbols.  
 
Anchoring in our case consists of two parts, first mapping 
the sensor and motor inputs into the low dimensional 
Isomap-space and then mapping these trajectories to named 
objects. Still the process of anchoring according to 
[Coradeschi & Saffioti 2003] involves one more issue, 
namely the process of reacquiring and tracking the found 
anchors. This aspect is only dealt with conceptionally in the 
current state of our work. Based on the sensors with which 
our robot is equipped, we are only able to deal with certain 
kinds of object representations and thus allow anchoring 
object classes rather than identifying single object entities.  
 
Still there is a way of reacquiring single objects using 
semantic probability maps. I.e. the identified objects are 
linked together in a map in a way that allows the robot at 
any time to make predictions about what objects will follow 
depending on the object sequences it encountered in the 
near past. In a world where just a few number of similar or 
different objects exist, it is even possible to perform simple 
tracking based on such a semantic probability map. 
 
Note the difference between the old “perceive environment 
– create model the world –  develop plan” principle and 
what happens here: The robot learns through experience in 
its environment to interpret its sensors so as to detect 
similarities and differences. The map is not a model of the 
world, rather a model of how to perceive the world. Also, 
the map is not a topological map, but a topology-preserving 
record of the robot experiences. Learning to perceive 
similarities is a vital key for anchoring as well as 
recognition. 

The test platform 

In our experiments we use a wheeled mobile robot platform 
originally designed for sewage pipe inspection (KURT2). 
The robot is equipped with six wheels, twelve infrared, and 
two ultrasonic sensors as well as other sensors not used in 
the work described here. The robot carries a conventional 
laptop, which runs the control software. 

  
Fig.  1. The circular test bed with several objects 

(triangles, cylinders and boxes). 

 
The test environment of the robot consists of rooms at our 
offices bounded with small wooden boards. It contains a 
number of artificial and everyday objects such as boxes of 
different shapes, bins, etc. as obstacles and objects.  

 

 

Fig.  2. The sensor space of KURT2 is topologically 
separated into two hemispheres and consists mainly of 
infrared distance sensors (IR) and sonar distance 
sensors (S) 

 
For our experiments, the robot control software makes the 
robot drive along walls and from time to time randomly 
change direction to explore the whole space. Pre-wired 
wall-following behaviour ensures that the robot experiences 
the objects in similar ways whenever it passes them. 
 



In the experiments described here, a teacher “pointed out” 
objects such as boxes, bins, triangles etc. to the robot. The 
teacher let the robot engage and then labelled the objects. 
The more often an object was seen by the robot, the more 
stable the object representation became through prototype 
creation. 
 
In our test assembly, the robot perceived each object three 
times, but no prototypes were built. In this way, three 
different representations of each object should be created. 
The main purpose of the environment here was to prove 
that learned objects can be anchored and recognised. We 
used four different object types: a small cylinder, a large 
box, a medium sized box and a triangular-shaped 
cardboard. However, the two boxes were very similar for 
the human observer as well as for the robot. The circular 
shape of the environment as well as some characteristics of 
the surroundings, such as slippery ground etc., forced the 
robot to carry out many turns along its path to make sure 
that the robot never actually passed an object in exactly the 
same way twice. 
 
Our mobile robot’s sensors provide measurements at a 
frequency of 10 Hertz. We use an array of 16 sensors 
(twelve infrared, two ultrasonic and odometric data of the 
two motors) for further processing.  
 

 
Fig.  3. The perception of an object produces a 

strongly object related echo in the sensor readings. 

 
Sensor readings now represent the distance between the 
sensors’ position on the robot and objects in the 
environment. To identify an object the robot needs to 
move, because only based on the stream of sensors the 
robot is able to separate objects from its surroundings. This 
fact, of course, results in a strong coupling between the 
robot’s actions and its perceptions. Anytime the robot 
passes an object, the sensors show a strongly object related 
pattern, which is dependant on the robot’s speed, the 
distance to the object, the objects shape, and (for some 
objects) the robot’s heading direction. Figure 3 depicts an 
idealized representation of the sensor readings for a trash 
bin. The sensor stream indicates a tube-like shape (i.e. it 

represents also depth information about the perceived 
object.). 
 
Problems arise if objects are positioned too close to each 
other, i.e. one object gets into the range of the front sensors 
while another one is perceived by the rear ones etc. This 
means, objects should be positioned isolated from each 
other or at least in a way so that none of them is located in 
front of each other. 
 
In case that objects are to close to another to be perceived 
separately we have conceived two mechanisms to still 
enable object categorisation and anchoring. 
 
On the one hand, sensor readings are weighted by their 
positions inside the object. We use a stretched sinus curve 
to provide higher weights to points that are near to the 
center of objects sequences and vice versa (Fig 4. depicts 
the weighting function on a typical sensor stream that 
results from perceiving a box). 
 

 

Fig.  4. Weighting of the compared object segments. 

 
On the other hand we use features of the Isomap (cf. next 
section) to compute object probabilities. Based on the 
position on the sensor map we are able to make predictions 
about the certainty of perceiving one object against all 
others. This probability rises with the number of points that 
are detected by one specific object. Using this mechanism 
also enables us to separate objects from each other by 
having a point sequence that belongs to one object as well 
as to another by using their specific sequence probabilities. 

The architecture  

Isomap 
The Isomap Algorithm was originally developed by Joshua 
Tenenbaum [Tenenbaum et al. 2000] and [Tenenbaum et 
al. 2002]. The underlying idea is to extract meaningful 
dimensions from multidimensional data based on 
measuring the distance between the data points within the 



geometric form that arises through the particular properties 
of the non-linear data. Basically, the algorithm captures the 
intrinsic geometry of the data surface based on this 
geodesic distance measurement. The transformation is then 
realised by combining a classical MDS-algorithm with this 
geodesic distance. Like in MDS, data points which are 
close in the original space will be close in the lower-
dimensional embedding.  
 
Measuring the intrinsic geometry would be relatively 
simple for linear relationships in the data, because linear 
data are a set of plains in the geometric space. Here a 
number of reliable methods such as PCA (principal 
component analysis) exist [Jollie, 1986]; non-linear data, 
however, generates more complex structures.  
 
Most existing non-linear MDS algorithms are tuned to 
specific shapes. This is also true for Tenenbaum’s 
algorithm which is best suited for data point shapes that can 
be flattened out, e.g. cylinders. The Isomap algorithm tries 
to capture the global structure of the data which makes it 
useful for our application. Nevertheless, in further work, 
other MDS algorithms should be tested and compared 
against the Isomap. 
 
The underlying (or intrinsic) structure of the data can be 
assumed to be on a manifold, a non-linear lower 
dimensional subspace embedded in the input space. Using 
this assumption, [Tenenbaum et al., 2002] defines the 
Isomap algorithm to perform non-linear data reduction and 
uses the following three main steps: 
 

1. Construct spatially local neighbourhoods (using a 
radius threshold or nearest neighbours). 

2. Compute a matrix of all-pairs shortest paths 
distances. 

3. Perform classical MDS using the matrix. 
 

Mapping algorithm 
After the robot has built the Isomap and has learned an 
object representation, it starts moving around and tries to 
detect objects. Each data-point will be mapped onto the 
Isomap. Through this mapping the data becomes less 
complex and noisy and therefore easier to work on. The 
now acquired low-dimensional point will then be compared 
to the first points of the Isomap representation of the 
learned objects. If they are similar further data points will 
be compared to the following points of the affected objects. 
 
If a sequence of points cannot be mapped onto the Isomap, 
because it was not seen before, then the sequence and its 
local environment are stored in a list. If this list of 
unmapped points grows too large the Isomap needs to be 
rebuilt. 
 

 

 
Fig.  5. The mapping algorithm maps sequences of 

high dimensional sensor streams onto the Isomap and 
compares the mapped representation with the objects 
witch have been learned. 

 
Mapping is the process by which a data point (known or 
unknown) is projected on the map using the Isomap 
algorithm. The process should be able to map objects in the 
robot’s environment onto the map in way that is robust with 
respect to interference. In this state objects are sequences 
of points that have been labelled by a teacher. Currently, 
for points in the Isomap their high-dimensional 
representation is still saved for practical reasons. Each 
point thus consists of its lower dimensional Isomap 
representation and the original data point. For any new 
point, the mapping algorithm now searches for the nearest 
data point in the original space among all stored points. 
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Fig.  6. Multivariate data stream (10 sensors) 

 
 
If the distance to the nearest point is above a specific 
empirical threshold, this means that the point cannot be 
mapped. 
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Fig. 7. Isomap (mapped stream, two dimensions) 

Preprocessed data stream of a perceived object and its 
representation on the Isomap. 

Comparison of sensor segments 
Objects are compared by incrementally comparing 
sequences of points. For sequence comparison, sequences 
of data points are mapped onto the Isomap; we then 
compare these resulting sequences.  
 
Points that are generated when the robot passes similar 
objects will in many cases generate similar sequences of 
points on the Isomap. The advantage of the resulting 
sequence is their lower dimensionality and, of course, the 
possibility of an easy visualization of the mapped data. 
Since points are usually mapped on already existing points 
on the map, the mapping is quite robust as long as the 
robot’s behaviour does not change significantly. For 
example, the sensor data generated as the robot passes a 
tube at two different levels of speed will generally look 
different from each other since it includes noise. In the 
Isomap, sequences will often look quite similar to each 
other. The mapping of single data points eliminates a great 
deal of noise; however, in some case the quantisation may 
actually produce additional errors. Such situations are 
depicted in Figure 8: 
 

 
Fig. 8. Typical errors when comparing stored 

sequences of points on the Isomap for an object. a.) 
Mapping error: a point may come to lie on another 
point on the map through quantisation. b.) Objects 

result in similar but not the same sequences, e.g. when 
passing the object at a different angle. c.) Time warping 
error: after passing the same object at different speeds 
the segments are highly similar but differ in the number 
of points.  

 
If we would take a simple point-wise Euclidean distance 
measure, these errors can severely affect recognition of 
sequences representing the same object. Such errors should 
be taken into account, but only to a limited extent. The 
algorithm for comparison must clearly discriminate 
between different objects which is simply not achievable by 
a point-to-point comparison. Instead, we use a simplified 
variant of dynamic time warping [Oates et al., 2000]. 
Sequences are compressed and dilated so as to minimize 
the errors between the compared sequences. The amount of 
compression and dilation must operate within certain 
plausible limits given by system properties such as typical 
speed of the robot, sensor properties, object size, etc. 
 
In the following description of the algorithm there are two 
sensor segments A, B (point lists) which should be 
compared and for which the error should be returned. The 
algorithm works like a “pair-wise Euclidian distance” 
measure, but tries to minimize errors between small 
segments by skipping over parts in which segments are 
dissimilar. 
 
 
While (there are some points left in A 
and B) 
{ 

1. a = first point of A,  
b = first point of B 

2. d = D(a, b) 
3. error = error + d 
4. if ( D(first point of A, first 

point of B) > smooth threshold) )  
a. then search a similar point 

to a in the next 5 points 
in B, 

b. and search a similar point 
to b in the next 5 points 
in A 

5. errorT = 0, errorA=0, errorB=0; 
6. if a point is found in 4a then 

errorB = mean(D(ignored points, 
a)) 

7. if a point is found in 4b then 
errorA = mean(D(ignored points, 
b)) 

8. if errorA > errorB then  
a. errorT = errorB 

set point found in 4a, as 
current point in list B 

b. else errorT = errorA 
set point found in 4b, as 
current point in list A 

9. error = error + errorT 



10. A = A.next, B = B.next 
} 

 
Where D(x, y) denotes Euclidian 
distance. 

Results 

 
As an evaluation of the performance of the algorithm we 
compared four different algorithms using four different 
objects: a box (a), a triangle (b), and two very similar tubes 
(c, d). The algorithm should discriminate the box, the 
triangle and the tubes, but the tubes should be recognized 
as the same object. In the test run, the robot performed 
three circles in the test bed. It perceived each object three 
times from different angles and therefore generated three 
different but highly similar representations of each of the 
objects. Each representation was then compared to all the 
other representations. 
 
The contingency table shows a summary of the results: It 
depicts how often a representation of an object was 
correctly recognised. The diagonal line and the cells “d-c” 
(or “c-d”) should contain only values close to 9, meaning 
that all cases were classified correctly. All other cells 
should be close to zero, respectively. 
 
We used 4 algorithms for comparison: 
 

IsoDTW: Our pseudo DTW algorithm (descript in the 
section before) comparing the two representations 
mapped on to the Isomap (2 dimensional). 
 
IsoECL: Euclidian distance calculated on the shapes of 
the Isomap representation of the object sensor streams. 

 
DatDTW: Our pseudo DTW algorithm calculated on the 
object sensor streams (dimension of sensor space was 
10). 

 
DatECL : Euclidian distance calculated on the object 
sensor streams (dimension of sensor space was 10). 

 
In the following we refer to the experimental setup where 
we used only ten of the robot’s sixteen sensors (the six 
infrared sensors of its right hemisphere, plus the front and 
rear ultra sonic and two motor values). All sensors have 
been pre-processed to minimize errors and noise and to 
map the sensors to the same value range using the 
following two methods: 
 

o Normalisation: zi = (xi - µι) / σi  
o Low pass filter: Smoothen and cut low sensor 

values (set to zero) 
 

For the computation of the error we normalise to the length 
of the shorter of the two compared sequences. If the 
resulting error falls below a certain threshold the two 
objects are regarded as similar. These thresholds have been 
chosen in a way that the number of wrongly classified 
objects of the most homogeneous objects is minimised and 
the number of correctly classified objects are maximised. 
This leads to a very high specificity.  
 

IsoECL b c a d DatECL b c a d 
b 8 - - - b 6 - - - 
c - 6 - 6 c - 7 - 1 
a 2 - 9 - a - - 5 - 
d - 5 - 8 d - - - 5 

          
IsoDTW b c a d DatDTW b c a d 

b 8 - - - b 6 - - - 
c - 7 - 6 c - 8 - 1 
a 1 - 8 - a - - 5 - 
d - 5 - 8 d - - - 5 

Tab. 1. Confusion Matrix: Comparison of the four 
algorithms measuring the similarity of 4 objects. A 
minus sign ‘-‘ denotes no similarity. 

The table clearly shows that by mapping onto the Isomap 
particularly the two similar objects (c and d), respectively 
the two cylinders are correctly classified. This 
classification is based on the characteristics of the Isomap 
to project similar sensor vectors to neighbouring points. 
Similar perceptions result in Isomap trajectories that have a 
small geodesic distance. 
 
The mapping to the “grid” of known points, i.e. 
quantisation, amplifies similarities and dissimilarities of the 
categorised objects. However, quantisation also is a not 
neglectable source of error. Our pseudo dynamic time 
warping algorithm (see above) helps to minimise this error. 
The pseudo DTW raises specificity and at the same time 
reduces sensitivity of the categorisation process, as can be 
seen in the following table: 
 

IsoECL similarity No similarity 
No similarity 2 88 

similarity 42 12 
   

IsoDTW Pos No similarity 
No similarity 1 89 

similarity 42 12 
 

Tab. 2a. This table shows the summarised confusion 
matrix for the two Isomap algorithms. 



 
DatECL similarity No similarity 

No similarity 0 90 
similarity 24 30 

   
DatDTW similarity No similarity 

No similarity 0 90 
Similarity 25 29 

  

Tab. 3b. This table shows the summarized confusion 
matrix for the two algorithms that operate on the 
unmodified sensor streams. 

 
 

IsoECL 
Specificity 0,98 
Sensitivity 0,78 

  
IsoDTW 

Specificity 0,99 
Sensitivity 0,78 

  
DatECL 

Specificity 1 
Sensitivity 0,44 

  
DatDTW 

Specificity 1 
Sensitivity 0,46 

Tab. 4.  The algorithm on the Isomap representation 
exhibits higher sensitivity. 

 
These results (Table 2a, 2b and Table 3) emphasize the 
features of our approach. The two algorithms (IsoECL, 
IsoDTW) for comparing the segment on the Isomap have 
both a very high sensitivity and also a high specificity. On 
the Isomap, the algorithms were able to detect similarities, 
which the algorithms do not detect in the multidimensional 
sensor stream.  

Conclusion 

We have presented an approach for anchoring multivariate 
motor and distance sensor data streams based on real-world 
robot experiments. The presented algorithm for sequence 
comparison promises to robustly group sequences for 
clustering similar objects. These clusters can be labelled 
with category names given from a teacher. We presented 
first evaluations of our algorithms in comparison to others. 
 

Further work will extend the testing of our algorithm: it is 
necessary to study other MDS-algorithms to decide which 
suits best to our problem. More tests will also be necessary 
to investigate different environments and numbers of 
sensors and the way in which they affect the construction of 
the Isomap. Further work will also extend the method with 
a recombination algorithm so that it will be possible to 
construct prototypes which would make the recognition of 
objects more stable. Finally, Isomap could be combined 
with some sort of Markov model so as to predict 
experiences. 
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