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Abstract 
We deal with a problem that can be considered as part of 
the symbol grounding problem and is related to anchoring, 
but for a more general case that includes symbols that do 
not denote directly physical objects but rather the physical 
sensorimotor interactions between a robot body and 
physical objects. The fundamental role of this kind of 
symbols for robotic intelligence can be derived from the 
evolutionary importance of those symbols for living 
organisms as supported by current neurophysiology. We 
provide a detailed example of this approach in the context 
of a manipulation task: the peg-in-hole insertion problem. 

Introduction   
This paper addresses a problem that can be considered as 
part of the symbol grounding problem. It is closely related 
to anchoring, but for a more general case that includes 
symbols that do not denote directly physical objects but 
rather the physical sensorimotor interactions between a 
robot body and physical objects. The fundamental role of 
these kind of symbols in living organisms is supported by 
neurobiology and we describe how neural networks can 
provide a suitable method for mapping such complex 
perceptual signals to that kind of symbols in a particular 
robot manipulation scenario. 

The symbol grounding problem is a classical challenge 
for AI (Harnad 90). The symbols in a symbol system are 
systematically interpretable as meaning something; 
however, in a traditional AI system, that interpretation is 
not intrinsic to the system, it is always given by an external 
interpreter (e.g., the designer of the system).  Neither the 
symbol system in itself nor the computer, as an 
implementation of the symbol system, can ground their 
symbols in something other than more symbols. And yet, 
when we reason, unlike computers, we use symbol systems 
that need no external interpreter to have meanings. The 
meanings of our thoughts are intrinsic, the connection 
between our thoughts and their meanings is direct and 
causal, it cannot be mediated by an interpreter, otherwise it 
would lead to an infinite regress if we assume that they are 
interpretable by someone else. Though this is a more 
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general problem than anchoring, a solution to this paradox 
may lie in Robotic Intelligence (RI) (Harnad 95, del Pobil 
98): in an RI system the symbols should be grounded in 
the system own capacity to interact robotically with what 
its symbols are about. Such an RI system should be able to 
perceive, manipulate, recognize, classify, modify, and 
reason about the real-world objects and situations that it 
encounters. In this way, its symbols would be grounded in 
the same sense that a person’s symbols are grounded, 
because it is precisely those objects and situations that 
their symbols are about. If we think of a symbol that 
corresponds to a word, we ground it when we first learn 
our mother tongue through interaction with the outer 
world, because we cannot obviously ground it in more 
words. In this respect, for a blind child the meanings of 
his/her symbol system must necessarily differ from those 
of a child with intact vision, because his/her interaction 
with the world is handicapped. 

Whereas strictly speaking anchoring focuses on 
perceivable physical objects (Coradeschi and Saffiotti 
2003), and symbol grounding includes more abstract 
symbols like ‘justice’ or ‘beauty’, we claim that there are 
still symbols that are fundamental for robotic intelligence 
but do not refer directly to physical objects but rather to 
the physical sensorimotor interactions between the robot 
itself and the objects in the world. This kind of symbols 
would be more related to action, and they seem to have 
appeared in the evolutionary landscape long before vision 
as ‘sight’ (Goodale and Westwood 2004). This distinction 
between ‘vision for action’ as opposed  to ‘vision for 
perception’ is supported by neurophysiological findings as 
we discuss in section 2. In section 3 we comment on a 
particular implementation for robotic grasping, in which 
each symbols refers to a particular interaction between the 
robot hand and a physical object. 

A possible answer to the question of how to 
ground/anchor such symbols is the use of connectionism. 
Neural nets can be a feasible mechanism for learning the 
invariants in the analog sensory projection on which 
categorization is based (Harnad 95); in section 4 we 
provide a detailed example of this approach in the context 
of another manipulation task: the peg-in-hole insertion 
problem. 



Lessons from Neurophysiology:              
Object-Oriented and Action-Oriented Vision 

Motor primitives are a type of basic behaviors common to 
robots and humans. Such primitives show different levels 
of complexity, and compose hierarchically to form a 
behavior vocabulary. Complex movements and action 
sequences are composed in a almost linguistic way from 
this motor vocabulary. The question is, can such motor 
primitives be considered as symbols and thus extend the 
symbol grounding problem to a larger universe? 

From neuroscience, two of the most important 
discoveries of the last 20 years support the idea of 
extending the symbol concept. The first of these findings is 
that of mirror neurons. This type of neurons can be found 
in a purely motor area in monkeys (F5) but show 
responsiveness to the observation of actions performed by 
others. Mirror neurons are normally related with one 
particular action (most studies focused on reaching, 
pushing, grasping) and activate only in two conditions: 
when the subject perform that specific action and when the 
subject observe someone else (human or monkey, but not 
something else, e.g. a robot) perform that action. 
Therefore, these neurons seem to codify actions in a 
semantic way (Rizzolatti and Arbib 98). This idea is 
reinforced by the fact that Broca's area in humans, 
traditionally related to language production, is the most 
likely correspondent of F5. Taking a step farther, more and 
more researchers are now arguing that language evolved 
from a neural motor system involved in action recognition 
(Keysers et al. 2003). This would confirm that action 
understanding, recognition and mental imagery of actions 
do not differ too much from object recognition or imaging, 
and that complex cognitive processes emerge from simple 
behaviors which firstly evolved in order to give the 
organism skills for better interacting in its environment. 

The second fundamental argument backing the idea of 
symbolic actions is the distinction between the two main 
visual pathways going from primary visual cortex V1 to 
cortical association areas. It has been observed that visual 
processes related to specific actions in primates are 
different from visual processes which are not explicitly 
oriented to interaction of the subject with the environment. 
Looking at an object with the purpose of interacting with it 
(e.g. reaching, hitting, pushing, grasping, …) activates a 
dorsal neural pathway which is not active when actions are 
not involved. This activation seems to represent a 
“potential action”.  

In fact, there are two visual pathways going from 
primary visual cortex to different association areas, the 
posterior parietal cortex (PPC) and the inferior temporal 
cortex (IT) (see Fig. 1). The traditional distinction talks 
about ventral "what" and dorsal "where/how" visual 
pathways. This distinction has been confirmed but has also 
evolved to the extent of identifying the ventral pathway 
with object visual recognition and coding and the dorsal 
stream with action recognition and coding (Milner and 

Goodale 95). The claim is that of a duplex nature of the 
visual system, in which perceptual information streams are 
directed toward different cortical areas according to the 
purpose of the observation (Goodale and Westwood 2004).  

Figure 1. Dorsal and ventral visual pathways; 
from http://homepage.psy.utexas.edu 

 
 
Researches focused on PPC (target of the dorsal visual 

stream) suggest that even in this area actions are coded not 
only in a pragmatic way, but also in a semantic one. In 
fact, neurons are found which discharge both when the 
subject is performing an object-oriented action, and when 
observing the same object with the goal of acting on it 
(Fadiga et al. 2000). Studies on people having their ventral 
stream impaired show that there is no need to be able to 
name or even recognize an object in order to properly code 
an action to perform on it. 

Grasping in primates and robots: hand-object 
interactions as symbols  

A field in which the above-described motor primitive 
codification can be especially observed is that of reaching 
and grasping. As previously explained, prototypes of 
simple actions (both cognitive and practical ones) are 
coded in primate brains, and the way they connect 
generates higher level behaviors. In the case of grasping 
and reaching, areas F4 and F5 of the inferior premotor 
cortex of macaque monkeys are believed to contain a 
vocabulary of motor actions of different complexity, 
duration, significance (e.g. preshape the fingers for a 
precision grip) (Rizzolatti and Arbib 98). Such actions are 
selected and combined in different ways according to the 



task (e.g. push or grasp), the object shape and size, the 
timing of the action and other aspects 

Area F5 is strictly connected with the anterior 
intraparietal area (AIP) of posterior parietal cortex, which 
is one of the main targets of the dorsal visual stream, being 
the area commonly related with grasping actions. As for 
other zones of PPC, some neurons of AIP are found to be 
active when grasping some particular objects, but also 
when looking at them with the purpose of grasping (and 
only in those cases) (Fadiga et al. 2000). Some other 
neurons of the same zone are sensitive to the size or 
orientation of the objects, and to their affordances: the 
intrinsic visual features which codify the ways in which 
they can be grasped. Therefore, AIP area encodes the 3D 
features of objects in a way that is suitable to guide the 
movements for grasping them, movements that are stored 
in the premotor cortex. Similar results seem to be valid for 
humans as well (Culham 2004). 

Summarizing, area AIP codifies visual information in a 
grasp oriented way, storing object affordances and 
communicating them to area F5, which contains the motion 
primitives used to compose the required grasping action. 
Hence, we have a behavioral situation in which humans 
(and other primates) use symbols to interact with objects, 
but such symbols do not codify the objects themselves. 
Instead of this, they codify action-oriented visual features, 
or even association conditions between objects and distal 
subject effectors. 

Hence, a grasp codifies a relation between the hand and 
the object, or between a tool and the object, and if this is 
true for humans, the application to robotics sounds 
straightforward. An example of this is in the grasping 
approach developed by Morales et al. (Morales et al. 
2004), in which visual information is used in a grasp 
oriented manner, in a way similar to that of the dorsal 
stream in primates. According to this view, there is no 
need to model, recognize, classify an object in order to 
grasp it. The symbols derived from visual information 
identify grasps, i.e. particular physical interactions 
between the robot hand and the target object. 

Physical Interactions as Symbols,                   
the Peg-in-Hole Example 

This section describes our approach to extract symbolic 
information from sensor data. The symbols in the symbol 
system refer to different physical contact states. Our study 
is based on simulations of the two-dimensional peg-in-hole 
insertion task. In Fig. 2 the geometry of our model is 
shown. It is a rectangular peg of width Wp and height Hp, 
to be inserted in a chamferless hole of width Wh and 
infinite depth in an x-y plane. Let O - xy be a coordinate 
system attached to the hole. The coordinates of the peg 
(xp,yp) are given by its leftdown corner, and the orientation 
by the angle α with X axis. In our simulations we only 
consider positive angles in the interval ]0,π/2[, since 
negative angles only add symmetry to the problem. Thus, 
the peg is described with coordinates (xp,yp,α), which 

define the configuration space. In order to identify 
contacts, we should measure the forces between the peg 
and hole. Wrist-mounted force sensors are used to measure 
the external forces and torque applied to the peg as it 
interacts with the environment. 

A schematic view of a gripper grasping a peg and our 
simplified model is depicted in Fig. 3. This sensor gives us 
the measures of force (fx,fy) along two axes of a 
coordinate system attached to it and a torque signal m with 
respect to O. It is worth noting that differently from the 
standard anchoring problem, the symbols to be anchored 
do not denote physical objects but rather physical 
interactions between the robot —the peg can be considered 
as a prolongation of the robot gripper— and the 
environment; the correct identification of these interactions 
is of fundamental importance for the adequate execution of 
the task: in this particular case the insertion of the peg into 
the hole. 

Wh

Hp

Wp

(x p,y p)

O

α

x

y

 
 

Figure 2. Peg and hole geometry 

fy

fx

m
fy

fx

m

 
 
 

Figure 3. Schematic view of the gripper and task model 



We are interested in identifying contact states with the 
help of the force sensor. In Fig. 4, all these contact states, 
including no contact, are shown. The no-contact state 
shows the weight force, and the others only show the 
reaction forces, but weight is considered too. A quasi-static 
model is used, i.e. inertia forces are neglected. In order to 
identify the contact states, only the direction of forces is 
relevant. We choose an arbitrary modulus, namely the unit 
vector. The Coulomb friction model is used, and the static 
and dynamic friction coefficients are considered to be 
equal. Obviously the sensor does not provide us directly 
with the symbolic contact state, rather it gives us three raw 
signals of force and torque. The problem is then to map 
these signals to the contact state appropriately. Fig. 4 
shows that this is a non-trivial problem, due to the 
variability of the forces and the superposition of the peg 
weight and one or several reaction forces. 

In our approach, we use the Self-Organizing Map, 
which is a type of unsupervised neural networks, 
introduced by Kohonen. Its theory and applications are 
thoroughly explained in (Kohonen 95). There is an input 
layer which is fully connected to all the units of the 
network, and each unit has an output. Unlike other 
multilayer neural networks, the neighboring neurons of the 
self-organizing map co-operate during training, providing 
a more powerful system than a usual multilayer neural 
network. 

Unsupervised networks, unlike supervised ones, do not 
need output information during training, they are trained 
with a set of input data alone. Their main advantage is 
flexibility: we are not constraining the network to learn 
some a-priori states. The network self-organizes 
discovering regularities or correlations in the input data. 
Later on, when the training is over, we test the network 
response on those a-priori states. Hopefully, identification 
of the states will be possible if the network's response is 
different for each state. If this does not occur, some states 
are ambiguous, i.e., they cannot be identified with only the 
information provided in the input signals. This is an 
important result which supervised networks are unable to 
show, and allows the designer to rearrange the input 

information to overcome those ambiguities. Another 
interesting advantage is that the network can discover new 
states that were not considered a-priori. If this occurs, there 
will be some network response that we cannot associate to 
any of the known states. Studying the input values which 
caused that response will allow to identify the unforeseen 
situation. 

In our experiments, the appropriate friction forces are 
chosen from the friction cones with a uniform random 
probability. The peg angle is kept positive or zero. Since 
we are mainly interested in the influence of the task 
parameters, and not in those of the network, we will keep 
the network dimensions constant (a lattice of 15x10 
hexagonally connected units) as well as the training 
parameters (learning rate, neighborhood, etc.). We 
investigate the performance of the network for several 
combinations of clearance and friction (µ) parameters. 

The experiments consist of three phases. Each phase 
involves an independent set of samples which are 
randomly generated. The same number of samples for each 
contact state is chosen. Any parameter subject to 
uncertainty is considered to have a uniform probability 
density function. In the same way, any random choice is 
equally probable. Each sample consists of the two force 
components, normalized to unit modulus, and the 
appropriate torque value. 

The three phases are the following: 
1) Training. The weights are randomly initialized. 

The neural network is trained with a set of 1200 
random input samples. This process is split into 
two iterations. The first one (ordering phase) is 
3000 training steps long, and the initial 
parameters are learning_rate=0.02 and 
radius=12. The second iteration (tuning phase) 
has 60000 training steps, and initially 
learning_rate=0.001 and radius=5. The learning 
rate parameter decreases linearly to zero during 
training. The radius parameter decreases linearly 
to one during training. A detailed explanation of 
the training process is given in (Kohonen 95). 

2) Calibration. A set of 600 samples is used. The 
network response is analyzed and state labels are 
associated with the network units. A unit will be 
associated to a contact state if that unit's response 
is greater with input data of that state than with 
data of any other state. This can be easily 
calculated by counting how many times a neuron 
is selected as the closest to the input samples of 
the different states. The state that has more 'hits' 
is selected for that unit's label. A second label (of 
the state with the second number of hits) will 
also be used during visualization, in order to 
highlight the overlapping among states in the 
map. 

3) Testing. The set consists of 600 samples. The 
performance of the network is tested with an 
independent set of data. For each sample, the 
most responsive unit is selected, i.e. the one 
whose weights are closer to the input signals. 
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Figure 4. Set of contact states 



The contact state is simply given by that unit's 
label. An uncertain response occurs when that 
unit is unlabeled. In order to solve this problem, 
we will introduce another method for calculating 
the network's output. 

Results for a preliminary experiment are shown in 
Table 1. Two states, F2 and F5, are perfectly identified. 
Other two, F1 and F4, are almost perfectly identified. F1 is 
correctly identified in the 94% of the cases, it is 
erroneously identified as F3 in the 5% and it is unclassified 
in the remaining 1%. Meanwhile, F4 is properly classified 
in the 97% of the cases, but it is unknown in the remaining 
3%. The other two states, F3 and F6, are more ambiguous, 
and the proper classification percentages are smaller. The 
average network performance is very good, a 88% success, 
and we must take into account that only force information 
has been used. 

This neural network can easily be visualized by using 
the so called u-matrix visualization (Ultsch 93) and 
consists in visualizing the distances between reference 
vectors of neighboring map units using gray levels. The 
farther the distance, the darker the representation. In this 
way, one can identify clusters, or groups of neurons with 
similar response, which should be desirable to belong to 
the same contact state. The map we obtained with the u-
matrix visualization is represented in Fig. 5. 

Figure 5. U-matrix representation of the neural network; 
task parameters: µ = 0.2, Clearance = 1% 

It is possible to observe a big white region on the top, 
with units labeled with states F1, F3 and F6, and three 
smaller light regions isolated by darker zones, i.e. long 
distances. This regions are labeled with F2, F4 and F5. 
This representation reflects the state ambiguities, which are 
also presented in the table. Some units are labeled twice to 
show this problem, that occurs with states F1, F3 and F6. 
This means that those units not only are selected for the 
first state, but sometimes they are also selected for another 
state. Unlabeled neurons are displayed as a dot. 

After establishing the correspondence between force 
sensor data and symbols denoting contacts, the peg-in-hole 
insertion problem can be solved in a number of ways. Fig. 
6 shows a perception-based plan in which the increments 
inside the nodes denote the action to be performed. 
Additional details can be found in (Cervera and del Pobil 
2000). Several simulations were performed to show that 
the plan exhibits a good behavior without the need for 
information about the position and orientation of the peg. 
The approach has been further applied to solve the peg-in-
whole problem with a real robot and sensor (Cervera and 
del Pobil 2002). In this case the plan relating symbolic 
contact states and motor actions was built by means of 
reinforcement learning. 

Conclusion  
We have discussed the existence of symbols that are 
fundamental for robotic intelligence and do not refer 
directly to physical objects but rather to physical 
sensorimotor interactions between the robot itself and the 
objects in the world. This kind of symbols are more related 
to actions and they seem to have appeared in the 
evolutionary landscape long before vision as ‘sight’. We 
commented on a particular implementation for robotic 
grasping and provided a detailed example of our approach 
in the context of the peg-in-hole insertion problem. 

Further work in this direction may contribute to a better 
understanding of the symbol grounding and the anchoring 
problems, and to make progress towards the achievement 
of true robotic intelligence.  
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Figure 6. Perception-based motion plan

State Right Wrong Unknown 
F1 94 5 1 
F2 100 - - 
F3 59 34 7 
F4 97 - 3 
F5 100 - - 
F6 78 21 1 

Total % 88 10 2 
  
Table 1. Classification percentages; µ = 0.2, Clearance: 1% 
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