
Intelligent Interfaces for Digital Games

Daniel Livingstone

School of Computing, University of Paisley
Paisley, PA1 2BE, UK

daniel.livingstone@paisley.ac.uk

Darryl Charles

School of Computing & Information Engineering
University of Ulster, Coleraine, BT52 1SA

dk.charles@ulster.ac.uk

Abstract
Computer game design and technology continues to evolve
at an incredible rate and the digital game systems which
players must learn to the use and interact with are often far
more complex now than in games of even a few years ago.
There is an increasing need for interfaces within games that
perform more advanced tasks than simply acting as a means
for players to make choices, enter commands, and navigate
the game world. Rather, intelligent interfaces between
players and game worlds will enable games to reason about
the needs, desires and motivations of players and to react
accordingly. In this paper we outline the requirement for
more intelligent interfaces in digital games and describe the
benefits of such interfaces while also discussing some of the
challenges that need to be overcome to make them a reality
in mainstream game production.

Introduction
The main focus of current activity on artificial intelligence
for computer games is on creating increasingly intelligent
characters or opponents for players to interact with (Barnes
and Hutchens 2002). The focus for this paper is a quite
different application of artificial intelligence – the design
and implementation of intelligent interfaces (Maybury and
Wahlster 1997). We present a brief outline of the ideas
behind, and current approaches to, intelligent interfaces.
Then we present some of the possible uses they might be
put to in modern digital games. In doing so, we will outline
the potential benefits of intelligent interfaces in games, and
end with a look at some of the significant challenges ahead.
We believe that this area of research and development is
important for the future of games as they attempt to become
more mainstream and attract new audiences. (Beal et. al.
2002) notes that games are still struggling to reach beyond
the core young male audience and, by comparing game
playing preferences to learning preferences, argues that
games that adapt to players might help win new audiences.
Accordingly, we feel it is worth considering the different
ways in which intelligent interfaces might adapt games to
enhance the gameplay experiences of individual players
and the challenges inherent in making this work.

Intelligent Interfaces Overview
Intelligent interfaces perform a wide range of tasks and are
developed using an equally wide range of approaches.
Referral agents act as automated intermediaries, matching
up and introducing users to one another for business or
even for romance (Foner 1997); memory agents observe
what a user is doing and maintain lists of other, relevant,
items which might contain information of use to the user
(Rhodes and Starner 1996); natural language interfaces
attempt to let the user access and manipulate data through
normal speech instead of through a traditional GUI; the well
known Microsoft paperclip tries to second-guess what the
user of an application is trying to do and pops up with the
offer of helpful advice at regular intervals. Intelligent
interfaces can be as general as agents to assist with general
word processing, or as specific as assistants for designers
developing safety-critical systems (Jenkins et al. 1997).
What these all have in common is the goal of building
interfaces which assist the user in some way – whether the
assistance is in the form of helping the user navigate a
complex application, carry out a complex task in an
application or navigate through an over-bearing quantity of
information to find that which is most relevant or useful.
Computer games differ from office and information
management applications in a great many ways, and the use
and application of intelligent interfaces in games will
likewise differ in many ways.

Intelligent Interfaces in Games: Helping the
Player

So, to what uses might intelligent interfaces be put in
games? Some of the more obvious possible applications are
outlined here.

1. Assistance with Micro-Management.
Many strategy games, whether the task is simply to build
an army and defeat an enemy or more complex involving the

development of an empire to span millennia, require that a
player perform both macro and micro-management of
resources. As armies and empires grow, players can find
themselves spending more and more time on micro-
management and correspondingly less on macro-
management. This separates players from the overall
objective and can lead to too much time being spent on
relatively tedious and onerous tasks instead of the fun
ones – crushing opposing armies or winning the space
race.
Some games already make use of agents to help in these
tasks. For example, the “Civilization” series of games
provides advisors who offer advice on city-building.
Intelligent user-agents might include advisors who learn
from players during the early stages of the game, and in
later stages are able to take over the micro-management
tasks – with the ability to make decisions similar to those
the players would make themselves.
A further example can be found in the role-playing genre.
Tasks such as redistributing items amongst team characters
or selling off recently acquired loot can take minutes of play
time and many dozens of mouse clicks, and may be
performed dozens of times in a single session of play.
Interfaces that can learn how a given player likes to
distribute equipment or which can propose lists of items to
try to sell could drastically reduce the time spent by players
on mundane ‘housekeeping’ tasks.

2. Adapting the UI to the User
There exists a range of games – principally strategy, role-
playing and adventure – which must solve the problems of
presenting large amounts of information to the player and
simultaneously allow the user to choose from a wide range
of possible actions and interactions. A current research
direction in solving these problems in more typical software
applications is the development of Adaptive User
Interfaces (Rogers and Iba 2001).
In a game with multiple menus and control options, an
adaptive user interface could work simply by presenting the
most frequently selection options before those which a
particular player rarely uses – something like this is already
seen in more recent versions of Microsoft software, where
rarely used items ‘disappear’ from menus – but which are
always reachable. Alternatively, a more intelligent
approach might be where a game detects that a player
consistently has difficulties in executing particular
commands or strings of commands and then offers help.

3. Assistance in Task Execution
Where the interface can detect what a player is trying to do,
it can then try to offer help in completing the task. While it
would not be desirable to have the computer play the game
for the player, there is scope for built-in assistance that
removes the need for players to carry out all tasks by
themselves – similar to application 1 above.

An example of this might be in a squad-based game. A
number of first-person squad based games exist where
players are able to ask other characters to carry out tasks.
With an intelligent interface analyzing the players’ actions
and intent, squad members would be able to pro-actively
offer to carry out tasks. This would decrease the need for
the player to manage other characters – some element of
control would be reduced to accepting or rejecting offers of
help. If implemented well it would also increase the
perceived intelligence of the computer controlled squad
members, and increase the degree of immersion in the game
overall.

4. From Tutorials to Mentors
A lot of work on intelligent interfaces has been focused on
help systems in particular – on making them more pro-
active and genuinely helpful. For advice and information on
how to actually play a game – instruction on the basic input
commands that can be given, and actions that can be taken
directly under player control – many games feature an
interactive tutorial. These sometimes are built into the first
stages or levels of a game, cycling through a range of
actions and activities.
However, it is possible for players to forget how to perform
certain actions when the opportunities to carry out the
particular actions are infrequent or when they have not
played the game for some time. Pro-active help systems
offer to explain to users how tasks may be carried out –
where appropriate these could be embodied in game as
mentor characters or sidekicks, but could alternatively be as
simple as pop-up dialogs.
Two game types that have strong potential to benefit from
mentors are educational and massively multiplayer games.
In both, mentor characters can exist in game and offer
advice and information to those playing the game.
MMORPG titles typically present very large and diverse
worlds with expansive possible paths for players to explore,
both in exploring the worlds themselves and in exploring
character development possibilities. Mentor agents which
can offer guidance targeted to individual users have the
potential to make introductory experiences much more
pleasant than they might otherwise be.

5. Frustration detection
Many games bought are never completed, and there are a
variety of reasons for this. One common cause is that
players get stuck at some point in a game. With no
progress apparently possible, a player may try to continue
playing for some time, becoming increasingly frustrated
before giving up. Detecting when a player is stuck might
rely on detecting certain patterns of play that might be
characteristic of a frustrated player – perhaps play that is
increasing erratic or prone to rapid switching between
locations.
When the player is truly stuck, help can be offered. A
simple scheme for this is demonstrated in “Crash

Bandicoot”. If the player repeatedly fails at a particular
point, their character is awarded a magic mask – then, no
matter how badly the player does on the next attempt, their
character will successfully negotiate the offending
obstacle. Detecting when a player is stuck in a non-linear
game will be less simple, requiring some amount of AI.
Detecting what the actual problem is and offering
appropriate help may require even more sophistication. As
a player wanders around a large and open game world how
can a game decide what help to offer, and when to offer it,
unless the game has built up some idea of what the player
is trying to achieve?

Example: Hint Systems
As an example of the possibilities, consider the non-player
character Yorda in the game “Ico”. Unless the player very
rapidly solves the puzzle in a location, Yorda will often walk
around for a short while and then notice something. She
will then point to whatever has attracted her attention while
calling to the player. This is scripted for a number of
locations, but beyond pointing Yorda offers no clues as to
how the player is to solve the puzzle.
A natural extension of this approach would be for a non-
player character to give additional clues if the player is still
unable to solve the puzzle – and to eventually tell the
player how to solve the puzzle. Recognizing the possibility
of players getting stuck, the puzzle/adventure game “The
7th Guest” featured an in-game hint system that would offer
hints and, if that were insufficient, would solve puzzles for
the player. The hint system was not proactive however, and
required the player to deliberately ask for help – intelligent
interfaces can offer help before the player gets frustrated
and turns to in-game hint systems or online walkthroughs.

Enhancing and Adapting Gameplay
If we assume that the overall goal of most game AI is to
provide an enjoyable challenge for a player, we can
propose alternative applications which run directly counter
to, or at least orthogonal to, the normal application of
intelligent interfaces. Instead of helping the player, an
intelligent interface can try to make the game more difficult,
deciding when the player is finding the current challenge
unsatisfactory and increasing the challenge accordingly.
Going beyond this idea of adaptive difficulty, we have the
idea of changing not the difficulty but the gameplay to suit
the player.

Adaptive Difficulty
A very simple implementation of adaptive difficulty
currently exists in many racing games, although there are
versions known in other genres (Miller 2004). Known as
catch-up/slow-down or rubber-banding, this ties the speed
of computer-controlled cars to the speed of the player car.
Cars far in front of the player slow down while those far

behind speed up. In other game genres, determining the
ease with which the player is completing the game may not
be so simple and may require the ability to evaluate a
number of factors, such as the time taken in different areas,
number of attempts taken or other, more subtle, indicators.

While the task of adapting the challenge presented by a
game itself is not of concern here, it is clear that intelligent
interfaces which monitor and support the players can help
provide information to a game to help it decide when to
increase or decrease the difficulty. Generally, an intelligent
interface can allow a game to learn about the user (as noted
below, where we discuss player modeling), or even learn
from the user. This is potentially useful for building
adaptive difficulty into games where players may have
multiple objectives to choose from and multiple ways of
adapting the difficulty – are certain objectives missed
because of player choice or players being unable to
progress?

Adaptive Gameplay
In extremis, the actions taken by an intelligent interface
could potentially go beyond helping a player, and result in
adapting the gameplay itself.
Considering the examples of help already mentioned,
removing the need for characters to balance inventories, or
order subordinates to search rooms could dramatically
affect the experience of playing a typical role-playing game.
This can be taken further. Integral to most role-playing
games are reasonably large and regular dialogues and
frequent combat encounters. Some players may skip
through dialogues, relishing the combat while others might
enjoy this aspect of role-playing more than the fighting.
Being able to detect such tastes, and respond accordingly
would allow the game to adjust and allow the player to
spend more time on the aspects they enjoy – such as by
extending the combat sequences and trimming the dialogue
of redundant lines.
Many games already allow players to choose their own
style of play – commonly whether to advance using stealth
or by force of arms. If implemented, adaptive gameplay
could allow designers even greater power in enabling
players to choose their own style of play. In turn, this might
help games appeal to the widest possible audiences.

Implementing Intelligent Interfaces: Building
and Responding to the Player Model

A requirement for most of the applications discussed in this
paper is for the intelligent interface to be able to build, and
reason about, a player model. User modeling is itself a
focus of a significant amount of study, and user modeling
in tutoring systems formed the background of (Beal et. al.
2002).
(Houlette 2004) describes a simple method of building a
player model based on recording the actions taken by a

player in game, and keeping count of the frequencies of
different actions. Such information, once gained, can be put
to a variety of uses including training the computer player
on data gleaned from how its human opponent is playing
the game (Rabin 2002). An artificial neural-net based
approach to training AI on player data has also been
demonstrated (McGlinchy 2003). In this case, the player
model is encoded by the weights of the neural network,
which learns what response the player makes to different
conditions in the game. The model built is successful at
imitating player behavior, but may be less useful for
reasoning about or recognizing players’ intents and goals.
A different approach is used by (Fagan and Cunningham
2003). As a basis for a player model, the different possible
player states, and actions possible for each state, are
determined. Actions may cause the player to change state,
or may result in the player maintaining the same state. In
the simple “Space Invaders” derived game example
presented the three player states are ‘safe’, ‘unsafe’ and
‘very unsafe’. Actions possible include ‘hide’ or ‘emerge’
when entering or leaving cover, and ‘dodge’ and ‘fire’.
Here, by learning from sequences of actions that players
typically follow, the game is able to predict with reasonable
accuracy what action they will take next, at any given
moment. This approach and that of (McGlinchy 2003) seem
promising but both have yet to be scaled up to complex
games, where there may be very rich sets of states and
actions to consider.
Whatever methods are to be used, the first problems to be
faced are to decide what data to collect, and what methods
should be used to interpret it.

Challenges in Building Intelligent Interfaces for
Games

Aside from the practical challenges of how to actually
implement an intelligent interface, there are several
challenges that must be overcome for intelligent interfaces
to become accepted and successful in games.
Some of the challenges become readily apparent if one
considers ‘Clippy’, the user assistant in recent versions of
Microsoft Office. While some people may find Clippy
useful, the consensus appears to be that this intelligent
interface is simp ly an annoyance to be deactivated as soon
as possible (Google 2004). Assistant functionality needs an
off switch. To minimize the likelihood of players reaching
instantly for the off switch the interface needs to offer help
without being too intrusive or irritating. This alone is a very
significant challenge.
We also have the challenge of being able to reliably
interpret not just players’ intentions, but also their
emotional state to be able to offer help at just the right
moment. While some progress has been made on measuring
the emotional state of players without the use of additional
non-game peripherals to monitor the player (Sykes and
Brown 2003), more work is required here to determine its

reliability. It may help to use additional means of observing
players (such as “EyeToy” or heart-rate monitors), but for
the majority of games the existence of such devices cannot
be assumed.
In adapting difficulty based on players’ current
performance, developers need to ensure that their games
don’t remove all challenge. Our own survey of gamers’
attitudes indicates, unsurprisingly, that players dislike
games that are too easy as much as games that are too
hard. When increasing the difficulty there is also, clearly, a
risk of increasing the difficulty too much – and achieving
the opposite of the intended goal of maintaining interest in
the game.
Answering these challenges require careful balancing; just
enough help and just enough intervention. And ultimately,
careful consideration must be made of player preferences
and motivations.
With the benefits of intelligent interfaces being unproven,
and the effort and difficulties in developing them being
significant, it is unlikely that any game developer will be
keen to integrate them in current projects. Building
prototypes and conducting thorough evaluations to
determine whether they do actually provide the benefits
that we hope they might is another important challenge –
and is the challenge on which we are currently embarking.

Conclusions
In this paper we have argued that there are clear
applications of intelligent interfaces to digital games. Such
interfaces can be used to assist the user in a number of
ways and can be applied to a variety of game genres.
Despite there being many applications and possible
benefits, there are also clear challenges to be overcome
before intelligent interfaces can be used in mainstream
game development. It will most likely fall to the academic
community to prototype such interfaces in order to more
clearly illustrate the benefits and to find solutions to the
challenges before their commercial adoption can become a
reality.

Acknowledgements
Daniel Livingstone would like to thank the Carnegie Trust
for the Universities of Scotland for supporting this work.
The authors would also like to thank the anonymous
reviewers for their comments on an earlier version of this
paper.

References
Barnes, J & Hutchens, J, 2002, Testing Undefined Behaviour as a
Result of Learning, in AI Game Programming Wisdom, S. Rabin
(ed), pp 615-623, Charles River Media

Beal, C., Beck, J., Westbrook, D., Atkin, M., and Cohen, P.,
2002, Intelligent Modeling of the User in Interactive
Entertainment. In AAAI Spring Symposium on Artificial
Intelligence and Interactive Entertainment. Stanford, CA

Charles, D., 2003, Enhancing Gameplay: Challenges for Artificial
Intelligence in Digital Games. in Level Up: Digital Games
Research Conference. Utrecht

Jenkins, D., Livingstone, D., Maclean, D., Reglinski, A., 1997,
Supporting Safety-Related Projects with a Designer's Assistant,
in Proceedings of the 1st International Conference on
Autonomous Agents, Marina Del Rey, CA, USA, Feb 5-8.

Fagan, M. and P. Cunningham, 2003, Case-Based Plan
Recognition in Computer Games in ICCBR 2003, 5th
International Conference on Case-Based Reasoning. Trondheim,
Norway: Lecture Notes in Computer Science 2689, Springer,
Berlin.

Foner, L.N., 1997, Yenta : A Multi-Agent, Referral Based
Matchmaking System, presented at The First International
Conference on Autonomous Agents (Agents '97), Marina del Rey,
CA

Houlette, R., 2004, Player Modeling for Adaptive Games, in AI
Game Programming Wisdom 2, S. Rabin, Editor. Charles River
Media, Inc.: Hingham, MA.

McGlinchy, S., 2003, Learning of AI Players from Game
Observation Data. In Q. Mehdi, N. Gough and S. Natkin (Eds.),
Game-On 2003, 4th International Conference on Intelligent
Games and Simulation, London: 197-200.

McNamee, B. and P. Cunningham, 2003, Creating socially
interactive non-player characters: The µ-SIV system.
International Journal of Intelligent Games & Simulation, 2(1):
http://www.scit.wlv.ac.uk/~cm1822/ijigs21.htm.

Maybury, M., Wahlster, W. (Eds), 1997, Readings in Intelligent
User Interfaces . Morgan Kaufmann

Miller, S., 2004. Auto-Dynamic Difficulty. In Game Matters,
January 19th 2004, http://dukenukem.typepad.com/

Rabin, S., 2002, AI Game Programming Wisdom, Charles River
Media

Rhodes, B. J. and Starner, T., 1996, Remembrance Agent: A
continuously running automated information retrieval system. In
proceedings of The Practical Application of Intelligent Agents and
Multi-Agent Technology (PAAM 96), London, UK

Rogers, S. and Iba, W. (Eds), 2001, Adaptive User Interfaces,
Papers from 2000 AAAI Spring Symposium, Technical Report
SS-00-01. Menlo Park, Calif: AAAI Press.

Sykes, J. and S. Brown, 2003, Affective Gaming: Measuring
emotion Through the Gamepad. In Proceedings of CHI 2003.

Google Web Search, 2004,
http://www.google.co.uk/search?q=office+assistant+paperclip

