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Abstract 

We propose the use of hierarchical (HTN) planning 
techniques to encode strategies that one or more Bots 
should execute while acting in highly dynamic 
environments such as Unreal Tournament© games. Our 
approach allows the formulation of a grand strategy but 
retains the ability of Bots to react to the events in the 
environment while contributing to the grand strategy. 

Motivation   
First person-shooter are a very popular kind of game due 

to their fast pace and reflexes required by their players. 
Researchers have observed that such games have also the 
potential to become testbed for different AI algorithms 
(Laird & van Lent, 1999).  

One of the games that has caught the attention from the 
AI research community is Unreal Tournament (from now 
on UT) developed by Epic Megagames, Inc. Server-client 
architecture has been developed allowing different 
programs to control the behavior of UT Bots.  This has led 
to programming environments that follow an event-driven 
paradigm, by which the Bot reacts to the changes in the 
environment. These changes are received as messages from 
the UT server. 

One of the issues with event-driven paradigms is the 
difficulty of formulating a grand strategy while individual 
Bots must react to an ever-changing environment. We 
advocate the use of HTN planning techniques to 
accomplish the goals of formulating a grand strategy and 
assigning tasks for the individual Bots to accomplish this 
strategy. At the same time we retain the event-driven 
programming of each individual Bots. By doing so, Bots 
are able to react in highly dynamic environments while 
contributing to the grand strategy. 

In the next section we will study current approaches for 
controlling Bots in the client-server architecture. Next, we 
discuss how HTN planning can be used to formulate 
strategies and still allow the individual Bots to react to 
events. In the next section we describe some technical 
difficulties we encountered and how we deal with them. 
Finally we make some remarks. 
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Client-Server Architecture for Controlling 
Bot Behavior 

The programming environment for UT Bots follows a 
client-server architecture first developed at the University 
of California, Information Science Institute. The UT server 
provides sensory information about events in the UT world 
and controls all the gameplay events. The client program 
uses this information to decide commands controlling the 
behavior of a Bot and passes them to the server. The server 
sends two kinds of messages: asynchronous and 
synchronous messages. Asynchronous messages indicate 
special events such as the Bot “dying”. Synchronous 
messages are sent at regular intervals and include 
information such as the state of the game. 

The behavior of UT Bots is under script control. Scripts 
are written in a language called UnrealScript (Sweeney, 
2004). UnrealScript is a C++/Java variant that handles 
concepts of UT such as events taking a certain amount of 
time to complete, and events that are context dependent. A 
major advantage of UnrealScript is that it is object 
oriented, allowing third-parties to create enhancements. 
The purpose of these enhancements is to provide high level 
programming interfaces to the UT server making easier to 
implement new behaviors for the Bots. We will now 
discuss two such enhancements. 

Java Bots 
The Java Bots project started at CMU. The Java Bot 

allows the user to create UT Bots without having to worry 
about server interface issues such as network protocols 
(Marshall et al., 2004). For example, the main Java class 
creating a Bot (Bot) contains a Java method for connecting 
to the server.  Control is driven by events and the state that 
the Bot is currently in. Figure 1 shows a sample control 
code. Depending on the value of the variable state, it 
selects between the corpuses of action exploring, healing or 
hunting. 

 



switch( state ) { 
default: 

case EXPLORING: 
explore(); 

break; 
 

case HEALING: 
heal(); 
break; 

 
case HUNTING: 

hunt(); 
break; 

} 
Figure 1: Excerpt of the code from a JavaBot 

 
Event handlers are used to detect relevant events that may 

require interrupting the current action been executed to 
select a new one. For example, while performing the 
exploring action, the Bot may interrupt the explore action 
and start a hunting action if it detects an enemy in the 
surrounding area.  

Soar Bots 
The Soar Bot project was developed at the University of 

Michigan. Soar Bot is based on the Soar Architecture 
(Laird et al., 1987). Soar uses operators, which define basic 
deliberative acts. Operators consist of preconditions and 
effects. This is the standard representation of operators in 
AI Planning (Fikes & Nilsson, 1972). Preconditions indicate 
the conditions that must be valid in the state of the world to 
apply the operator and the effects indicate the changes in 
the state of the world when the operator is applied. For 
example, an operator may have as condition that an enemy 
is within visual range of the Bot and as effect to start 
hunting at the enemy. This hunt effect may be the condition 
for another operator. This is the same kind of behavior that 
can be encoded by event handlers and conditional 
branching such as the one represented in Figure 1. 
However, operators allow a more declarative representation 
of the behavior of the Bots. 

Soar also defines rules, which select and apply operators. 
They can compare and terminate the execution of 
operators. Soar uses a mechanism to select the more 
suitable rule for a particular situation, which in turn will 
determine which operator is selected. For example, one rule 
may select the operator for hunting an enemy in the event 
of sighting it. Another rule may select to run from the 
enemy also in the event of sighting the enemy. Soar will 
choose the rule (and as a result the operator) that is more 
suitable according to their utility in the current situation 
(Laird & Duchim, 2000). Since rules are evaluated 
continuously, Soar can react quickly to changing situations 
by interrupting the execution of the current operator and 
selecting a new one. Soar Bot uses a Tcl wrapper to deal 
with communication issues with the server. Soar Bots work 
only for one Bot (i.e., it can’t coordinate multiple Bots). 

Hierarchical (HTN) Representations of Bot 
Strategies 

Several variants have been proposed for hierarchical 
planning (e.g., (Wallace; 2003)). The particular variant we 
follow in this paper is the one described in (Nau et al., 
1999). This variant has been used successfully in several 
real-world applications including the Bridge Baron game 
(Smith et al., 1998). We will show how this variant can be 
used to encode high-level strategies while coordinating 
individual UT bots. 

HTNs (for: Hierarchical Task Networks) is a formalism 
for representing hierarchical plans. HTNs refine high-level 
tasks into simpler tasks. In the context of UT Bots, high-
level tasks indicate complex goals such as Domination(X), 
where X is the list of objects of type location that must be 
controlled. In domination games, when team members steps 
into one of the locations in X, the team gets a point for 
every five seconds it remains under the control of the team. 
The game is won by whoever team gets a certain amount of 
points first. 

Low-level tasks range from intermediate goals such as 
capturing a certain location to concrete actions such as 
attacking an enemy in the surrounding area. Tasks 
representing concrete actions are called primitive tasks 
since they cannot be decomposed into other subtasks. 
Compound tasks are tasks that can be further decomposed 
into simpler subtasks.  

Formally, a hierarchical Task Network  is a set of tasks 
and their ordering relations, denoted as N=({t1,…,tm},<) 
(m≥0), where < is a binary relation expressing temporal 
constraints between tasks. One of the most important 
properties of HTNs, and of particular interest for 
representing UT Bots strategies, is that HTNs are strictly 
more expressive than operator representations (Erol et al., 
1994), which use preconditions and effects.  

 
Method 
    Head: Domination(X) 
    Preconditions: 
        1. numberPlayersTeam(Nteam), 
        2. numberLocations(X,N), 
        3. Nteam > N/2 + 2 
        4. SelectLocsGeographTogether(X,P,N/2+1) 
        5. Divide3Groups(N/2+1,T1,T2,T3), 
        6. RemainingLocations(RP,X,P) 
    Subtasks: 
        1. CoverLocations(T1,P) 
        2. PatrolLocations (T2,P) 
        3. HarrassLocations(T3,RP) 
   Orderings: 
        none                     

Figure 2: Example of a method for decomposing the 
task domination 

The knowledge artifacts for representing under which 
conditions a compound task can be decomposed are called 



methods. Methods encode strategies for accomplishing 
compound tasks. A method is an expression of the form 
M=(h,P,ST,<), where h (the method's head) is a compound 
task, P is a set of preconditions, and ST is the set of M's 
(children) subtasks. Figure 2 shows an example of a 
method for UT Bots. The task decomposed by method is 
Domination(X). This method states a strategy that divides 
the team into three groups (T1, T2, T3). Group T1 will cover 
half of the locations plus one (P denotes these locations). 
Each location in P is covered by one member of T1 
(Subtask 1). Group T2 will patrol throughout the points in P 
(Subtask 2). Group T3 will harass the members of the 
opposing team in the remaining locations (Subtask 3). 

A method is applicable to decompose a task if the 
preconditions are valid in the current state of the world. 
The method in Figure 2 requires that the team to be as large 
as at least half of the locations plus two (Preconditions 1-
3). The 4th precondition sets P to be half of the locations 
plus one that are geographically together. The 5th 
precondition divides the team in 3 groups, T1, T2, and T3. 
Group T1 will have N/2 + 1 members. The remaining 
elements of the team are distributed evenly among T2, and 
T3. The last precondition sets RP to be the locations in X 
that are not in P. 

Figure 3 shows an example map. The three white squares 
represent the domination locations, X. If there are 4 Bots in 
the team, the method shown in Figure 2 becomes 
applicable. In this situation, P could consist either of the 
middle and the upper right locations or the middle and the 
lower left locations. T1 consists of 2 Bots, each of which 
will be assigned to one location in P. T2 consists of a single 
Bot, which will be in charge of patrolling the 2 locations in 
P. T3 consists of the remaining Bot and will harass any 
enemy Bot in the location not in P.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: A map with 3 domination locations 
represented by the white boxes  

 
An important characteristic of HTN planning is that 

method decomposition does not change the state of the 
world. The compound tasks represent high level goals and 
the methods capture strategies to achieve (decompose) 
them. The actual changes in the world are done when 
accomplishing primitive tasks. These tasks are 
accomplished by operators, which differ from the standard 
operators in that they have no preconditions, only effects. 
The reason is that the actual conditions are evaluated when 
selecting the adequate strategy (in the method selection). 
Once the primitive tasks are reached, the strategy has been 
selected and it is executed by the Bots performing concrete 
actions (i.e., the operator’s effects). 
Formally an operator is an expression of the form 

O=(h,effects), where h (the operator's head) is a primitive 
task, and effects are indicate how the world changes. Figure 
4 shows an example of an operator achieving the primitive 
task CoverLocation(B,L). In this task an specific Bot, B, is 
assigned to cover an specific location L. The effects of this 
operator are to move B to location L and defend it. 

Operator 
         Head: CoverLocation(B,L) 
         Effects: 
                     Move(B,L) 
                      Defend(B,L) 

Figure 4: Example of an operator commanding a Bot B 
to cover location L 

Built-In Preconditions and Effects  
Initially, our plan was to represent the methods and 

operators using a declarative syntax such as the one 
exemplified in Figures 2 and 4. We found quickly two 
problems with this approach. First, preconditions such as 
the ones described in Figure 2 can be difficult to express. 
Take for example the 4th precondition, which selects half 
plus one domination locations in X that are geographically 
together. Expressing such a condition in a declarative 
language involves making complex expressions. 
Furthermore, even if we could develop a complete 
declarative language, most likely processing such 
expressions would take prohibitive long time in a very fast-
paced environment such as UT. Second, effects such as 
Move(B,L) also represents complex executions. Any 
definition of Move will have to consider a path to get there 
and contingencies that may occur (e.g., finding an enemy 
along the way).  

Our solution for both problems was to use Java Bot 
methods to define a method’s preconditions and operator’s 
effects. This allows for a rapid evaluation of preconditions 
and executing effects (commanding Bots to execute 
actions). These Java Bot functions are built-in functions 
that preserve the principles of strategic planning resulting 
from the HTN task decomposition process. Figure 5 shows 
part of the declaration of the method presented in Figure 2. 
It declares the method’s head and all the parameters.  The 



preconditions are evaluated in the build-in function 
evalCondHalfPlusOne.  One of the subtasks, 
CoverLocations, is also shown with its associated 
parameters. 

 
<ooba_method task="Domination">                                                                      
    <ooba_listparameter> 
          <ooba_parameter id =”X”> 
          <ooba_parameter id =”T1”> 
          <ooba_parameter id =”T2”> 
          <ooba_parameter id =”T3”> 
          <ooba_parameter id =”P”> 
          <ooba_parameter id =”RP”> 
    </ooba_listparameter> 
    <ooba_routine def=”evalCondHalfPlusOne”/> 
    <ooba_listTasks> 
       <ooba_task id="CoverLocations" order="0"> 
          <ooba_listparameter> 
             <ooba_parameter id =”T1”> 
             <ooba_parameter id =”P”> 
          </ooba_listparameter> 
       </ooba_task> 
    … 
   </ooba_listTasks> 
</ooba_method> 

Figure 5: representation of the Method of Figure 2 in 
the XML language description 

 
Operators are defined similarly, with their effect being 

the call to a Java Bot routine that uses the standard event-
driven paradigm to control the behavior of the Bot. An 
important restriction is that each operator affects a single 
Bot.   Thus, the coordination of the Bots is reflected in the 
hierarchy and not in the specific actions they undertake. 

Strategy Change versus Strategy Modification 
Once the strategy is selected, it is pursued until the 

strategy is changed (i.e., a new strategy is selected). While 
the Bots react to the changes in the environment, the 
strategy is not modified. The main advantage is that this 
scheme ensures that a unified strategy will be pursued. The 
main drawback is that conditions may change so 
dramatically the current strategy may not be adequate 
anymore. We will extend our approach to continuously 
evaluate applicability conditions of the high-level 
strategies. When the applicability of the current strategy 
falls below a pre-defined threshold, a new strategy is 
selected for execution.  

We will also explore replanning techniques as an 
alternative to selecting a new strategy. In replanning, parts 
of the current strategy are modified to account for changes 
in the current environment (Petrie, 1991). The main 
advantage over selecting a new strategy is that, by 
modifying the current strategy, some tasks may not need to 
change at all, and Bots performing these tasks can continue 

performing them. In contrast, a change in strategy will 
result in a change of the task that every Bot is performing. 

Final Remarks  
One of the issues with event-driven paradigms typically 

used to control the behavior of the Bots is the difficulty of 
coping with seemingly contradictory goals. On the one 
hand the Bot needs to react quickly in a highly dynamic 
environment. On the other hand the Bot must contribute to 
the grand strategy to win the game. We advocate the use of 
HTN planning techniques to accomplish these goals. A 
grand strategy is laid out and event-driven programming 
allows the Bots to react in highly dynamic environments 
while contributing to the grand task. 
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