
Symbolic Representation of Game World State: Toward
Real-Time Planning in Games

Jeff Orkin

Monolith Productions, Inc.
Kirkland, WA 98033
http://www.lith.com

jorkin@blarg.net

Abstract

As the game development effort scales, AI
developers are facing new challenges in terms of
implementation, workflow, and game design.
The needs of today’s games are outgrowing the
typical techniques of modeling behavior with
Finite State Machines and Rule Based Systems.
This paper argues that a regressive real-time
planning system is better suited to address the
challenges game developers are facing, and
presents symbolic representation strategies that
we have employed to allow planning in practice
in today’s games.

Introduction

With each generation of games, the bar is raised
for AI, and game AI developers encounter new
challenges. Faced with difficult problems,
developers turn to academic formalisms for
proven solutions. When Non-Player Characters
(NPCs) needed to navigate game worlds,
developers turned to A* [Stout96]. With the
need to model complex behaviors, developers
employed Finite State Machines (FSM) and Rule
Based Systems (RBS).

Today game AI developers are encountering new
challenges in terms of implementation,
workflow, and game design. The scale of
development is rapidly increasing, and there is a
trend toward more open-ended gameplay. As
production timelines, team sizes, and scope of
game designs grow, AI developers need to share
behaviors among NPCs or even between
projects, and delegate AI responsibilities to other
team members. Non-linear game designs require
smarter NPCs that can learn and use complex
reasoning to find alternate solutions to problems.

Demands of the next generation of games are
starting to outgrow the common techniques of

implementing NPC behaviors with explicit FSM
transitions or RBS rules. The formalism of a
real-time, regressive Goal Oriented Action
Planning (GOAP) system addresses the issues
that game AI developers are facing. Planning
systems are not new to the field of AI, but have
seldom been used, if at all, to model NPC
behavior in commercial games. A GOAP system
imposes a modular architecture that facilitates
sharing behaviors among NPCs and projects.
Atomic goals and actions of a GOAP system are
easy to read and maintain, and can be sequenced
and layered to create complex behaviors. The
GOAP architecture lends itself to a separation of
implementation and data that is ideal for the
workflow of game developers. Regressively
searching for plans in real-time affords NPCs
opportunities to learn and find multiple solutions
to problems.

If NPCs are expected to formulate their own
plans in real-time, they need to be able to
understand how actions and goals relate to one
another. Representing the goal state and action
preconditions and effects symbolically gives
NPCs the means to understand the relationships
between goals and actions. However, diluting
increasingly realistic game worlds down to a set
of symbols can be quite challenging. We first
detail the benefits of a GOAP system, and then
present strategies that we have employed to use
planning in practice.

The Modular GOAP Architecture

A regressive GOAP system imposes an intuitive,
modular architecture that maps well to the
terminology game designers use to characterize
NPC behavior. We modeled our architecture
after the structure defined by the Planning
Domain Definition Language [PDDL]. At the
top level, an NPC has a set of goals that he or

she wants to satisfy. The NPC tries to satisfy the
goal or goals that are most relevant to his or her
current situation, based on some prioritization.
A planner searches for the sequence of actions
that will satisfy the goal. Each action may have
preconditions, which also need to be satisfied by
the planner [Nilsson98].

Actions, too, may be prioritized to resolve cases
where multiple actions have the same effects.
This produces a layered system, where higher
priority actions override others when
appropriate. For example, the
AttackFromVehicle action overrides the
basic Attack action when an NPC is riding a
vehicle. Both of these variations of the Attack
action can satisfy an EliminateEnemy goal.

There is no explicit mapping between goals and
actions, or actions to other actions. The planner
searches for valid sequences of actions, and
considers an action to be a valid neighbor if it
has an effect that solves some unsatisfied symbol
in the goal state, as described in [Orkin03]. This
decoupling of goals and actions facilitates
sharing of behaviors, as it allows developers to
pick and choose which goals and actions will be
available to an NPC, or to all NPCs in a game.
Conversely, decoupling allows developers to
choose goals or actions to exclude from the set of
possible behaviors. This eliminates the
proliferation of flags typically found in game AI
code, for conditionals such as CanSwim,
CanFly, KicksDoors, or DestroysDoors.

Sharing of behaviors is further facilitated by the
simplicity of each individual goal and action. In
order for the planner to algorithmically search
for a satisfying plan, each goal and action needs
to share a basic structure. The similarity
between modules reduces the effects of coding
style, making it easier for multiple developers to
collaboratively implement complex behaviors.

Workflow with Designers

While it is possible to create data-driven FSMs
and RBSs [Yiskis03, Champandard04], where
the transitions or rules are separated from the
implementation of the behaviors, this separation
of code and data does not correlate well with the
typical workflow of a game development team.
Game Designers are responsible for designing
spaces, placing scenarios, and directing the

action from a high level. They are not concerned
with micro-managing the decisions of NPCs, and
not accustomed to thinking in terms of the
logical expressions that drive state transitions or
rules, let alone hierarchies of states or rules.
Engineers are still responsible for the transitions
or rules, even if they are separated into data.

A GOAP system, with decoupled actions and
goals with no explicit connections, gives a
separation between implementation and data that
is better suited for the workflow of game
developers. Engineers implement the atomic
actions and goals, and embed the preconditions
and effects within. Designers use data files to
specify which goals and actions are available to
different types of NPCs. This lets designers
think about what the NPCs can do, without
having to worry about the logic of when or how
an NPC decides to do it. As long as Engineers
specify appropriate preconditions and effects,
NPCs will make use of the various goals and
actions when it makes sense.

Our GOAP system bears similarity to, and was
partially inspired by, the ABL reactive-planning
language developed for Façade [Mateas02]. The
separation between implementation and data is a
key difference between our work and ABL. We
took a toolkit approach, where engineers
implement decoupled behaviors derived from
primitive building blocks for goals and actions,
and designers assign the behaviors to NPCs
through data files. ABL is a language intended
for use by designers to implement behaviors
themselves.

Open-Ended Game-Play

If we free designers of the responsibility of
micro-managing NPC behavior, they can
concentrate on building more detailed worlds
that offer more opportunities to both the player
and the NPCs. The current trend towards open-
ended worlds with less linear game-play requires
NPCs with more intelligence and depth to their
behavior. NPCs need a much wider range of
behaviors than the simplistic patrol and pursue
model.

A GOAP system gives NPCs the means to
achieve the desired depth of behavior. This point
is best illustrated with scenarios we have
observed while developing our games. While
testing a new feature that allows the player to
steal an NPC’s weapon, a developer was

surprised when the NPC responded by running to
grab a pipe off the wall and returning to flog the
player with it! On another occasion, a developer
who was being chased by an NPC ran into a
room, closed the door, and blocked it with his
body. After the pursuing NPC had no success
kicking open the door, he out-smarted the player
by diving through a nearby window and coming
at the player from another direction.

These scenarios are not remarkable on their own,
as the same results could be achieved with an
FSM or RBS. The beauty of the GOAP solution
is that it does not require any explicit rules to
define how to handle blocked doors or stolen
weapons. Reasonable solutions fall out for free
based on the preconditions and effects of actions
sequenced to satisfy goals. An empty-handed
NPC with the goal of attacking an enemy
satisfies the precondition of being armed by
obtaining a weapon in any way possible. When
an NPC finds his desired path obstructed by an
impassable door, he abandons his plan and
formulates a new one.

The preceding examples describe NPCs
reasoning by selecting actions from a
predetermined set, but it is also possible for
NPCs to learn new actions as suggested in
[Isla02]. NPCs might augment their set of
possible actions after observing someone else
performing an action. Additional effects of
existing actions can be learned through
observation or experimentation.

Symbolic Representation of Game
World State

Despite the advantages of a GOAP system, the
question remains, is it practical to encode an
NPC’s knowledge of the world symbolically?

We have employed a number of strategies to
overcome the difficulties of symbolically
representing the state of a detailed game world.
These strategies have been applied to two First
Person Shooters (FPS) in development at
Monolith Productions, and have allowed us to
ensure that our GOAP system supports real-time
combat with up to ten NPCs at once. Meeting
our performance requirements necessitates a
system that can formulate plans quickly, and
minimizes the frequency of new plan

formulation. The ten NPC limit is imposed more
by the graphics engine than by the AI systems.

We represent the state of the world with a data
structure that consists of a fixed-size array of
symbols, implemented as key-value pairs. Keys
are represented by enumerated world properties.
Values are a union of possible data types. Each
NPC maintains its own symbolic view of the
world through a world state member variable.
The world state includes symbols for properties
such as the NPC’s position, weapon, amount of
ammo, target object, and health of target object.

Designers assign a set of goals per type of NPC.
Engineers implement the goals themselves. Each
goal specifies the satisfaction state of some
subset of the world state symbols. For example,
and EliminateEnemy goal is satisfied when
the NPC’s current target has a health of zero.

Similar to the goals, actions are also
implemented by engineers, and designers assign
sets of actions per type of NPC. The effects of
an action are specified as a subset of the world
state symbols. The planner searches for actions
that have effects that satisfy some goal. Actions
may in turn have preconditions that need to be
satisfied by the planner, also specified as a subset
of the world state symbols.

In order to avoid combinatorial explosion while
the planner searches for a valid sequence of
actions to satisfy a goal, we hash our actions by
the symbols they affect, and apply heuristics to
guide the search. Hashing the actions by their
effects allows the planner to quickly find
candidate actions that may solve one of the
unsatisfied symbols of the goal world state. The
regressive search is implemented as an A* search
that attempts to minimize the number of actions
needed to solve the remaining unsatisfied goal
world state symbols. [Orkin03] illustrates this
process with a diagram.

While hashing and heuristics optimize the
planner’s search, we still do not want to plan
more often than we need to. We only formulate
a new plan when the current plan has been
invalidated, or the most relevant goal has
changed. The frequency of re-planning varies
depending on the NPC’s surroundings, but is far
less frequent than every frame. The time
between planner searches can sometimes be
measured in minutes!

Let’s examine our previous example of the NPC
who grabs a pipe off the wall to attack the player.
The NPC’s most relevant goal is
EliminateEnemy, which can be satisfied with
an Attack action. The Attack action alone
cannot satisfy the goal, because it has a
precondition that the symbol Armed is set to
true, and the NPC is currently bare-handed.
The planner finds two candidate actions that can
arm an NPC, DrawWeapon and
PickupWeapon. DrawWeapon is not a valid
choice, because the NPC does not have a
holstered weapon to draw. PickupWeapon
can be satisfied by grabbing the pipe off the wall,
but it has an additional precondition that the
NPC is standing at the world position of the pipe.
The planner continues searching until it
formulates the following plan to satisfy the
EliminateEnemy goal:
 Goto(pipe)
 PickupWeapon(pipe)
 Goto(target)
 Attack(target)

Discussion of GOAP in this paper is limited to
our experience with games of the FPS genre. It
is easy to extrapolate how these same techniques
could be applied to games of other genres, for
example Real Time Strategy (RTS) games.
Rather than planning the actions of individual
units, a computer player could use a GOAP
system to plan at a higher level, for example to
select a sequence of actions for base building.

Mixing Symbolic and Non-Symbolic
Preconditions

An NPC who formulates plans to eliminate
threats and stay out of danger needs to know
who is alive, who is dead, and who is aiming at
whom. It would be prohibitively expensive in
terms of memory and processing for each NPC
to keep track of the state of everyone else. By
taking an agent-centric point-of-view, the NPC
can dilute information down to a minimal set of
symbols. Rather than maintaining symbols for
everyone’s health and current target, the NPC
can simply store a single symbol representing
whether his current threat is alive, and another
indicating whether the threat is currently aiming
at the NPC. Outside of the planner, the NPC’s
sensors run custom processes to select the
current threat, and monitor the threat’s state.

The agent-centric strategy solves some problems,
but there are still some action preconditions that
cannot be precomputed by sensors. An NPC
who wants to look at a disturbance needs to
know if the point in space of the disturbance’s
origin is visible. An NPC who wants to dive into
cover needs to know if there is enough room in
front of him to play a dramatic animation. There
are an infinite number of points in space that the
NPC may be interested in, and a large number of
animations that the NPC could potentially play.
It would be impractical for a sensor to keep track
of the visibility to every potentially interesting
point in space, or the clearance available for the
total translation of every animation.

The purpose of representing game state
symbolically is to allow the planner to make
connections between goals and actions, and
actions to other actions. If there are
preconditions that the planner is not intended to
solve, they do not need to be represented by
symbols. For instance, if the planner finds that
some point in space is not visible to the NPC,
there exists no action that will make it visible. A
strategy for handling tests that need to be
performed in real-time, like visibility tests of
physics collision tests, is to allow actions to
contain custom preconditions with arbitrary
implementations, known as Context
Preconditions. These preconditions may run any
piece of code to check an action’s validity in the
context of the game world. Context
Preconditions provide an alternative to symbolic
representation of preconditions, and can be used
to prune the search tree while planning.
Similarly, actions may have Context Effects,
which have arbitrary effects on the game world
that do not concern the planner.

Future Work

There is a lot of room for improvement in the
implementation of the planner. We imposed a
number of limitations to get acceptable real-time
performance from a GOAP system in practice.
These limitations include only allowing
conjunctions in action preconditions, and
maintaining a static set of symbols in the
planner’s working memory. As GOAP systems
become more prevalent in commercial games,
improved implementations may allow
preconditions to employ the full range of logical
expressions, and dynamic sets of symbols in
working memory.

Currently games handle action planning and path
finding separately. A GOAP architecture shares
much in common with a pathfinder, and it may
be beneficial to merge these two systems. Aside
from the implementation benefits of code
sharing, NPCs could behave much more
intelligently if they could factor their goals into
their pathfinding heuristics. [Champandard03]
presents similar ideas in a routing technique
called Pathematics.

While we have acknowledged the potential for
learning with a GOAP system, we have not yet
applied these ideas to any games. Once planning
becomes more common in games, the ability to
learn new plans would be the next step.

Acknowledgements

Thanks to Alexander Nareyek and to the
members of the Goal Oriented Action Planning
(GOAP) Workgroup of the Artificial Intelligence
Interface Standards Committee [AIISC] of the
International Game Developers Association
[IGDA].

References

[AIISC] AIISC of the AI SIG of the IGDA,
http://www.igda.org/ai/

[Champandard03] Champandard, A. J.,
“Pathematics: Routing for Autonomous Agents,”
http://www.base-sixteen.com/Navigation/, 2003

[Champandard04] Champandard, A. J., AI Game
Development, New Riders Publishing, 2004

[IDGA] International Game Developers
Association, http://www.igda.org

[Isla02] Isla, D. and Blumberg, B., "New
Challenges for Character-Based AI in Games,"
Artificial Intelligence and Interactive
Entertainment: Papers from the 2002 AAAI
Spring Symposium, AAAI Press, 2002

[Mateas02] Mateas, M. and Stern, A., “A
Behavior Language for Story-based Believable
Agents,” http://www-
2.cs.cmu.edu/~michaelm/publications/AI-

IE2002.pdf

[Nilsson98] Nilsson, N. J., “STRIPS Planning
Systems,” Artificial Intelligence: A New
Synthesis, Morgan Kaufmann Publishers, Inc.,
1998

[Orkin03] Orkin, J., "Applying Goal-Oriented
Action Planning to Games," AI Game
Programming Wisdom 2, Charles River Media,
2003

[PDDL] Planning Domain Definition Language,
http://www.informatik.uni-
freiburg.de/~hoffmann/ipc-4/pddl.html

[Stout96] Stout, W. B., “Smart Moves:
Intelligent Path-finding,” Game Developer
Magazine, CMP Media LLC, 1996.

[Yiskis03] Yiskis, E., "Finite-State Machine
Scripting Language for Designers," AI Game
Programming Wisdom 2, Charles River Media,
2003

