
A Tactical and Strategic AI Interface for  
Real-Time Strategy Games 

Michael van Lent, Paul Carpenter, Ryan McAlinden, Poey Guan Tan 
 

University of Southern California 
Institute for Creative Technologies 

13274 Fiji Way 
Marina del Rey, CA 90292 

[vanlent, carpenter, mcalinden]@ict.usc.edu  
 

DSO National Laboratories 
20 Science Park Drive 

Singapore 118230 
tpoeygua@dso.org.sg 

 
 

Abstract 
Real Time Strategy (RTS) games present a wide range of 
AI challenges at the tactical and strategic level.  
Unfortunately, the lack of flexible “mod” interfaces to these 
games has made it difficult for AI researchers to explore 
these challenges in the context of RTS games.  We are 
addressing this by building two AI interfaces into Full 
Spectrum Command, a real time strategy training aid built 
for the U.S. Army.  The tactical AI interface will allow AI 
systems, such as Soar and Simulation Based Tactics 
Mining, to control the tactical behavior of platoons and 
squads within the environment.  The strategic AI interface 
will allow AI planners to generate and adapt higher-level 
battle plans which can in turn be executed by the tactical 
AI.  This paper describes these two interfaces and our plans 
for identifying and addressing the research challenges 
involved in developing and deploying tactical and strategic 
AI systems. 

Introduction   
 The majority of game-related artificial intelligence 
research projects have focused on First Person Shooter 
(FPS) games such as Quake II (Laird 2001), Half-Life 
(Khoo et al. 2002), and Unreal Tournament (Young et al 
2004).  To a large extent this is due to the flexibility and 
power of the publicly available “mod” interfaces built into 
games in this genre.  These mod interfaces allow 
researchers to quickly interface their AI architectures with 
the game engine and tailor the game environment to meet 
their needs.  Unfortunately, it turns out that reaction time 
and aiming skill are some of the most important factors in 
success in an FPS game.  Deep reasoning about tactics and 
strategy do not end up playing as big a role as might be 
                                                 
Copyright © 2002, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 
 

expected.  This limits the relevant AI challenges to 
considerations such as real-time reactivity, aiming, and 
steering behaviors without considering some of the higher-
level activities such as group coordination and mission 
intent.   
 In order to move towards deeper AI challenges, a 
number of projects have used FPS game engines to build 
completely different types of environments that 
incorporate a greater range of AI capabilities.  This is a 
creative and effective solution that allows the researchers 
to customize the game to their research interests and 
demonstrate how novel approaches to AI can support new 
game features and genres.  To date the majority of these 
game mods for research have focused on interpersonal 
social interaction (Laird et al. 2002, Gordon et al. 2004) 
and interactive narrative (Young et al. 2004).   
 However, when the focus of the AI research effort is 
tactical behavior and strategic reasoning a different game 
genre, Real-Time Strategy (RTS), represents a more 
suitable environment.  RTS games involve both strategic 
reasoning, where the AI controller is developing a high-
level battle plan, and tactical behavior, when the AI units 
are executing the orders contained in the battle plan.  
Unfortunately, the mod interfaces in RTS games are not as 
flexible as FPS mod interfaces particularly when it comes 
to interfacing external AI architectures.  This is primarily a 
result of RTS games that cover a broad range of missions 
and goals.  For example, FPS games typically include a 
player and NPC units whose sole mission is to destroy 
others around them.  Weapon types, terrain, and arena (i.e. 
futuristic, historical conflicts) are independent of the AI.  
However, RTS games must take these additional aspects 
into account for each game, thus catering the AI to a 
specific environment. 
 This paper describes an ongoing effort at the University 
of Southern California’s Institute for Creative 
Technologies (ICT) to build both a tactical AI interface 



and a strategic AI interface into the military-themed Real 
Time Strategy game, Full Spectrum Command (FSC).  
FSC is a “commercial platform training aid” developed by 
ICT and Quicksilver software for the U.S. Army.  Unlike a 
game, which is designed purely for entertainment, FSC is a 
training aid designed to help teach officers the cognitive 
and leadership skills required to command a light infantry 
company.  While entertainment is not the primary goal, it 
is a useful tool in achieving the primary training objectives 
despite looking and playing much like a real time strategy 
game seen on the market today.   
 In FSC the player/student takes on the role of a U.S. 
Army Captain commanding a light infantry company of 
about 120 soldiers.  A mission in FSC consists of three 
phases of game play.  The first, called the planning phase, 
requires a great deal of strategic reasoning to generate a 
battle plan.  In the current version of FSC this strategic 
reasoning is all done by the human player (for the Army 
side) or the human mission designer (for the enemy side).  
The second phase, called the execution phase, requires a 
great deal of tactical behavior as the battle plan is 
executed, as well as some strategic reasoning to adapt the 
battle plan on the fly.  The third phase, the After Action 
Review (AAR), allows the instructor and the player to 
examine what happened during the course of the mission, 
and to analyze the decisions made.  In the current version 
of FSC all of the tactical behavior is done by an ad-hoc AI 
system created by the game developers at Quicksilver 
software (van Lent et al. 2004).  The strategic adaptation is 
done by the human player (for the Army side) while the 
enemy currently has no ability to adapt. 
 Our goal in this work is to build a general tactical AI 
interface and a general strategic AI interface into FSC that 
will allow researchers to experiment with and compare 
different AI systems in these two roles.  With the tactical 
AI interface, researchers will be able to replace the current 
“game AI” system with a range of AI architectures such as 
Soar (Lehman) and Simulation Based Tactics Mining (Sui 
2000).  Likewise, with the strategic AI interface, 
researchers will be able to explore the use of AI planners, 
such as SHOP2 (Nau et al. 2003) and VHPOP (Hakan et 
al. 2003), to replace humans in the strategic reasoning and 
adaptation role. 

Comparing Tactical AI Systems  
 At the tactical behavior level we will compare two 
systems, the Soar architecture and Simulation Based 
Tactics Mining.  This section describes each of these 
systems as well as the common tactical AI interface they 
will both use to communicate with the FSC game engine. 

Tactical AI Systems 
Company-level tactical behavior in FSC focuses on the 
activities of platoons, which are further broken down into 
squads, fire-teams and individual soldiers.  Our tactical AI 
interface allows external systems to control both platoon 

(about 34 soldiers) and squad-level (9 soldiers) behaviors.1  
The tactical AI system receives events from the game that 
trigger a decision cycle (NPCSpotted, FiredAt).  At the 
start of each cycle, game state information is then retrieved 
to populate preconditions (NPC Locations, Ammo status).  
The decision cycle then runs and outputs (at the highest 
level) platoon-level orders such as “Move along a route”, 
“Breach an obstacle”, “Clear a building”, “Support another 
unit with covering fire”, “Deploy smoke” and “Assault and 
destroy the enemy in a specified region.”  From here, the 
AI system then decomposes these fairly general orders into 
specific commands for each squad (and in turn fire team).  
It can take a multi-agent approach (one agent per platoon 
and squad) or a single agent approach (one monolithic 
agent controlling all platoons and squads).  Fire-team tasks 
include “Move to a point”, “Fire at target”, “Fire at area” 
and “Take cover” among others, which are handed off to 
the game’s AI responsible for actual path-planning, 
steering, and animation control.    
 As part of this comparison, two tactical AI systems are 
being examined:  Soar is an integrated architecture for 
knowledge-based problem solving, learning, and 
interaction with external environments; Simulation Based 
Tactics Mining (SBTM), developed at the DSO National 
Laboratories (Singapore), is an adaptive learning, rule-
based decision making system.   
 Soar has been used to drive intelligent AI in a variety of 
virtual environments, such as ModSAF, Quake II and 
Unreal Tournament.  It takes a rule-based approach 
encoding behaviors as operators each consisting of one or 
more proposal rules (specifying preconditions) and one or 
more application rules (specifying effects).  These rules 
interact with short and long-term memory to generate 
behavior commands.  Long-term memory contains Soar’s 
rules, called productions, while short-term memory 
contains the sensor input, overall situation awareness, 
mission, and intermediate objectives. Intelligent actions 
require in-depth information about the environment, which 
comes through an input-link (part of short-term memory) 
responsible for extracting sensor data from the game.  
More information on these sensors is presented below. 
 Each cycle through Soar’s “sense, think, act” loop, or 
decision cycle, processes the sensor information, matches 
the rules to fire operators which send actions back across 
the output link to the game for execution.  In most 
previous Soar systems the actions control an individual 
Non-Player Character (NPC).  This is in contrast to fire 
team-level actions described in the next section, which will 
be issued by Soar and decomposed into individual NPC 
actions within FSC. 
 Simulation Based Tactics Mining (SBTM) focuses on 
automatically generating new rules from existing rule 
databases. It learns by interacting with the environment 
using machine learning techniques such as genetic 
                                                 
1 Because the Fire Team (4-5 soldiers) and individual 
soldier behaviors are so closely tied to the game engine the 
pre-existing FSC AI will handle these. 



algorithms and reinforcement learning. Reinforcement 
learning is used in the evaluation of rules, while genetic 
algorithms provide an effective means of generating new 
rules and exploring the large search space. By 
complementing the search and generation capabilities of 
genetic algorithms and the unsupervised nature of 
reinforcement learning, SBTM is able to direct the 
evolution of rules towards optimality.   
 SBTM is built upon the Advanced Rule Engine (ARE), 
a rule-based decision making system.  Developed at DSO 
National Laboratories (Singapore), ARE has the ability to 
handle uncertain, incomplete and fuzzy inputs. In the 
domain of computer games, ARE has been developed as an 
interface to the Half Life FPS game using the “Flexbot 
mod.”  The sensor inputs ARE extracts from the game are 
similar to Soar’s, which are described in the next section. 
 The individual actions of a Fire Team are determined by 
ARE’s decision cycle, such as moving to a specific 
location and firing at an enemy in a certain direction, 
which is based on the rules written in conjunction with 
input from the sensor information.  The performance of 
ARE and any other rule-based engine is highly dependent 
on the quality of the rules.  The knowledge engineering 
process required to create high-quality rules is tedious and 
time consuming. SBTM addresses this problem by using 
the genetic algorithms and reinforcement learning to 
automate the rule generation process.  A full description of 
ARE and SBTM are outside of the scope of this paper and 
the reader is referred to Sui et al (Sui et al. 2000) for more 
details.  
 In general, SBTM is applicable in a variety of domains 
and has been specifically applied and evaluated in air 
combat simulations. SBTM has also been shown to evolve 
rules that, in some instances, exhibit performance superior 
to hand crafted rules solicited from subject matter experts. 

Tactical AI Interface  
 The interface that has been designed to support the 
integration of tactical AI systems, such as Soar and the 
SBTM, is twofold.  First, it intends to strip away any 
architecture-specific details regarding mission 
representation or task execution.  For example, Soar can 
take in certain baseline sensor information about the 
environment (NPC locations, line of sight calculations, 
weapon types) and build an internal hierarchical working 
memory structure (a group of NPCs organized as a team 
with an overall objective).  This hierarchical representation 
may not be suitable for something like the SBTM, and so 
these baseline sensor inputs must be abstracted away by 
either of the two systems, which internally construct the 
representation needed.  For example, SBTM requires 
additional feedback information for evaluation during the 
adaptive learning and the rule generation process. This 
information includes time taken to accomplish a mission 
and the number of enemy and friendly casualties at the end 
of the mission.   
 This abstraction consists of a series of interface classes 
aimed to manage various aspects of the game’s AI.  As 

with any game AI, it is necessary to input and represent the 
game’s data model, such as character locations and mission 
status, as well as the terrain.  These interface classes are 
split into two layers, an abstraction layer and an 
implementation layer, making it generic enough to be 
piped to other AI systems.  The abstraction layer defines 
the framework that the game engine and the AI system 
adhere to. It defines AI interfacing functions, sensor 
extraction functions, and action actuation functions. The 
implementation layer is game engine and AI system-
specific and is extended from the abstraction classes. 
These implementation classes process game information to 
the AI system (sensor inputs), and interpret the actions 
made in the AI decision cycle (action outputs), which are 
sent to the environment for execution. 
 
 
 
 
 
 
 
 
 
 
 
 
 The tactical AI for this evaluation will cover the variety 
of traditional platoon and squad level tasks described 
earlier.  However, Soar and the SBTM will not control 
NPCs at the individual level.  Instead, actions and tasks 
determined within each decision cycle will be sent to the 
game engine at the fire-team level.  It will then be up to the 
existing control AI within the game to decompose these 
unit-level actions into individual NPC actions (FireAt, 
MoveTo) for execution.  
 This involves some challenging issues for the tactical AI 
such as teamwork and coordination between fire teams, 
squads and platoons.  Sensor inputs cannot simply be 
represented for individual NPC’s, but instead must be 
combined with other NPC sensor data to draw a group 
conclusion about the state of the world.  For example, a 
friendly NPC casualty within a fire-team is of higher 
concern to the NPC’s fire team, but not to the overall 
platoon.   
 Specifically, Soar will use the input/output mechanisms 
described in the previous section to manage incoming data 
and outgoing actions within the game.  The interface will 
take in (on the input link) sensor value pairs required by 
Soar in its decision cycle: 
 
• Friendly Team composition • Equipment 
• Current Mission (and 

status) 
• Location   

 
 As discussed above, upon completion of its decision 
cycle, fire-team level actions will then be sent back to the 
engine through the interface for control AI decomposition 
and execution.  These actions include: 



 
• Move To (route) • Face Target 
• Fire at Enemy • Clear Room 

(requires 
decomposition)  

 
 The implementation of the interface is ongoing, though 
it is being designed to use an event-driven mechanism for 
the AI’s decision cycle.  The AI System (Soar, SBTM) will 
run in a separate thread that is tied to the interface; each 
time an event of interest is passed to the interface 
(NPCSpotted), the AI system queries the game for 
additional precondition information (NPC Locations), 
which then populates the input-link.  Upon completion of 
the decision cycle, the output is immediately returned to 
the Interface Thread and to the game for execution. 
 Despite the differences in SOAR’s and SBTM’s 
architecture, the sensor inputs and action outputs that are 
required by the two engines are fairly similar: both engines 
operate at the fire-team level, and both require information 
not only about characters in the environment, but also 
overall mission goals and objectives.  The abstraction layer 
and implementation layer described here will isolate any 
differences and will promote the use of other AI systems in 
the future. 

Strategic AI Systems 
 The Strategic AI System generates plans to actualize 
high-level mission goals.  Plan operators correspond to the 
platoon-level tasks that are executed by the tactical AI.  
Up-to-date world state information received from the game 
engine is used to assign values to operator predicates.  To 
support the widest range of planners available, the domain 
is defined using the language specified for use in the 
International Planning Competition – PDDL 2.1 (Fox & 
Long 2003).  
 The three major challenges we face when developing the 
Strategic AI System are terrain analysis, uncertain operator 
durations, and multi-agent coordination of plans.  The 
terrain must be taken into account when choosing a plan of 
attack – certain paths may provide better cover while other 
avenues of attack may be more direct.  Varying avenues of 
attack obviously cause uncertainty in the duration of the 
operators.  Other environmental features unknown at the 
planning stage also cause uncertainties – only monitoring 
can determine when the operators complete execution.  
Monitoring is also required in the coordination of the team 
plans.  Often times, one team cannot begin executing an 
action prior to the completion of a second team’s actions.  
 Mission objectives are divided into two categories – 
terrain-based missions and force-based missions.  Terrain-
based goals include assault, defend, recon, and secure 
missions.  Force-based goals are different because they do 
not focus on specific points within the terrain; instead, they 
focus on destroying OPFOR units, surviving an OPFOR 
attack, or rescuing/escorting civilians.  Once a mission 
objective is chosen by the user, it is communicated to the 

planning system along with any initial world state 
information.   
 FSC includes utilities for humans to generate mission 
plans.  A plan, called an execution matrix, consists of 
sequences of platoon level tasks ordered by phases.  
Examples of actions include moving along a route, 
clearing a building, performing support by fire, etc…  
These are the same tasks that can be assigned to the tactical 
AI.  At the beginning of a mission the strategic AI will 
generate a plan (sequence of tasks for each platoon) that 
will achieve the mission objective from the initial world 
state.  The generation of the plan may be additionally 
constrained by rules of engagement imposed on the 
strategic AI.  The plan is then written to disk as an 
execution matrix.  The format of the execution matrix 
defines the interface between the external Strategic AI 
System and the game engine.  Instead of a human defining 
plans by hand, the plans are generated by the Strategic AI 
System based on the mission objective and the initial 
world state.      
 However, the strategic AI’s job does not end once the 
initial execution matrix is generated.  The strategic AI 
must monitor the execution of the plan to coordinate the 
actions of the teams.  As such, operator predicates are set 
using world state information from the game engine.  
These predicates are used to determine when execution of 
a platoon’s task has finished.  Coordination is handled by 
the strategic AI issuing “go-codes” that are understood by 
the game engine.  In the event of a plan failure, a new plan 
can be generated using the current world state information 
and communicated to the game engine replacing the 
previous execution matrix with the newly generated one. 

Future Work 
At this point the development of the tactical AI and 
strategic AI systems are very much “works in progress.”  
The interface designs for both systems are complete and 
the modifications to Full Spectrum Command are well 
underway.  The initial tactical AI systems will be built on 
the existing foundations of the Soar architecture and the 
SBTM.  The initial strategic AI systems will be extensions 
of well established planning algorithms.  As with many 
research projects the road ahead looks clear but hurdles 
will inevitably pop up and provide interesting research 
challenges for years to come. 

References 
Fox, M. and Long, D. 2003 "PDDL2.1: An Extension to 
PDDL for Expressing Temporal Planning Domains", 
Journal of Artificial Intelligence Research, Volume 20, 
pages 61-124.  

Gordon, A., van Lent, m., van Velsen, M., Carpenter, P., 
and Jhala, A. 2004. “Branching Storylines in Virtual 
Reality Environments for Leadership Development”, The 



Sixteenth Innovative Applications of Artificial Intelligence 
Conference, August 2004. 

Håkan L. S. Younes and Reid G. Simmons. 2003. VHPOP: 
Versatile heuristic partial order planner. Journal of 
Artificial Intelligence Research, 20:405-430, 2003. 

Khoo, A. and Zubek, R., 2002. "Applying Inexpensive AI 
Techniques to Computer Games" IEEE Intelligent Systems, 
2002, 17(4).  

Lehman, J.F., Laird, J.E., & Rosenbloom, P.S. (In press) A 
gentle introduction to Soar, an architecture for human 
cognition. In S. Sternberg & D. Scarborough (eds.) 
Invitation to Cognitive Science, Volume 4.  
Laird, J., 2001. “It knows what you are going to do: Adding 
anticipation to a Quakebot.” Proceedings of the Fifth 
International Conference on Autonomous Agents, Montreal, 
Canada, May 28-June 1, 2001. 

Laird, J. E., et al. 2002. “A Test Bed for Developing 
Intelligent Synthetic Characters”, AAAI Spring 
Symposium on AI and Interactive Entertainment, March 
25-27, 2002. 

Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, 
J.W., Wu, D. and Yaman, F. 2003. "SHOP2: An HTN 
Planning System", Journal of Artificial Intelligence 
Research, Volume 20, pages 379-404.  

Sui Q., How K.Y., and Ong W.S., 2000. "An intelligent 
agent in an air combat domain", 4th International 
Conference on Autonomous Agent, January 1, 2000. 

van Lent, m., Fisher, B. and Mancuso, M., 2004. “An 
Explainable Artificial Intelligence System for Small-unit 
Tactical Behavior”, The Sixteenth Innovative Applications 
of Artificial Intelligence Conference, August 2004. 

Young, R. M., Riedl, M. O., Branly, M., Jhala, A., Martin, 
and R. J., Saretto, C. J., 2004. “An architecture for 
integrating plan-based behavior generation with interactive 
game environments”, Journal of Game Development, 
2004, 1(1). 

 


