
Integrating Learning in Interactive Gaming Simulators

David W. Aha1 and Matthew Molineaux1,2

1Intelligent Decision Aids Group; Navy Center for Applied Research in Artificial Intelligence;

Naval Research Laboratory (Code 5515); Washington, DC 20375
2ITT Industries; AES Division; Alexandria, VA 22303

{aha,molineau}@aic.nrl.navy.mil

Abstract
Many developers of simulations for computer-generated
forces and real-time strategy games seek to incorporate
learning or learned behaviors in their systems. Likewise,
many researchers seek to evaluate their learning systems in
these simulators. However, these integrations require great
effort. We describe our initial work on a testbed, named
TIELT that we are designing to facilitate these integrations.

1. Motivation and Related Work

A key objective of DARPA’s Information Processing
Technology Office is to encourage research on learning in
cognitive systems (Brachman, 2002). This thrust could
significantly impact the machine learning (ML) community
by shifting from an emphasis on isolated studies (e.g., on
supervised learning) towards integrated studies in the
context of ambitious reasoning systems. This requires
providing the ML community with tools that facilitate these
integrations. While current availability of standardized
data representations and data sets (e.g., UCI, 2004) has met
the needs of some isolated benchmarking studies (e.g., on
classification tasks), no similar interface exists for
integrating with cognitive systems.

Interactive computer games are excellent candidates for
studying learning in cognitive systems for several reasons.
First, some attempt to simulate cognitive behaviors. This is
particularly true for military simulators of computer-
generated forces (Laird & van Lent, 2001); they share some
similarities with real-time strategy games, although the
objectives for incorporating learning differ among military
(exploration, analysis) and commercial (enhance the game
playing experience) simulators. Second, they are popular.
For example, Americans spent $7B on video and computer
games in 2003 (ESA, 2004), and America’s Army:
Operations was downloaded 2.5M times in its first two
months of release (Zyda et al., 2003). Third, AI
researchers recognize them as a “killer” application (Laird
& van Lent, 2001), and several have studied integrations of
ML techniques in gaming engines/simulators (e.g., Laird,
2001; Geisler, 2002; Sweetser & Dennis, 2003; Ponsen,
2004). Also, several game engines exist that encourage
ML development (e.g., RoboCup, 2004; Kaminka et al.,
2002; Buro, 2003; Houk, 2004), as does some commercial

AI middleware (e.g., MASA’s DirectIA,
LearningMachine’s NOMAD, SHAI’s SimBionic).

Although middleware applications can greatly simplify
the design and development of new interactive games, they
handicap researchers in several ways: they were not
necessarily designed to address the full range of potential
learning and performance tasks in interactive games; they
don’t encourage the sharing of learning systems and game
engines for use by other researchers in subsequent
investigations; and they are not free. For example,
GameBots (Kaminka et al., 2002) can also be used to study
learning systems, but it is committed to a single game
engine (the Unreal Tournament Server) and a single
reasoning activity (i.e., a sense-act loop), while TIELT
shall support integrations with many game engines and
several types of reasoning activities (e.g., display predicted
opponent behaviors, update a game model, incorporate
advice) in which learning can be studied. Thus, it’s still
difficult for ML researchers to conduct benchmarking and
related tests that compare their system’s ability vs.
alternatives across a set of learning and performance tasks
for multiple gaming engines. Similarly, game developers
cannot easily compare state-of-the-art learning systems to
determine whether any address their design needs.

We address the challenge of developing a middleware
testbed that facilitates and encourages the evaluation of
learning systems in the context of interactive computer
games. Our system, named Testbed for Integrating and
Evaluating Learning Techniques (TIELT), shall support
the ML research community by providing composable
interfaces to game engines and reasoning systems, the
ability to select a wide variety of learning and performance
tasks, and an editor for specifying and conducting an
evaluation methodology. By providing access to
challenging learning and performance tasks definable in
these simulators, TIELT should encourage the creation of
knowledge rich learning strategies that learn from only a
few examples, and learn over an extended period of time.
In addition, it should spur research on problems related to
learning systems that are frequently cited by the
commercial and military gaming communities (e.g.,
Woodcock, 2002; Petty, 2001), such as that some costs
(e.g., cpu time, number of training examples required)
associated with training can be prohibitively high, and that
learned behavior may be unrealistic and/or unpredictable.

In this paper we describe TIELT’s specification, our
approach for implementing that specification, an illustrative
example, and our progress and future goals.

2. Specification

Our goal is to open up the playing field of interactive
gaming simulators to learning research. While the initially
targeted beneficiaries are ML and cognitive systems
researchers, our longer term goals include providing a
useful investigation tool for the commercial gaming
industry and developers of military simulators. With this
vision in mind, along with our objective to streamline the
process of integrating learning systems with gaming
simulators, we have the following goals for TIELT:

1. Integration: TIELT should input a description of the
game’s model and state, a description of the inputs and
communication medium required to communicate with the
learning-embedded reasoning system, a learning task(s),
and a performance task(s). During a game, it should
interpret a sequence of game states, translate them for input
to the reasoning system, interpret the system’s response
(e.g., a decision consisting of one or more actions for
controlling a game engine agent), and translate it for
display and/or as input to the game engine. It should also
support a variety of empirical studies on the reasoning
system’s utility for the learning and performance task(s).

2. Learning focus: TIELT should support investigations
for learning three types of planning-focused models:

a. Task model: Given a task interpretation, its learned
model could be used to execute an action or provide
it as advice to a user or software agent.

b. Player model: Given a player-focused state
representation, its learned model could be used to
predict a user’s actions or suggest/execute an action.

c. Game model: TIELT could also be used to improve
or learn a model of the game’s environment or its
agents’ behaviors, either for predicting behavior or
prescribing response actions.

The reasoning system could also support other learning
investigations (e.g., improving the representation of a
game’s state description).

3. Learning methods: TIELT should work with supervised,
unsupervised, analytic, and reinforcement learning
methodologies. It should support online and offline
training by providing learning systems with a stream of
game state descriptions or by recording sessions for later
training. In addition, TIELT should support investigations
on using a priori knowledge to constrain learned behavior
models, preferably during the model-learning process but
also for post-hoc approaches that correct learned models
(e.g., by analyzing execution-time errors).

4. Game engines: TIELT should facilitate a researcher’s
access to simulators for strategy (real-time and discrete,
God and first-person perspectives), role-playing (individual
and massively-multiplayer), and team sports games. These
include games involving learning tasks with large
hypothesis spaces that can benefit from learning and
learned strategies.

5. Reuse: TIELT should permit researchers to easily study
a learning system’s ability on tasks from several games, and
permit game developers to study the comparative ability of
multiple learning systems on a given task. For example,
when applying a reasoning system to a different learning
task but using the same game engine, only that task will
require specification; the game description and interface
descriptions may remain unchanged.

6. Platforms and programs: TIELT should be available for
use on all major platforms, and provide support for slower
reasoning systems (e.g., for studying real-time simulators).

3. Approach

Given this specification, Figure 1 displays a subset of
TIELT’s components for integrating learning-embedded
reasoning systems with interactive game engines. These
components will include displays, a model of the (current)
game state, translators for communicating between the
learning and gaming systems, a set of knowledge bases and
their respective GUI editors (not shown), and a Controller
(not shown) for monitoring and managing communications.
The editors will facilitate interchangeability of the five
knowledge bases, which are described immediately below.

The Game Interface Description defines how TIELT
communicates during a game simulation and the method of
communication. This will include definitions of message
templates, which describe the parameters of a message and
its connection to the Game Model. Two types of messages

Figure 1: Simplified TIELT component architecture.

Editors

Game
Engine

Game
Engine

User

Reasoning
System

Reasoning
System

Learning
Module #1

Learning
Module #2

Learning
Module #n

. . .

Knowledge Bases

Game
Model

Description

Task
Description

Game
Interface

Description

Reasoning
Interface

Description

Evaluation
Methodology
Description

Game State

Translators
Action

Translator
(Mapper)

Learning
Translator
(Mapper)

Model
Updater

Stratagus

FreeCiv

Game Player(s)

…
DisplaysDisplays

Prediction
Display

Advice
Display

Evaluation
Display

Coordination
Display

Editors

Game
Engine

Game
Engine

User

Reasoning
System

Reasoning
System

Learning
Module #1

Learning
Module #2

Learning
Module #n

. . .

Reasoning
System

Reasoning
System

Learning
Module #1

Learning
Module #2

Learning
Module #n

. . .

Knowledge Bases

Game
Model

Description

Task
Description

Game
Interface

Description

Reasoning
Interface

Description

Evaluation
Methodology
Description

Knowledge Bases

Game
Model

Description

Task
Description

Game
Interface

Description

Reasoning
Interface

Description

Evaluation
Methodology
Description

Game State

Translators
Action

Translator
(Mapper)

Learning
Translator
(Mapper)

Model
Updater

Stratagus

FreeCiv

Game Player(s)

…

Game Player(s)

…
DisplaysDisplays

Prediction
Display

Advice
Display

Evaluation
Display

Coordination
Display

DisplaysDisplays
Prediction

Display
Advice
Display

Evaluation
Display

Coordination
Display

will be defined: action messages from the reasoning
system, which TIELT can use to affect the game, and
percept messages from the game engine, which provide
information to the reasoning system. TIELT will have
built-in support for communication via a socket-based
TCP/IP network connection, console I/O, interprocess
messaging, and dynamic linking so as to be able to
communicate with many different systems. Each percept
message should identify what changes in the state it
signifies, and each action message must identify how it
changes the state. These changes will be stated in terms of
the Game Model Description - the second knowledge base.

The Game Model Description provides an explicit,
abstract description of a game. It consists of an initial state
that defines all objects of potential player interest,
operators that describe ways to interact with the game, and
rules that govern how the game may be played and the
consequences likely to arise from a particular game state.
This information is kept separate from the Game Interface
Description because different reasoning systems might
benefit from viewing the same game in different ways.
Also, this abstraction frees a learning system from a game
engine’s timetable; rather than responding directly to the
information when supplied, the learning modules can
consult the model as needed, which simplifies integration
with a real-time game. A third benefit of this abstraction is
that a single game model may potentially be applicable to
an entire category of games (e.g., first-person shooters), so
that the learning system would view each the same way.
Thus, a trained system could potentially transfer knowledge
learned from one game to another.

 The Learning Interface Description uses message
templates similar to those in the Game Interface
Description to define communication with the learning-
embedded reasoning system. Each learning input message
allows a particular mode to be identified so as to enable
separate training and test messages, gives a trigger that
causes the message to be sent, and provides a list of “slots”
that game information can be “plugged” into. The slots, by
providing conversions from basic types to the types used by
the reasoning system, will ensure that this system’s
messages need only be defined once, and henceforth game
attributes can be mixed and matched as needed.

Once a game and reasoning system’s interfaces are
described, defining learning and performance Task
Descriptions in TIELT is straightforward. By matching up
a learning system’s inputs with state information and its
outputs with model operators, a researcher can quickly
describe a learning task. Configurable equations will
measure system performance over a suitable range of
mathematically expressible metrics and display the results.

Finally, the Evaluation Methodology Description allows
a researcher to define exactly how to conduct an
evaluation. For example, the user will be able to command
TIELT to train a learning module live against an internal
game AI for a specified number of sessions, or to record an

online game between human opponents and later use the
recorded information for cross-validation studies.

Over time, these five TIELT knowledge bases will
accumulate. This will permit researchers to compare their
learning-embedded reasoning systems vs. others across a
variety of games and game engines. Likewise, game engine
developers will be able to access multiple reasoning
systems to compare their abilities on selected learning and
performance tasks.

4. Example

To highlight TIELT’s operation, we now describe the
system’s behavior through a cycle during an on-line game
(Figure 2). Our example involves a city placement task
like those common to strategy games (e.g., Civilization®),
similar to a task addressed by Houk (2004). We assume
TIELT is given a map of the terrain on which a city may be
placed. The map is a two-dimensional matrix of squares
that vary in the amount and type of resources they can
provide to a nearby city. The initial state provides TIELT
with a settler and its starting location. The performance
task is to maximize resource acquisition in the time
provided, which we set to ten turns. The learning task
concerns deciding which square to select for building a
city. To acquire resources, a settler must first move to the
desired location and build a city there. Thus, the system
must learn how far to travel to find a better city location.

When our example game creates a settler, it sends a
sensor message to TIELT’s Model Updater module,
namely See(settler, {0,0}). The Model Updater retrieves
the corresponding message template See(object, location)
in the Game Interface Description, and updates the Game
State using instructions in the retrieved message template.
The effect is that the Game State now includes the
information that there is a settler at map location {0,0}.
The Model Updater then notifies the Controller that the
Game State was updated and a See message was received,
and it waits for another message.

The controller finds that a See message has been
received. If it were in recording mode, it would potentially
notify the Database Engine (not shown) so that the updated
state could be recorded. Instead, it sends state information
to the Evaluator (not shown), which updates the

Figure 2: Data flow in TIELT for the city placement task.

Action
Translator
(Mapper)

Action: Move

R
ea

so
n

in
g

 S
ys

te
m

(w

ith
 e

m
be

dd
ed

le
ar

ni
ng

 m
od

ul
es

)

R
ea

so
n

in
g

 S
ys

te
m

(w

ith
 e

m
be

dd
ed

le
ar

ni
ng

 m
od

ul
es

)

Game
Interface

Description

Reasoning
Interface

Description

Learning
Translator
(Mapper)

Controller

Game
State

Model
Updater

Percept: See

G
am

e
E

n
g

in
e

G
am

e
E

n
g

in
e

Task
Description

Message Templates

State: TestInput

Decision: TestOutputAction
Translator
(Mapper)

Action: Move

R
ea

so
n

in
g

 S
ys

te
m

(w

ith
 e

m
be

dd
ed

le
ar

ni
ng

 m
od

ul
es

)

R
ea

so
n

in
g

 S
ys

te
m

(w

ith
 e

m
be

dd
ed

le
ar

ni
ng

 m
od

ul
es

)

Game
Interface

Description

Reasoning
Interface

Description

Learning
Translator
(Mapper)

Controller

Game
State

Model
Updater

Percept: See

G
am

e
E

n
g

in
e

G
am

e
E

n
g

in
e

Task
Description

Message Templates

State: TestInput

Decision: TestOutput

performance values for all tasks currently running, and
returns. Then the Controller notifies the Learning
Translator that a See message has been received.

The Learning Translator checks the knowledge base of
user-specified tasks to determine which (if any) provides a
response triggered by a See message. The city location task
specifies that a TestInput message may be sent when a See
message is received that concerns a settler unit. The
Learning Translator confirms this update by checking the
Game State, and then retrieves the TestInput message
template from the Learning Interface Description. TIELT
has information about the map and the settler in the slots of
the TestInput message. Therefore, it constructs a new
message, formatted according to the TestInput message
template, using map and settler information to create the
parameters, and sends the resulting message to the
reasoning system.

After the reasoning system receives the message, its
behavior is not constrained. The reasoning system is
expected to reply with a behavior in a reasonable amount of
time; information about what constitutes “reasonable” may
be provided to it. At this point, a learning module might
consider past successes and failures before selecting a goal
from a manually defined set. Its embedding reasoning
system would then formulate a plan based on this goal and
send the plan’s first operator to TIELT.

The reasoning system returns a TestOutput message. The
Action Translator receives it, then finds the corresponding
TestOutput message template, whose single parameter has a
MoveSettler operator plugged into it. Next, the Action
Translator checks the Game Interface Description to see
what action messages can be triggered by a MoveSettler
operator. It finds the Move message, and the operator is re-
composed to Move(Settler, {1,1}). This message is sent to
the game engine, which receives the Move message and
moves the settler to the new location {x1, y1} as described.

After ten turns proceeding in much the same way, the
reasoning system’s performance will be evaluated based on

the evaluation methodology, which will define, for
example, metrics and experimental variables. Improvement
in this scenario can be measured in terms of a higher game
score, which is weighted according to city size and its
accumulated funds. This score can then be compared to
previous or subsequent runs, or the performance of other
learning modules and/or reasoning systems.

5. Progress and Future Work

We began designing TIELT in December 2003 and now
have a nearly complete functional design and a partially
implemented prototype. We will repeatedly evaluate
TIELT for its ability to assist both learning researchers and
(commercial, military) game developers. Thus, some of
our metrics will concern ease of use. We plan to show that
it could be used to support some previous integrations of
learning systems and game engines, a sampling of which
are summarized in Table 1. Also, we have begun
collaborating with AI researchers who can benefit from
applying TIELT and provide us with valuable feedback.

 We will take several steps to produce a useful tool for
the research community. This will include publicizing
TIELT’s availability and providing it with knowledge bases
for a variety of tested Descriptions (i.e., Game Model,
Game Interface, Reasoning Interface, and Task) along with
standardized challenge problems. We will explore how it
can use sophisticated representations to support capabilities
such as qualitative spatial reasoning (Forbus et al., 2001).
Also, we will adopt or develop standards for game models,
task descriptions, and interfaces for game engines and
reasoning systems, which should enhance TIELT’s utility.
In particular, we plan to specify a standard format for
reasoning systems to output their learned behaviors such
that they can be inspected by game developers. Finally, to
better support high-level strategic decisions, we later plan
to investigate using hierarchies of agents, which will allow
multiple learning (and other reasoning) systems to easily

Table 1: A sampling of learning research with real-time gaming environments.

Adaptation of opponent AIReinforcement Learning (Dynamic Scripting)Neverwinter Nights(Spronket al., 2004)

Search and evasion strategiesNeuroevolutionPeon (inspired by Warcraft II)(Agoginoet al., 1999)

Strategic/tactical battleRelational MDPsFreecraft(Guestrinet al., 2003)

Fighting maneuversProjective VisualizationBilestoad(Goodman, 1993)

Strategic rule selection

Tank behaviors

Advice generation

FPS decision tasks

Aircraft maneuvers

Tank movements

City development

Platoon placement

Task Focus

Reinforcement Learning (Dynamic Scripting)

Naïve Bayes Classifier

Regression

Multiple (e.g., Boosting Backprop)

Rule condition learning in SOAR

Genetic Programming

Case-Based Reasoning

Multistrategy (e.g., version spaces)

Learning Approach

Wargus/Stratagus

TankSoar

Tubby Terror

Soldier of Fortune

ModSAF

ModSAF

SimCity

ModSAF

Engine

(Ponsen, 2004)

(Chia & Williams, 2003)

(Sweetser & Dennis, 2003)

(Geisler, 2002)

KnoMic (van Lent & Laird, 1998)

(Fogel et al., 1996)

MAYOR (Fasciano, 1996)

CAPTAIN (Hiebet al., 1995)

Name + Citation

Adaptation of opponent AIReinforcement Learning (Dynamic Scripting)Neverwinter Nights(Spronket al., 2004)

Search and evasion strategiesNeuroevolutionPeon (inspired by Warcraft II)(Agoginoet al., 1999)

Strategic/tactical battleRelational MDPsFreecraft(Guestrinet al., 2003)

Fighting maneuversProjective VisualizationBilestoad(Goodman, 1993)

Strategic rule selection

Tank behaviors

Advice generation

FPS decision tasks

Aircraft maneuvers

Tank movements

City development

Platoon placement

Task Focus

Reinforcement Learning (Dynamic Scripting)

Naïve Bayes Classifier

Regression

Multiple (e.g., Boosting Backprop)

Rule condition learning in SOAR

Genetic Programming

Case-Based Reasoning

Multistrategy (e.g., version spaces)

Learning Approach

Wargus/Stratagus

TankSoar

Tubby Terror

Soldier of Fortune

ModSAF

ModSAF

SimCity

ModSAF

Engine

(Ponsen, 2004)

(Chia & Williams, 2003)

(Sweetser & Dennis, 2003)

(Geisler, 2002)

KnoMic (van Lent & Laird, 1998)

(Fogel et al., 1996)

MAYOR (Fasciano, 1996)

CAPTAIN (Hiebet al., 1995)

Name + Citation

cooperate in working toward a larger goal than any
individual system could handle alone.

However, while assisting the research community is a
first goal, our ultimate objective is to impact the process for
developing commercial games and military simulators of
computer-generated forces. This will require detailed
requirements analysis, along with convincing demonstrable
progress made by AI researchers while using TIELT.

Acknowledgements

Thanks to DARPA’s Information Processing Technology
Office for supporting this research.

References

Agogino, A., Stanley, K., & Miikkulainen, R. (2000).
Online interactive neuro-evolution. Neural Processing
Letters, 11, 29-37.
Brachman, R. (2002). Systems that know what they’re
doing: The new DARPA/IPTO initiative in cognitive
systems. Speech given at the DARPATech 2002
Conference, 31 July 2002.
Buro, M. (2003). Real-time strategy games: A new AI
research challenge. Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence
(pp. 1534-1535). Acapulco, Mexico: Morgan Kaufmann.
Chia, C.W., & Williams, K.E. (2003). A modified naïve
Bayes approach for autonomous learning in an intelligent
CGF. Proceedings of the Conference on Behavior
Representation in Modeling and Simulation. Scottsdale,
AR: SISO.
ESA (2004). Entertainment Software Association.
[http://www.theesa.com]
Fasciano, M.J. (1996). Real-time case-based reasoning in
a complex world (Technical Report TR-96-05). Chicago,
Illinois: The University of Chicago, Computer Science
Department.
Fogel, L.J., Porto, V.W., & Owen, M. (1996). An
intelligently interactive non-rule-based computer generated
force. Proceedings of the Sixth Conference on Computer
Generated Forces and Behavioral Representation.
Orlando, FL: University of Central Florida.
Forbus, K., Mahoney, J., & Dill, K. (2001). How
qualitative spatial reasoning can improve strategy game
AIs. In J. Laird & M. van Lent (Eds.) AI and Interactive
Entertainment: Papers from the AAAI Spring Symposium
(Technical Report SS-01-02). Stanford, CA: AAAI Press.
Geisler, B. (2002). An empirical study of machine learning
algorithms applied to modeling player behavior in a “first
person shooter” video game. Master’s thesis, Department
of Computer Sciences, University of Wisconsin, Madison.
Goodman, M. (1993). Projective visualization: Acting
from experience. Proceedings of the Eleventh National
Conference on Artificial Intelligence (pp. 54-59).
Washington, DC: AAAI Press.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N.
(2003). Generalizing plans to new environments in
relational MDPs. Proceedings of the Eighteenth
International Joint Conference in Artificial Intelligence
(pp. 1003-1010). Acapulco, Mexico: Morgan Kaufmann.
Hieb, M. R., G. Tecuci, Pullen, J.M., Ceranowicz, A., &
Hille, D. (1995). A methodology and tool for constructing
adaptive command agents for computer generated forces.
Proceedings of the Fifth Conference on Computer
Generated Forces and Behavioral Representation.
Orlando, FL: University of Central Florida.
Houk, P.A. (2004). A strategic game playing agent for
FreeCiv. Master’s thesis (draft), Department of Computer
Science, Northwestern University, Evanston, IL.
Kaminka, G.A., Veloso, M.M., Schaffer, S., Sollitto, C.,
Adobbati, R., Marshall, A.N., Scholer, A., & Tejada, S.
(2002). GameBots: A flexible test bed for multiagent team
research. Communications of the ACM, 45(1), 43-45.
Laird, J.E. (2001). It knows what you are going to do:
Adding anticipation to a Quakebot. Proceedings of the
Fifth International Conference on Autonomous Agents (pp.
385-392). Montreal, Quebec, Canada: ACM Press.
Laird, J.E., & van Lent, M. (2001). Interactive computer
games: Human-level AI’s killer application. AI Magazine,
22(2), 15-25.
Petty, M.D. (2001). Do we really want computer generated
forces that learn? Proceedings of the Tenth Conference on
Computer Generated Forces and Behavioral
Representation. Norfolk, VA: SISO.
Ponsen, M. (2004). Online and offline learning in
computer games. Master’s thesis (draft), Department of
Computer Science, University of Maastricht, Maastricht,
The Netherlands.
RoboCup (2004). The RoboCup Soccer Simulator.
[http://sserver.sourceforge.net/]
Spronck, P., Sprinkhuizen-Kuyper, I., & Postma, E. (2004).
Online adaptation of game opponent AI with dynamic
scripting. International Journal of Intelligent Games &
Simulation, 3(1), 45-53.
Sweetser, P., & Dennis, S. (2003). Facilitating learning in a
real time strategy computer game. In R. Nakatsu & J.
Hoshino (Eds.) Entertainment Computing: Technologies
and Applications. Boston, MA: Kluwer.
UCI (2004). The UCI Machine Learning Repository.
[http://www.ics.uci.edu/~mlearn/MLRepository.html]
van Lent, M., & Laird, J.E. (1998). Learning hierarchical
performance knowledge by observation. Proceedings of
the Sixteenth Int. Conference on Machine Learning (pp.
229-238). Bled, Slovenia: Morgan Kaufmann.
Woodcock, S. (2002). AI roundtable moderator’s report.
2002 Game Developer’s Conference.
[http://www.gameai.com/cgdc02notes.html]
Zyda, M., Hiles, J., Mayberry, A., Wardynski, C., Capps,
M., Osborn, B., Shilling, R., Robaszewski, M., & Davis,
M. (2003). Entertainment R&D for defense. IEEE
Computer Graphics and Applications, Jan./Feb., 28-36.

