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Abstract

Many developers of simulations for computer-gerestat
forces and real-time strategy games seek to incatpo
learning or learned behaviors in their systems.ewike,
many researchers seek to evaluate their learnisigrag in
these simulators. However, these integrationsiregueat
effort. We describe our initial work on a testbe@dmed
TIELT that we are designing to facilitate these integnat

1. Motivation and Related Work

A key objective of DARPA’s Information Processing
Technology Office is to encourage research on iegrim
cognitive systems (Brachman, 2002). This thrustldo
significantly impact the machine learning (ML) corrnnity
by shifting from an emphasis on isolated studieg.{(®n
supervised learning) towards integrated studiesthia
context of ambitious reasoning systems. This regui
providing the ML community with tools that facilteathese
integrations. While current availability of stamdaed
data representations and data sets (e.g., UCI,) 2@3met
the needs of some isolated benchmarking studigs @
classification tasks), no similar interface exisfer
integrating with cognitive systems.

Interactive computer games are excellent candidates
studying learning in cognitive systems for seveeasons.
First, some attempt to simulate cognitive behavidrhis is
particularly true for military simulators of compgunt
generated forces (Laird & van Lent, 2001); theyslsme
similarities with real-time strategy games, althioutihe
objectives for incorporating learning differ amomgjitary
(exploration, analysis) and commercial (enhancegtdrae
playing experience) simulators. Second, they aular.
For example, Americans spent $7B on video and ctenpu
games in 2003 (ESA, 2004), andmerica’'s Army:
Operationswas downloaded 2.5M times in its first two
months of release (Zydat al, 2003). Third, Al
researchers recognize them as a “killer” applicaticaird
& van Lent, 2001), and several have studied integra of
ML techniques in gaming engines/simulators (e.@ird,
2001; Geisler, 2002; Sweetser & Dennis, 2003; Panse
2004). Also, several game engines exist that eageu
ML development (e.g., RoboCup, 2004; Kamirdaall,
2002; Buro, 2003; Houk, 2004), as does some comaterc

Al middleware (e.0., MASA’'s  DirectlA,
LearningMachine’NOMAD, SHAI's SimBionig.

Although middleware applications can greatly sitfiypli
the design and development of new interactive gatheg
handicap researchers in several ways: they were not
necessarily designed to address the full rangeotdrpial
learning and performance tasks in interactive gartey
don’t encourage the sharing of learning systemsgame
engines for use by other researchers in subsequent
investigations; and they are not free. For example
GameBots (Kaminkat al, 2002) can also be used to study
learning systems, but it is committed to a singéng
engine (the Unreal Tournament Server) and a single
reasoning activity (i.e., a sense-act loop), WHIlkELT
shall support integrations with many game engined a
several types of reasoning activities (e.g., digpieedicted
opponent behaviors, update a game model, incogporat
advice) in which learning can be studied. Thus, still
difficult for ML researchers to conduct benchmagkand
related tests that compare their system’s ability v
alternatives across a set of learning and perfocsaasks
for multiple gaming engines. Similarly, game deyslrs
cannot easily compare state-of-the-art learningegys to
determine whether any address their design needs.

We address the challenge of developing a middleware
testbed that facilitates and encourages the evatualf
learning systems in the context of interactive cotap
games. Our system, namé&estbed for Integrating and
Evaluating Learning TechniqueS§TIELT), shall support
the ML research community by providing composable
interfaces to game engines and reasoning systdmas, t
ability to select a wide variety of learning andfpemance
tasks, and an editor for specifying and conducting
evaluation methodology. By providing access to
challenging learning and performance tasks defenabl
these simulators, TIELT should encourage the apaif
knowledge rich learning strategies that learn fronty a
few examples, and learn over an extended perictihnef.

In addition, it should spur research on problensted to
learning systems that are frequently cited by the
commercial and military gaming communities (e.g.,
Woodcock, 2002; Petty, 2001), such as that somés cos
(e.g., cpu time, number of training examples rezf)ir
associated with training can be prohibitively highd that
learned behavior may be unrealistic and/or unptakblie.



In this paper we describe TIELT’s specification,r ou
approach for implementing that specification, &rstrative
example, and our progress and future goals.

2. Specification

Our goal is to open up the playing field of intdhae
gaming simulators to learning research. While tiigally
targeted beneficiaries are ML and cognitive systems
researchers, our longer term goals include progidin
useful investigation tool for the commercial gaming
industry and developers of military simulators. Wthis
vision in mind, along with our objective to stre@mal the
process of integrating learning systems with gaming
simulators, we have the following goals for TIELT:

1.Integration TIELT should input a description of the
game’s model and state, a description of the inpnis
communication medium required to communicate With
learning-embedded reasoning system, a learningsfask
and a performance task(s). During a game, it shoul
interpret a sequence of game states, translatefihranput
to the reasoning system, interpret the system’porese
(e.g., a decision consisting of one or more actifors
controlling a game engine agent), and translatdoiit
display and/or as input to the game engine. lukhalso
support a variety of empirical studies on the reawp
system’s utility for the learning and performanask(s).

2. Learning focus TIELT should support investigations
for learning three types of planning-focused madels

a. Task modelGiven a task interpretation, its learned

model could be used to execute an action or provide

it as advice to a user or software agent.

Player model Given a player-focused state

representation, its learned model could be used to

predict a user’s actions or suggest/execute aaracti

c. Game modelTIELT could also be used to improve
or learn a model of the game’s environment or its
agents’ behaviors, either for predicting behavior o
prescribing response actions.

The reasoning system could also support other ilggrn
investigations (e.g., improving the representatioi a
game’s state description).

3. Learning methodsTIELT should work with supervised,
unsupervised, analytic, and reinforcement learning
methodologies. It should support online and offlin
training by providing learning systems with a sitneaf
game state descriptions or by recording sessionsafer
training. In addition, TIELT should support invigsttions

on using a priori knowledge to constrain learnetdayéor
models, preferably during the model-learning precest
also for post-hoc approaches that correct learnedela
(e.g., by analyzing execution-time errors).
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Figure 1: Simplified TIELT component architecture.

4.Game engines TIELT should facilitate a researcher’s
access to simulators for strategy (real-time arstrdie,
God and first-person perspectives), role-playingligidual
and massively-multiplayer), and team sports ganfdsese
include games involving learning tasks with large
hypothesis spaces that can benefit from learnind an
learned strategies.

5.Reuse TIELT should permit researchers to easily study
a learning system'’s ability on tasks from sevegahgs, and
permit game developers to study the comparativigyabf
multiple learning systems on a given task. Fomela,
when applying a reasoning system to a differentniag
task but using the same game engine, only that walsk
require specification; the game description an@rfate
descriptions may remain unchanged.

6. Platforms and programsTIELT should be available for
use on all major platforms, and provide supportsiower
reasoning systems (e.g., for studying real-timeukitors).

3. Approach

Given this specification, Figure 1 displays a stilxfe
TIELT's components for integrating learning-embedide
reasoning systems with interactive game enginebesd&
components will include displays, a model of ther{ent)
game state, translators for communicating betwden t
learning and gaming systems, a set of knowledgesbaisd
their respective GUI editors (not shown), and a tGler
(not shown) for monitoring and managing communaragi
The editors will facilitate interchangeability ohe five
knowledge bases, which are described immediatétmbe

The Game Interface Descriptiomlefines how TIELT
communicates during a game simulation and the rdedtfio
communication. This will include definitions ofiessage
templateswhich describe the parameters of a message and
its connection to the Game Model. Two types ofsages



will be defined: action messages from the reasoning
system, which TIELT can use to affect the game, and
percept messages from the game engine, which provide
information to the reasoning system. TIELT willviea
built-in support for communication via a socket-dxhs
TCP/IP network connection, console 1/O, interpraces
messaging, and dynamic linking so as to be able to
communicate with many different systems. Egsrcept
message should identify what changes in the state i
signifies, and eaclaction message must identify how it
changes the state. These changes will be statiedns of
the Game Model Description - the second knowledggeb
The Game Model Descriptionprovides an explicit,
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Figure 2: Data flow in TIELT for the city placement task.

abstract description of a game. It consists dhiial state online game between human opponents and laterhese t
that defines all objects of potential player ingtre recorded information for cross-validation studies.
operators that describe ways to interact with e and Over time, these five TIELT knowledge bases will
rules that govern how the game may be played aad th accumulate. This will permit researchers to corafheir
consequences likely to arise from a particular gatate. learning-embedded reasoning systems vs. otherssaero
This information is kept separate from the Gamerfate variety of games and game engines. Likewise, gamene

Description because different reasoning systemshtmig developers will be able to access multiple reagpnin
benefit from viewing the same game in different svay  Systems to compare their abilities on selectechiegrand
Also, this abstraction frees a learning system feogame performance tasks.
engine’s timetable; rather than responding diretdlythe

information when supplied, the learning modules can

consult the model as needed, which simplifies iratign 4. Example
with a real-time game. A third benefit of this ahstion is To h|gh||ght TIELT's operation, we now describe the
that a single game model may potentially be applec#o system’s behavior through a cycle during an on-inene

an entire category of games (e.g., first-persom®he), so  (Figure 2). Our example involves a city placemesk
that the learning system would view each the samg W |ike those common to strategy games (e.g., Citibre®d),
Thus, a trained system could potentially transfenkedge similar to a task addressed by Houk (2004). Weirass
learned from one game to another. TIELT is given a map of the terrain on which a aitpy be
The Learning Interface Descriptionuses message placed. The map is a two-dimensional matrix of sesia
templates similar to those in the Game Interface that vary in the amount and type of resources itemy

Description to define communication with the leagpi provide to a nearby city. The initial state prasdTIELT
embedded reasoning system. EBeztning inputmessage  with a settler and its starting location. The parfance
allows a particular mode to be identified so asmable task is to maximize resource acquisition in the etim
separate training and test messages, gives a rtrigge provided, which we set to ten turns. The learniagkt
causes the message to be sent, and providesoh ‘tiots” concerns deciding which square to select for bugjda
that game information can be “plugged” into. Thuss by city. To acquire resources, a settler must firsvento the

providing conversions from basic types to the typesd by desired location and build a city there. Thus, sstem
the reasoning system, will ensure that this system’ mystlearn how far to travel to find a better ditgation.

messages need only be defined once, and hencefarta When our example game creates a settler, it sends a

attributes can be mixed and matched as needed. sensor message to TIELT's Model Updater module,
Once a game and reasoning system's interfaces arenamely See(settler, {0,0}) The Model Updater retrieves

described, defining learning and performandesk the corresponding message templage(object, location)

Descriptionsin TIELT is straightforward. By matching up  in the Game Interface Description, and updatesGame

a learning system’s inputs with state informatiord ats State using instructions in the retrieved messag®late.

outputs with model operators, a researcher cankiyuic  The effect is that the Game State now includes the
describe a learning task. Configurable equationi Wi information that there is a settler at map locaforo}.
measure system performance over a suitable range ofThe Model Updater then notifies the Controller thiae

mathematically expressible metrics and displayéselts. Game State was updated an8eemessage was received,
Fina”y, theEvaluation Methodology Descripti(m‘llows and it waits for another message.

a researcher to deﬁne eXaCtIy hOW to CondUCt an The Contro”er ﬁnds that £ee message has been

evaluation. For example, the user will be abledmmand received. If it were imecordingmode, it would potentially

TIELT to tl’ain a Iearning mOdule IiVe against ammal notify the Database Engine (not Shown) e} thaumted

game Al for a specified number of sessions, oetord an state could be recorded. Instead, it sends stigamation

to the Evaluator (not shown), which updates the



Table 1: A sampling of learning research with real-timenyyzg environments.

Name + Citation Engine L earning Approach Task Focus
(Goodman, 1993) Bilestoad Projective Visualization Fighting maneuvers
CAPTAIN (Hiebet al, 1995) ModSAF Multistrategy (e.g., version spaces) Platoon placement
MAYOR (Fasciano, 1996) SimCity Case-Based Reasoning City development
(Fogelet al., 1996) ModSAF Genetic Programming Tank movements
KnoMic (van Lent & Laird, 1998) ModSAF Rule condition learning in SOAR Aircraft maneuvers
(Agoginoet al, 1999) Peon (inspired by Warcraft II) Neuroevolution Search and evasion strategigs
(Geisler, 2002) Soldier of Fortune Multiple (e.g., Boosting Backprop) FPS decision tasks
(Sweetser & Dennis, 2003) Tubby Terror Regression Advice generation
(Chia & Williams, 2003) TankSoar Naive Bayes Classifier Tank behaviors
(Guestrinet al,, 2003) Freecraft Relational MDPs Strategic/tactical battle
(Spronket al, 2004) Neverwinter Nights Reinforcement Learning (Dynamic Scriptinpg) Adaptation of opponent Al
(Ponsen, 2004) Wargus/Stratagus Reinforcement Learning (Dynamic Scripting)  Strategic rule selection

performance values for all tasks currently runniagd

the evaluation methodology, which will define, for

returns. Then the Controller notifies the Learning example, metrics and experimental variables. Iwvgmeent

Translator that &eemessage has been received.

in this scenario can be measured in terms of aechighme

The Learning Translator checks the knowledge bése o score, which is weighted according to city size asd

user-specified tasks to determine which (if anyvjdes a

accumulated funds. This score can then be comp@ared

response triggered bySeemessage. The city location task previous or subsequent runs, or the performancettedr

specifies that destinputmessage may be sent wheSee

message is received that concerns a settler umhie T

Learning Translator confirms this update by chegkine
Game State, and then retrieves fhestinput message
template from the Learning Interface DescriptiohEOT

has information about the map and the settlerarstbts of

the Testinput message. Therefore, it constructs a new

message, formatted according to thestinputmessage
template, using map and settler information to terdhe

parameters, and sends the resulting message to the

reasoning system.

After the reasoning system receives the message, it

behavior is not constrained. The reasoning sysiem
expected to reply with a behavior in a reasonatvieumt of
time; information about what constitutes “reasoralphay
be provided to it. At this point, a learning moeluhight
consider past successes and failures before sejextjoal

from a manually defined set. Its embedding reaspni

system would then formulate a plan based on théd god
send the plan’s first operator to TIELT.

The reasoning system returnestOutpumessage. The
Action Translator receives it, then finds the cep@nding

TestOutputnessage template, whose single parameter has a
MoveSettleroperator plugged into it. Next, the Action

Translator checks the Game Interface Descriptiosete
what action messages can be triggered yoxeSettler

operator. It finds th&lovemessage, and the operator is re-
composed tdMove(Settler, {1,1}) This message is sent to

the game engine, which receives tdeve message and
moves the settler to the new location,{y} as described.

After ten turns proceeding in much the same wag, th

reasoning system’s performance will be evaluatestban

learning modules and/or reasoning systems.

5. Progress and Future Work

We began designing TIELT in December 2003 and now
have a nearly complete functional design and aigblsrt
implemented prototype. We will repeatedly evaluate
TIELT for its ability to assist both learning resetgers and
(commercial, military) game developers. Thus, sarhe
our metrics will concern ease of use. We plarhtmasthat
it could be used to support some previous integmatiof
learning systems and game engines, a sampling @hwh
are summarized in Table 1. Also, we have begun
collaborating with Al researchers who can beneafinf
applying TIELT and provide us with valuable feedkhac

We will take several steps to produce a useful fool
the research community. This will include publiog
TIELT's availability and providing it with knowledgbases
for a variety of tested Descriptions (i.e., Game delp
Game Interface, Reasoning Interface, and Task)gakith
standardized challenge problems. We will explwe it
can use sophisticated representations to suppoeabdaies
such as qualitative spatial reasoning (Forbual, 2001).
Also, we will adopt or develop standards for ganaeis,
task descriptions, and interfaces for game engiued
reasoning systems, which should enhance TIELTIigyuti
In particular, we plan to specify a standard forrfat
reasoning systems to output their learned behawoch
that they can be inspected by game developersallito
better support high-level strategic decisions, aterl plan
to investigate using hierarchies of agents, whidhaltow
multiple learning (and other reasoning) systemsasily



cooperate in working toward a larger goal than any
individual system could handle alone.

However, while assisting the research communitg is
first goal, our ultimate objective is to impact {m®cess for
developing commercial games and military simulatois
computer-generated forces. This will require dethi
requirements analysis, along with convincing dertraie
progress made by Al researchers while using TIELT.
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