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Abstract 
Many developers of simulations for computer-generated 
forces and real-time strategy games seek to incorporate 
learning or learned behaviors in their systems. Likewise, 
many researchers seek to evaluate their learning systems in 
these simulators.  However, these integrations require great 
effort.  We describe our initial work on a testbed, named 
TIELT that we are designing to facilitate these integrations.  

1. Motivation and Related Work 

A key objective of DARPA’s Information Processing 
Technology Office is to encourage research on learning in 
cognitive systems (Brachman, 2002).  This thrust could 
significantly impact the machine learning (ML) community 
by shifting from an emphasis on isolated studies (e.g., on 
supervised learning) towards integrated studies in the 
context of ambitious reasoning systems.  This requires 
providing the ML community with tools that facilitate these 
integrations.  While current availability of standardized 
data representations and data sets (e.g., UCI, 2004) has met 
the needs of some isolated benchmarking studies (e.g., on 
classification tasks), no similar interface exists for 
integrating with cognitive systems.  

Interactive computer games are excellent candidates for 
studying learning in cognitive systems for several reasons.  
First, some attempt to simulate cognitive behaviors.  This is 
particularly true for military simulators of computer-
generated forces (Laird & van Lent, 2001); they share some 
similarities with real-time strategy games, although the 
objectives for incorporating learning differ among military 
(exploration, analysis) and commercial (enhance the game 
playing experience) simulators.  Second, they are popular.  
For example, Americans spent $7B on video and computer 
games in 2003 (ESA, 2004), and America’s Army: 
Operations was downloaded 2.5M times in its first two 
months of release (Zyda et al., 2003).  Third, AI 
researchers recognize them as a “killer” application (Laird 
& van Lent, 2001), and several have studied integrations of 
ML techniques in gaming engines/simulators (e.g., Laird, 
2001; Geisler, 2002; Sweetser & Dennis, 2003; Ponsen, 
2004).  Also, several game engines exist that encourage 
ML development (e.g., RoboCup, 2004; Kaminka et al., 
2002; Buro, 2003; Houk, 2004), as does some commercial 

AI middleware (e.g., MASA’s DirectIA, 
LearningMachine’s NOMAD, SHAI’s SimBionic).    

Although middleware applications can greatly simplify 
the design and development of new interactive games, they 
handicap researchers in several ways: they were not 
necessarily designed to address the full range of potential 
learning and performance tasks in interactive games; they 
don’t encourage the sharing of learning systems and game 
engines for use by other researchers in subsequent 
investigations; and they are not free.  For example, 
GameBots (Kaminka et al., 2002) can also be used to study 
learning systems, but it is committed to a single game 
engine (the Unreal Tournament Server) and a single 
reasoning activity (i.e., a sense-act loop), while TIELT 
shall support integrations with many game engines and 
several types of reasoning activities (e.g., display predicted 
opponent behaviors, update a game model, incorporate 
advice) in which learning can be studied.  Thus, it’s still 
difficult for ML researchers to conduct benchmarking and 
related tests that compare their system’s ability vs. 
alternatives across a set of learning and performance tasks 
for multiple gaming engines.  Similarly, game developers 
cannot easily compare state-of-the-art learning systems to 
determine whether any address their design needs.  

We address the challenge of developing a middleware 
testbed that facilitates and encourages the evaluation of 
learning systems in the context of interactive computer 
games.  Our system, named Testbed for Integrating and 
Evaluating Learning Techniques (TIELT), shall support 
the ML research community by providing composable 
interfaces to game engines and reasoning systems, the 
ability to select a wide variety of learning and performance 
tasks, and an editor for specifying and conducting an 
evaluation methodology. By providing access to 
challenging learning and performance tasks definable in 
these simulators, TIELT should encourage the creation of 
knowledge rich learning strategies that learn from only a 
few examples, and learn over an extended period of time.  
In addition, it should spur research on problems related to 
learning systems that are frequently cited by the 
commercial and military gaming communities (e.g., 
Woodcock, 2002; Petty, 2001), such as that some costs 
(e.g., cpu time, number of training examples required) 
associated with training can be prohibitively high, and that 
learned behavior may be unrealistic and/or unpredictable. 



In this paper we describe TIELT’s specification, our 
approach for implementing that specification, an illustrative 
example, and our progress and future goals. 

2. Specification 

Our goal is to open up the playing field of interactive 
gaming simulators to learning research. While the initially 
targeted beneficiaries are ML and cognitive systems 
researchers, our longer term goals include providing a 
useful investigation tool for the commercial gaming 
industry and developers of military simulators. With this 
vision in mind, along with our objective to streamline the 
process of integrating learning systems with gaming 
simulators, we have the following goals for TIELT:  

1. Integration: TIELT should input a description of the 
game’s model and state, a description of the inputs and 
communication medium required  to communicate with the 
learning-embedded reasoning system, a learning task(s), 
and a performance task(s).  During a game, it should 
interpret a sequence of game states, translate them for input 
to the reasoning system, interpret the system’s response 
(e.g., a decision consisting of one or more actions for 
controlling a game engine agent), and translate it for 
display and/or as input to the game engine.  It should also 
support a variety of empirical studies on the reasoning 
system’s utility for the learning and performance task(s).  

2.  Learning focus: TIELT should support investigations 
for learning three types of planning-focused models: 

a. Task model: Given a task interpretation, its learned 
model could be used to execute an action or provide 
it as advice to a user or software agent. 

b. Player model: Given a player-focused state 
representation, its learned model could be used to 
predict a user’s actions or suggest/execute an action. 

c. Game model: TIELT could also be used to improve 
or learn a model of the game’s environment or its 
agents’ behaviors, either for predicting behavior or 
prescribing response actions. 

The reasoning system could also support other learning 
investigations (e.g., improving the representation of a 
game’s state description).   

3. Learning methods: TIELT should work with supervised, 
unsupervised, analytic, and reinforcement learning 
methodologies.  It should support online and offline 
training by providing learning systems with a stream of 
game state descriptions or by recording sessions for later 
training.  In addition, TIELT should support investigations 
on using a priori knowledge to constrain learned behavior 
models, preferably during the model-learning process but 
also for post-hoc approaches that correct learned models 
(e.g., by analyzing execution-time errors).   

4. Game engines:  TIELT should facilitate a researcher’s 
access to simulators for strategy (real-time and discrete, 
God and first-person perspectives), role-playing (individual 
and massively-multiplayer), and team sports games.  These 
include games involving learning tasks with large 
hypothesis spaces that can benefit from learning and 
learned strategies.  

5. Reuse: TIELT should permit researchers to easily study 
a learning system’s ability on tasks from several games, and 
permit game developers to study the comparative ability of 
multiple learning systems on a given task.  For example, 
when applying a reasoning system to a different learning 
task but using the same game engine, only that task will 
require specification; the game description and interface 
descriptions may remain unchanged.   

6. Platforms and programs: TIELT should be available for 
use on all major platforms, and provide support for slower 
reasoning  systems (e.g., for studying real-time simulators). 

3. Approach 

Given this specification, Figure 1 displays a subset of 
TIELT’s components for integrating learning-embedded 
reasoning systems with interactive game engines.  These 
components will include displays, a model of the (current) 
game state, translators for communicating between the 
learning and gaming systems, a set of knowledge bases and 
their respective GUI editors (not shown), and a Controller 
(not shown) for monitoring and managing communications.  
The editors will facilitate interchangeability of the five 
knowledge bases, which are described immediately below. 

The Game Interface Description defines how TIELT 
communicates during a game simulation and the method of 
communication.  This will include definitions of message 
templates, which describe the parameters of a message and 
its connection to the Game Model.  Two types of messages 

Figure 1: Simplified TIELT component architecture. 
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will be defined: action messages from the reasoning 
system, which TIELT can use to affect the game, and 
percept messages from the game engine, which provide 
information to the reasoning system.  TIELT will have 
built-in support for communication via a socket-based 
TCP/IP network connection, console I/O, interprocess 
messaging, and dynamic linking so as to be able to 
communicate with many different systems. Each percept 
message should identify what changes in the state it 
signifies, and each action message must identify how it 
changes the state. These changes will be stated in terms of 
the Game Model Description - the second knowledge base.  

The Game Model Description provides an explicit, 
abstract description of a game.  It consists of an initial state 
that defines all objects of potential player interest, 
operators that describe ways to interact with the game, and 
rules that govern how the game may be played and the 
consequences likely to arise from a particular game state. 
This information is kept separate from the Game Interface 
Description because different reasoning systems might 
benefit from viewing the same game in different ways.  
Also, this abstraction frees a learning system from a game 
engine’s timetable; rather than responding directly to the 
information when supplied, the learning modules can 
consult the model as needed, which simplifies integration 
with a real-time game. A third benefit of this abstraction is 
that a single game model may potentially be applicable to 
an entire category of games (e.g., first-person shooters), so 
that the learning system would view each the same way.  
Thus, a trained system could potentially transfer knowledge 
learned from one game to another. 

  The Learning Interface Description uses message 
templates similar to those in the Game Interface 
Description to define communication with the learning-
embedded reasoning system.  Each learning input message 
allows a particular mode to be identified so as to enable 
separate training and test messages, gives a trigger that 
causes the message to be sent, and provides a list of “slots” 
that game information can be “plugged” into.  The slots, by 
providing conversions from basic types to the types used by 
the reasoning system, will ensure that this system’s 
messages need only be defined once, and henceforth game 
attributes can be mixed and matched as needed. 

Once a game and reasoning system’s interfaces are 
described, defining learning and performance Task 
Descriptions in TIELT is straightforward. By matching up 
a learning system’s inputs with state information and its 
outputs with model operators, a researcher can quickly 
describe a learning task. Configurable equations will 
measure system performance over a suitable range of 
mathematically expressible metrics and display the results.  

Finally, the Evaluation Methodology Description allows 
a researcher to define exactly how to conduct an 
evaluation.  For example, the user will be able to command 
TIELT to train a learning module live against an internal 
game AI for a specified number of sessions, or to record an 

online game between human opponents and later use the 
recorded information for cross-validation studies.  

Over time, these five TIELT knowledge bases will 
accumulate.  This will permit researchers to compare their 
learning-embedded reasoning systems vs. others across a 
variety of games and game engines.  Likewise, game engine 
developers will be able to access multiple reasoning 
systems to compare their abilities on selected learning and 
performance tasks. 

4. Example 

To highlight TIELT’s operation, we now describe the 
system’s behavior through a cycle during an on-line game 
(Figure 2).  Our example involves a city placement task 
like those common to strategy games (e.g., Civilization®), 
similar to a task addressed by Houk (2004).  We assume 
TIELT is given a map of the terrain on which a city may be 
placed. The map is a two-dimensional matrix of squares 
that vary in the amount and type of resources they can 
provide to a nearby city.  The initial state provides TIELT 
with a settler and its starting location.  The performance 
task is to maximize resource acquisition in the time 
provided, which we set to ten turns. The learning task 
concerns deciding which square to select for building a 
city.  To acquire resources, a settler must first move to the 
desired location and build a city there. Thus, the system 
must learn how far to travel to find a better city location. 

When our example game creates a settler, it sends a 
sensor message to TIELT’s Model Updater module, 
namely See(settler, {0,0}).  The Model Updater retrieves 
the corresponding message template See(object, location) 
in the Game Interface Description, and updates the Game 
State using instructions in the retrieved message template. 
The effect is that the Game State now includes the 
information that there is a settler at map location {0,0}.  
The Model Updater then notifies the Controller that the 
Game State was updated and a See message was received, 
and it waits for another message.  

The controller finds that a See message has been 
received.  If it were in recording mode, it would potentially 
notify the Database Engine (not shown) so that the updated 
state could be recorded.  Instead, it sends state information 
to the Evaluator (not shown), which updates the 

Figure 2: Data flow in TIELT for the city placement task. 
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performance values for all tasks currently running, and 
returns. Then the Controller notifies the Learning 
Translator that a See message has been received. 

The Learning Translator checks the knowledge base of 
user-specified tasks to determine which (if any) provides a 
response triggered by a See message. The city location task 
specifies that a TestInput message may be sent when a See 
message is received that concerns a settler unit. The 
Learning Translator confirms this update by checking the 
Game State, and then retrieves the TestInput message 
template from the Learning Interface Description. TIELT 
has information about the map and the settler in the slots of 
the TestInput message. Therefore, it constructs a new 
message, formatted according to the TestInput message 
template, using map and settler information to create the 
parameters, and sends the resulting message to the 
reasoning system. 

After the reasoning system receives the message, its 
behavior is not constrained.  The reasoning system is 
expected to reply with a behavior in a reasonable amount of 
time; information about what constitutes “reasonable” may 
be provided to it.  At this point, a learning module might 
consider past successes and failures before selecting a goal 
from a manually defined set.  Its embedding reasoning 
system would then formulate a plan based on this goal and 
send the plan’s first operator to TIELT. 

The reasoning system returns a TestOutput message. The 
Action Translator receives it, then finds the corresponding 
TestOutput message template, whose single parameter has a 
MoveSettler operator plugged into it. Next, the Action 
Translator checks the Game Interface Description to see 
what action messages can be triggered by a MoveSettler 
operator.  It finds the Move message, and the operator is re-
composed to Move(Settler, {1,1}). This message is sent to 
the game engine, which receives the Move message and 
moves the settler to the new location {x1, y1} as described.  

After ten turns proceeding in much the same way, the 
reasoning system’s performance will be evaluated based on 

the evaluation methodology, which will define, for 
example, metrics and experimental variables.  Improvement 
in this scenario can be measured in terms of a higher game 
score, which is weighted according to city size and its 
accumulated funds. This score can then be compared to 
previous or subsequent runs, or the performance of other 
learning modules and/or reasoning systems. 

5. Progress and Future Work 

We began designing TIELT in December 2003 and now 
have a nearly complete functional design and a partially 
implemented prototype.  We will repeatedly evaluate 
TIELT for its ability to assist both learning researchers and 
(commercial, military) game developers.  Thus, some of 
our metrics will concern ease of use.  We plan to show that 
it could be used to support some previous integrations of 
learning systems and game engines, a sampling of which 
are summarized in Table 1.  Also, we have begun 
collaborating with AI researchers who can benefit from 
applying TIELT and provide us with valuable feedback.  

 We will take several steps to produce a useful tool for 
the research community.  This will include publicizing 
TIELT’s availability and providing it with knowledge bases 
for a variety of tested Descriptions (i.e., Game Model, 
Game Interface, Reasoning Interface, and Task) along with 
standardized challenge problems.   We will explore how it 
can use sophisticated representations to support capabilities 
such as qualitative spatial reasoning (Forbus et al., 2001).  
Also, we will adopt or develop standards for game models, 
task descriptions, and interfaces for game engines and 
reasoning systems, which should enhance TIELT’s utility.  
In particular, we plan to specify a standard format for 
reasoning systems to output their learned behaviors such 
that they can be inspected by game developers.  Finally, to 
better support high-level strategic decisions, we later plan 
to investigate using hierarchies of agents, which will allow 
multiple learning (and other reasoning) systems to easily 

Table 1: A sampling of learning research with real-time gaming environments. 

Adaptation of opponent AIReinforcement Learning (Dynamic Scripting)Neverwinter Nights(Spronket al., 2004)

Search and evasion strategiesNeuroevolutionPeon (inspired by Warcraft II)(Agoginoet al., 1999)

Strategic/tactical battleRelational MDPsFreecraft(Guestrinet al., 2003)

Fighting maneuversProjective VisualizationBilestoad(Goodman, 1993)

Strategic rule selection

Tank behaviors

Advice generation

FPS decision tasks

Aircraft maneuvers

Tank movements

City development

Platoon placement

Task Focus

Reinforcement Learning (Dynamic Scripting)

Naïve Bayes Classifier

Regression

Multiple (e.g., Boosting Backprop)

Rule condition learning in SOAR

Genetic Programming

Case-Based Reasoning

Multistrategy (e.g., version spaces)

Learning Approach

Wargus/Stratagus

TankSoar

Tubby Terror

Soldier of Fortune

ModSAF

ModSAF

SimCity

ModSAF

Engine

(Ponsen, 2004)

(Chia & Williams, 2003)

(Sweetser & Dennis, 2003)

(Geisler, 2002)

KnoMic (van Lent & Laird, 1998)

(Fogel et al., 1996)

MAYOR (Fasciano, 1996)

CAPTAIN (Hiebet al., 1995)

Name + Citation
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cooperate in working toward a larger goal than any 
individual system could handle alone. 

However, while assisting the research community is a 
first goal, our ultimate objective is to impact the process for 
developing commercial games and military simulators of 
computer-generated forces.  This will require detailed 
requirements analysis, along with convincing demonstrable 
progress made by AI researchers while using TIELT.  
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