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Abstract. In a multiplayer game, your opponents are 
other human players.  These players make mistakes.  
Mistakes and miscalculations provide opportunity for 
other players.  The challenge (and ultimately the fun) 
which comes from a multiplayer game is the give and 
take that comes from human interaction.  The standard 
opponent in a first person shooter uses a finite-state 
machine and a series of hand coded rules. Drawbacks 
of this system include a high level of predictability of 
opponents and a large amount of work manually 
programming each rule.   To mimic the multiplayer 
experience of human vs. human combat typically 
involves a high amount of tuning for game balance.  
Because of the difficulty of the problem, most single 
player games instead focus on story and other game 
types.  A perfect artificial opponent for a first person 
shooter has never been modeled.  Modern advances in 
machine learning have enabled agents to accurately 
learn rules from a set of examples. By sampling data 
from an expert player we use these machine learning 
algorithms to model a player in a first person shooter. 
With this system in place, the programmer has less 
work when hand coding the combat rules and the 
learned behaviors are often more unpredictable and 
life-like than any hard-wired finite state machine. This 
paper explores several popular machine learning 
algorithms and shows how these algorithms can be 
applied to the game.  We show that a subset of AI 
behaviors can be learned effectively by player 
modeling using the machine learning technique of 
neural network classifiers trained with boosting and 
bagging. Under this system we have successfully been 
able to learn the combat behaviors of an expert player 
and apply them to an agent in a modified version of 
the video game Soldier of Fortune 2.   However, the 
learning system has the potential of being extended to 
many other game types. 
 
1. Introduction 
Since their creation, the type of video games 
known as First Person Shooters (FPS) have been 
largely devoid of any sort of artificial 
intelligence.  Games like Wolfenstein©, Doom© 
and Quake© present the player with enemies 
who mostly act as fodder.  They walk towards 
the player, guns blazing, until they are dead.  
This has its own merits as a game type in and of 

itself.  However, there is room for other types of 
games with more interactive and lifelike  
opponents.  Recently developers began noticing 
this deficit and games such has Half-Life©, 
UnReal©, Halo© and Call of Duty©, and have 
popped up.  These games are successfully able to 
use expert-based systems and simple finite-state 
machines to give the illusion of an intelligent 
enemy (Linden 2001).  As a result, these well 
established algorithms have helped game 
Artificial Intelligence (AI) advance in leaps and 
bounds in recent years.  However, there is still 
much to be done.  For the experienced player, the 
AI is never �good enough�.  It needs to keep 
challenging the player, to adapt to the player and 
if possible learn from the player.  Currently there 
is no such behavior in the realm of the First 
Person Shooter.   
 
Instead, a good player will learn the behavior of 
the enemy AI and begin exploiting it.  The 
exploitation of these flaws should be an aspect of 
the game, however the game must also keep 
challenging skilled players.  In order to account 
for different skill levels, auto-adjusting difficulty 
systems could be incorporated into the behavior 
patterns and choices of opponents (Pfeifer 2004).  
The focus of this paper is on using a machine 
learning system to model player behavior.  
However, any such system should be designed 
with enough overrides and hooks to ensure game 
balance. 
 
To ensure quality opponents for the skilled 
player of a first person shooter we will now turn 
to the recent advances in academic artificial 
intelligence, especially machine learning.  
Machine learning is concerned with the question 
of how to build a computer program that can 
improve its performance on a task through 
experience.  A task can be thought of as a 
function to be learned.  It is the function�s 
responsibility to accept input and produce output 
based on the input parameters.   For example, in 



making a decision to move forward or backwards 
in a FPS the input to the function is a list of 
variables describing the current environment of 
the game.  The input vector will include data 
describing how many opponents are near the 
player, the players health level, and any other 
relevant information.  The output is a 
classification of whether or not the player should 
move forward. The decisions made by a human 
player in a first person shooter will often be 
unexplainable except by example. That is, we 
can easily determine input/output pairs, but we 
cannot easily determine a concise relationship 
between the input and desired output. We can 
sample his actions and based on his performance 
in the game we can state with confidence that 
these are examples of correct decisions or 
examples of incorrect decisions.  This process is 
what we investigated in this paper. 
 
Machine Learning takes advantage of these 
examples.  With these input/output pairs, a 
machine learning algorithm can adjust its 
internal structure to capture the relationships 
between the sample inputs and outputs.  In this 
way the machine learner can produce a function 
which approximates the implicit relationships in 
the examples.  Hidden amongst the examples 
will be many relationships and correlations.  A 
human observer may be able to extract a few of 
these relationships but machine learning methods 
can be used to more extensively search out these 
relations.   
 
To use a machine learning algorithm it is first 
necessary to determine the features that are 
important to the task. It is also necessary to 
determine what we will attempt to learn from our 
examples.  Once these features are determined, 
we can represent an input/output pair as a 
collection of feature settings and an indication of 
the desired classification of this input.  For 
example, the input/output pair in our move 
forward/backward function would be a vector of 
environment data about the game and a decision 
to move forward or backward as output.  In our 
hypothetical task we would then collect samples 
of data that fit the �move forward� classification 
and samples of data which fit the �move 
backward� classification.  The combination of 
these two types of example classifications makes 
up the data set.  The learning algorithm makes 
use of both types of examples when changing its 
internal structure.  This form of learning is 
known as supervised learning, since we are 
acting as a teacher to the learning algorithm 

(Mitchell 1997).  We specify which examples 
should be thought of as positive and which are 
negative.   A supervised learning algorithm will 
split our data set further into a training set and a 
test set.  The training set serves to allow the 
machine learner to update its internal settings 
based on only these examples.  The test set is 
used to estimate how well the internal learned 
function will perform on previously unseen data 
(Mitchell 1997). 
 
There are many different machine learning 
algorithms to choose from.  Some algorithms 
excel in certain domains while others do not 
perform as well.  Instead of hastily picking a 
learning methodology it is preferable to frame 
the problem as much as possible.   After the 
appropriate data set is determined it will be 
necessary to gather plenty of samples, and try a 
few standard learning algorithms.  However, 
�standard algorithms� to academics are often 
novel ideas to game developers.  For example, 
things like ID3 trees, neural networks, and 
genetic algorithms have only recently been 
considered.  Machine learning is almost non-
existent in the realm of the FPS video game.   
 
This paper will show that progress can be 
achieved by applying some recent machine 
learning algorithms to the task of learning player 
behavior in a First Person Shooter.  This will 
enable game developers to insert some 
unpredictability to the agents in a video game.  It 
will be shown that this application will also 
allow developers to model expert players with 
little rule specifications.  This means the doors 
will be opened for many different behaviors for 
our agents.  For example, it will be very easy to 
model the behavior of a sniper or heavy-weapons 
specialist without needing predetermined rules.  
 
With current trends in game development the 
timing couldn�t be better to introduce new 
learning algorithms. Computer gaming is now an 
six billion dollar a year industry (Savitz 2003).  
It is a competitive marketplace especially in 
terms of gameplay, which is something largely 
determined by the quality of a games� AI 
routines.  A game with a large variety of unique 
agent behaviors has a competitive advantage to a 
game with a few hand coded expert systems.  In 
addition to being a preferred investment to 
developers it�s also a viable option on current 
hardware.  Due to hardware advancements, 
processor cycles are easier to come by and 
memory is cheap.   Neural networks in modern 



games would be unheard of in the late nineties.  
But now it�s not only possible on the PC, it�s 
already implemented in games such as �Black 
and White� � and �Creatures� �.   
 

2. The Problem and the Data Set 
It is straight forward to take a well-defined game, 
throw in some control structure for some agents, 
and begin teaching them.   But an FPS1 is not 
well defined.  There has only been a spattering of 
attempts at doing so (Laird 2000). There are no 
defined tactics for a player of an FPS.  The game 
is about battle, it is survival of the fittest; shoot 
or be shot.   The more agents the player kills, the 
higher his score.  But if the player is too gun 
happy, he might end up getting caught off guard 
and shot in the back. Even expert players of an 
FPS can�t fully quantify their tactics.  They can 
tell you general tips. i.e., make sure to not stay in 
one place too long, do not rush at an opponent 
straight on, strafe to the left if one can.  But there 
are so many exceptions to any one rule that it 
makes it difficult to hard code a rule system.   
 
The first step is to figure out what input the 
program has access to and what output might be 
useful.  It might seem at first that an ideal FPS 
learning system would account for every action 
to take at any given situation.  However, there 
will always be a need to allow some amount of 
programmer control in an FPS.  The storyline 
and theme may demand specific actions at 
certain times.  For example, it may be interesting 
for soldiers to jump over barriers at a certain 
location with certainty (Geisler 2003). For this 
reason we want control over what behaviors are 
learned from expert players and which are hand 
coded.  Combat is a good place to use learned 
behavior because unpredicted (but sensible) 
actions are always preferred.  Furthermore, there 
are only a handful of basic actions that are 
important during combat and these actions can 
be quantified.  In this paper we look at four of 
the basic actions: accelerate/decelerate, move 
forward/backward, face forward/backward, 
jump/don�t jump.  The general behavior of a bot2 
or player can be broken down into a sequence of 
moves (or move combinations).  There will be 
                                                        
1 Although our research applies to any game, this 
research has used the FPS known as �Soldier of 
Fortune 2�� (made by Raven Software) for its 
experiments. 
2 The AI agents in FPS video games are known 
as a �bots.� 

many finer points to address once the sequence 
of moves is determined.  For example, without 
proper calculations a bot may accidentally bump 
into a wall or walk off a cliff.  A separate motor 
control system will be responsible for this. 
 
What is needed to make a choice for any of these 
decisions?  How does a player or agent know if it 
is time to move forward.  To achieve more 
lifelike and challenging characters, developers 
would like to model these decisions after an 
actual player and learn how these decisions are 
made.  At this stage, the problem becomes a 
more traditional machine learning problem.  A 
good set of features must be found to represent 
the environment of the game.  Even an expert 
gamer can not quantitize what it is that makes 
him good.  Many of his decisions will be 
reflexive, and will not have an immediately 
tangible explanation behind them.   
 
The Feature Set 
This paper investigates only four of the basic 
combat actions for an FPS: accelerate/decelerate, 
move direction, face direction and when to jump.  
These four actions will be the output portion of 
the data sample.  We must now decide what 
information will be useful in making these four 
decisions.  There is a large amount of available 
information but much of it is superfluous to 
learning player strategies. Perhaps the most 
important information in any combat scenario is 
to know where the agent�s enemies are. Since 
information about location is so important, it is 
divided into several smaller features.  Spatial 
data about enemy location will be determined by 
breaking the world up into four sectors around 
the player, as illustrated in Figure 1. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 1: Game sectors with player centered 
in the middle. 
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Sector information is relative to the player.  For 
example, Sector 1 represents the area in front of 
the player.  Actual world position is not as 
important to the player as is information about 
his immediate surroundings.  Data about enemies 
and goals will be expressed in terms of sector 
coordinates.  For example, the location of the 
closest enemy to the player will be indicated by a 
sector number.  If the goal is due east of the 
player it will be considered in sector 2.  A sector 
ends at 700 feet and is the maximum view 
distance of the player on the sample levels. 
 
In addition to enemy information, the player 
must continually be aware of his health level.  

For example, if a player has low health his 
actions might be significantly different than if he 
has full health.  Also, most FPS games are 
simply about surviving the longest without 
dying.  Points are awarded to whomever can 
�capture the flag� and return it to their base.  To 
an expert player this is significant motivation to 
change strategy during game play.  The feature 
set includes information about the distance the 
player is from the closest goal and what sector 
contains that goal.  Finally, we record the current 
move direction and direction the player is facing.  
This allows us to determine such tactics as 
retreat and advance.  

Table 1: Input Feature Set and Possible Outputs 
Input (current information about the world around the player) 
Closest Enemy Health This is the current health of the closest enemy. We discretize 

the possible values of this feature to zero through ten. 
Number Enemies in Sector 1 This is number of enemies in sector one3.  
Number Enemies in Sector 2  This is number of enemies in sector two. 
Number Enemies in Sector 3 This is number of enemies in sector three 
Number Enemies in Sector 4 This is number of enemies in sector four. 
Player Health This is the player health.  In the game the  

possible values are 0 to 100. 
Closest Goal Distance                  Every game has a goal.  By securing the goal the player gains 

points.  The goal used in this research is a briefcase. 
Approximately  10,000 units is the start distance from the goal 
and this is the  greatest distance possible; we linearly 
discretize this on a 0-10 scale.   

Closest Goal Sector                     The goal is in the following sector (note goal can be moved by 
other agent; this is non-static). Goal sector is relative to player. 

Closest Enemy Sector     This is the sector containing the closest enemy.  
Distance to Closest Enemy This is the number of game units the agent is from his closest 

enemy.  Values range from 0 through 10, scaled from a game 
representation of units (rounded to the nearest 1000 game 
units and capped at 10,000). 

Current Move Direction               When this data was collected the player was moving in this 
direction (0 for moving south, 1 for moving north) 

Current Face Direction When this data was collected the player was facing this 
direction (0 for facing south, 1 for facing north). 

   
Output (collected at next time step after input is sampled) 
Accelerate If player is moving faster than in the last recorded frame, this 

variable is set to 1, otherwise the value is set to 0. 
Move Direction Direction of player movement in world angles; 0 means he is 

moving forward in the front 180 degree arc from world origin 
(north), 1 means he is moving backwards (south). 

Facing Direction  This is the orientation of the player; 1 means he is facing 
somewhere in the front 180 degree arc of the world origin 
(north); 0 means he facing somewhere in the back 180 degree 
arc (south) .    

    
                                                        
3 If there are more than ten enemies the value is set to ten.  The same upper bound holds for the other three 
sectors. 



Extracting the Data Set 

Once the feature set is determined it is possible 
to run the game and collect some samples.  For 
the purposes of this paper, the outcome 
associated with any set of features will be one of 
the basic actions as described in the output 
section of Table 1. The feature set will be 
measured every other game frame (100 
milliseconds).  Every sample has a 
corresponding outcome that occurs 50 
milliseconds later (the amount of time it takes to 
process a combination of player key-press 
events).  This outcome will be some combination 
of the four basic actions: 

-   Move front / back  
-   Face front / back 
-   Jump / do not jump 
-   Accelerate / do not accelerate 

 
3. Learning From the Data 
Data was collected by sampling the decisions of 
an expert player.  The level used was a standard 
�capture the flag� game with thirteen enemy 
agents.  We created a special version of Soldier 
of Fortune 2� to collect the available game data 
and translate it into our feature vectors.  For 
example, when a game frame is sampled we can 
access locations of the nearest enemies within a 
certain radius, then using vector math we 

compute their location relative to the player.  
This technique is used for all the sector 
information features.  The Move Direction and 
Face Direction features are computed by simply 
recording the current world Face Direction and 
Move Direction of the player.  The output section 
of the feature vector is computed on the time step 
following the sample.  We record whether or not 
the player accelerates, changes movement, 
changes facing, or jumps.  This part of the 
feature vector represents the decision made by 
the player.  Now that we have the input features 
as well as the decision, we have a complete 
feature vector.  This feature vector is saved and 
the collection of samples becomes our training 
and testing sets used for applying the learning 
algorithms.  We collected over ten thousand 
individual examples by observing one expert 
player for 50 minutes. 
 
 
ANN 
An artificial neural network (ANN) learns by 
using a training set to regress through the 
examples and learn in a non-linear manner.  The 
basic back-propagation algorithm (with ten 
hidden units) was used in this project  (Mitchell 
1997). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2: Backpropogation Algorithm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Backprop(dataset, eta, Nin, Nout, Nhidden) Data in dataset is (x, t), eta is the learning rate, Nin is the size of the 
input layer, Ntout of the output layer, and Nhidden of the hidden layer 

• Create a feed forward network with Nin inputs, Nout outputs, and Nhidden hidden nodes. Initialize 
each Wij  to some small random value 

• Until error value is below some threshold, repeat: 

• For each (x, t) in dataset: 

• Input the instance x and compute outputs ou for every node (Forward 
propagation of activation) 

• Propagate errors backward through the network 

• For each output unit k, compute its error term: deltak = ok(1 � ok)(t_ - ok) 

• For each hidden unit h, compute its error term: deltah  = oh(1 � oh)(∑k ⊆  

outputs) of Wkh deltak 

• For each Wij  = Wij  + delta- Wij, where delta- Wij  = eta deltaj xji 



The standard validation-set concept was used to 
avoid overfitting of the training set.  Similar to 
the method of moving 10% of the training 
examples into a tuning set for ID3 pruning, 10% 
of the ANN training data will be moved into a   
tuning set to validate our learned function.   
After every five epochs of training we save the 
network weights at that time step and calculate 
the error on the validation set with these weights.  
If at any time the error rate is lower than the 
previous error rate from five epochs previous, 
training is stopped and the network weights of 
the previous validation step are used. 
 
4.  Experimental Methodology 
Because of the complexity of the FPS there are 
some implementational hurdles to collecting this 
data.  Since the data was sampled at a rate of 
every 100 milliseconds, there will be many input 
sets that look exactly the same.  If nothing has 
changed in 500 milliseconds, only one of these 
samples is recorded.  However, if at least one of 
the features changed this sample will always be 
recorded.  This is important, otherwise crucial 
feature/action pairs might be missed.  
 
Events with no corresponding action are 
discarded. A portion of these events may have 
proven useful: if no action is specified it could 
mean to stand still.  However, rare events such as 
climbing ladders, opening doors, and going 
prone were not encoded.   For this reason, it can 
not be assumed that the remaining non-classified 
situations dictate any particular action, so they 
were thrown out before learning began.4 
 
The game is run in multi-player mode with 
thirteen agents placed in a large multi-leveled 
environment.  This environment includes places 
for every type of basic movement.  This system 
for collecting data has been verified to work on 
any environment type with no necessary 
customization.  However, the examples applied 
to the learning algorithms were always from the 
same environment.  Data was collected over the 
course of several game sessions and combined 
into one massive data set of approximately 6000 
examples. Each game was run by the same 
�expert� player, whose performance was fairly 
consistent. 
 

                                                        
4 Un-classified examples accounted for 
approximately 7% of the total collected 
examples.  

5. Ensemble Methods: Boosting 
With 5000 training examples the artificial neural 
network (ANN) in particular never got error rates 
worse than 16% on any of these tasks.  However, 
as noted above this is still not acceptable.  Since 
the agent will be using these decisions in real 
time again and again, the error rates need to 
drop.  A great many of the functions work 
perfectly to account for many variables.  
However, it is the rare cases that hurt.  What is 
preferred is a way to hedge the bet and rely on 
the functions that learn the task well, while 
somehow penalizing those that do not.  
Ensemble methods are one way to do this.  An 
ensemble is a set of independently trained 
classifiers.  The basic idea is to run the data on 
several different sets of data and have each 
learned function �vote� on the result.  This vote 
then becomes the decision.  Research has shown 
that usually ensemble methods produce more 
accurate results than singleton classifiers (Opitz 
& Maclin 1999). Bagging (Breiman 1996) and 
Boosting (Freund & Schapire 1996) are two 
popular methods for producing ensembles.  
These methods are fairly new and have not been 
tested on a domain similar to a first person 
shooter video game. Each of these ensemble 
methods was investigated in this paper. 
 
6. Results 
Figure 3 shows that the error rates of using an 
artificial neural network with bagging were 
much lower than any other learning methodology 
we tried (Geisler 2002). 
 
The Move Direction task was learned with only a 
5.2% error rate.  Face Direction had only a5.3% 
error rate.  As with Move Direction, this is an 
important task for the domain.  The basic ANN 
algorithm would have made a mistake one out of 
every six times, which wasn�t acceptable.  One 
mistake in seventeen is much more acceptable, 
and while it will still be noticeable this error rate 
may be explained away as natural mistakes as 
opposed to obvious AI blunders. 
 
The Jump decision fares better overall when the 
majority category is guessed.  This is still true 
with ensembles.  In this case boosting got the 
error rate down to 5% while the majority 
category hovers around 2.5% percent.  But is is 
important to consider what type of false negative 
statistics would be generated if it was always 
voted to not Jump.  Table 6 shows that there are 
indeed more false negatives in the baseline case. 
 



 
 
 
Table 3: Confusion Matrix for Jump Baseline 

  Actual 
  Yes No 

Predicted Yes 0 0 

 No 126 4874 

 
In this domain, it is desirable to lower the false 
negative rate at the cost of raising the true 
negative rate.  In a FPS, it does not matter if the 
agent occasionally jumps for no reason.  But at 
the same time the agent should jump when 
appropriate.  Does our most accurate learning 
algorithm (boosting with an ANN) perform with 
more true positives than false negatives?  
 
Table 5 shows the ANN with boosting predicts 
jumping when appropriate with 95% accuracy.  
Minimal accuracy is gained on true positives and 
the false negatives increase dramatically. With 
this algorithm in place, a jump occurred on 13% 
of the cycles when the agent shouldn�t have 
jumped according to the training data.   For this 
application it will be suitable to lower this 
number but allow most of the false negatives to 
slip through.   Perhaps as a post-processing step 
a single flip of a coin could be used to decide 
whether or not to follow the �jumping advice.�   
On real data, this would bring the true positive 
rate down, but it would also bring the false 
positive rate down to 6.5%. 
 
Even with bagging the Accelerate task was still 
recording a 10% error rate, which is not 

acceptable.  However, once boosting was added 
the Accelerate task increased in performance, to 
the point where it�s now the most accurately 
predicted function at only a 4.8% error rate!  
 
7.  Integration of the Learned Model 
 
Applying the ANN to the Game 
Applying an ANN decision to a bot at run time 
was tricky matter.  Remember that a standard bot 
in a Quake3 game knows nothing about its 
surroundings. For example, it has no idea a priori 
that if it walks forward, it will hit a wall.  This 
makes it difficult to directly apply the results to a 
real situation.  We created a back end controller 
for the bot to interpret the semantics of �back, 
forward, right, left, cover and shoot.  Many 
games use some sort of node system to partition 
the playable areas for the bots (DeLoura 2000) 
(Geisler 2003).  This means that any time the 
bots are within a node they will know what 
nodes are in front of them, what nodes are for 
cover, what nodes are reachable from the given 
node, and what other enemies or players are in 
any given node. 
 
Simple geometry can be used to derive what 
nodes are in front or back of each other in 
relation to the player.  The height of walls is also 
known in an FPS.  If a node intersects a wall at 
one height, but does not intersect higher up, this 
may be a possible duck point.    
 
Finite States and Putting It All Together 
Our finite state machine is capable of performing 
a set of micro-actions. For example, we created a 
routine to find a node that will give us cover 
from closest enemy and routines to move 
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forward, towards the closest enemy could be 
used.  This task was made easier by a modular 
design to the AI architecture (Ramsey 2003). 
What gun should the agent attack with, and what 
about grenades?  All these things can be decided 
easily by some hand-coded rules and deferred to 
a separate module.  Each set of rule will be 
contained within a finite state  Once the high 
level attack action is determined the finite states 
can then sort out the details.   
 
In our system some of the authority is delegated 
to a smaller expert system, but in the meantime 
the classifier can control the more general 
behavior of fleeing, fighting, or holding our 
ground.  This means that it will be more difficult 
for the player to spot a pattern.  Patterns in FPS 
games often manifest themselves in how these 
higher level decisions are made.  For example, if 
the player is there, the agent goes towards him. 
This unfortunately results in the player learning 
that course of action, and learning to account for 
it. However, now the basic direction of the bot 
can be modeled from player reactions. In 
practice this indeed holds to be true.  Playing this 
simple combat map one can see agents deciding 
to run back for cover.  Once the bots get to the 
desired spot the finite state takes over telling 
them the details of what to do next.  For 
example, after running backwards because of the 
higher level decision the finite state may tell the 
bot to make sure and reload if their gun is empty.  
In general, this combination provides for a more 
dynamic game. 
 
It has been shown that four ensembles of neural 
networks can be used to model player actions at 
any point in time.  The accuracy on these is 
pretty decent, ranging all the way up to 96% 
accuracy for basic �move back� and �move 
forward� operations.  It has also been shown that 
not all decisions in the game need to be learned. 
It�s not necessary to have 100% accuracy here, 
but just to look intelligent and to present a 
challenge to the player.  Many things remain to 
be done.  For one the available actions should be 
extended to include crouching and various 
speeds of movement (e.g. run vs. walk).  Also, 
finer grained decisions could be incorporated, i.e. 
the decision to shoot vs. throw a grenade. Since 
the actions taken do not have to be exact and it�s 
in fact more enjoyable if it�s dynamic, it might 
be interesting to try an algorithm with a bit more 
activity in the solution space. For example, 
genetic algorithms and their notion of occasional 
mutations may prove interesting.   

 
 8.  Conclusion 
This paper has explored several popular machine 
learning algorithms and shown that these 
algorithms were successfully applied to the 
complex domain of the First Person Shooter 
(FPS). We have shown that a subset of AI 
behaviors can easily be learned by player 
modeling using machine learning techniques. 
Under this system we have successfully been 
able to learn the combat behaviors of an expert 
player and apply them to an agent in the Soldier 
of Fortune 2� FPS5. The following tasks were 
learned: acceleration, direction of movement, 
direction of facing and jumping. We evaluate 
both empirically and aesthetically which learner 
performed the best and make recommendations 
for the future. We have created a system which 
uses these learned behaviors in a finite state 
system within the game at real time. 
 
However, this is just the tip of the iceberg.  First 
Person Shooters are not the only type of genre 
that can benefit from learning and modeling 
player behavior.  Our work is directly applicable 
to any game genre that demands reasonably 
intelligent behavior from it�s enemies.  The 
machine learners presented in this paper were 
shown to be adept at modeling an expert player.  
However, when we used our machine learners to 
model an inexperienced player we ended up with 
an inexperienced bot.  Therefore, this system 
could be used for fodder type enemies as well.  
Indeed, all the designer must do is �step into the 
shoes� of the enemy he is creating and act out a 
set of behaviors.  With enough training and 
tuning this learned model could be directly 
applied. 
 
In addition to enemy behavior modeling, this 
system could easily be extended to co-op games 
and games with non-human buddies.  Machine 
learning in this context can be under the hood 
and transparent to the player.  The player can 
keep his mind on having fun and not on training 
his buddies.   
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