
Reflection in Action:
Model-Based Self-Adaptation in Game Playing Agents

Patrick Ulam, Ashok Goel, Joshua Jones

College of Computing
Georgia Institute of Technology

Atlanta, USA 30332
{pulam, goel, jkj}@cc.gatech.edu

Abstract
Computer war strategy games offer a challenging domain
for AI techniques for learning because they involve multiple
players, the world in the games is only partially observable
and the state space is extremely large. Model-based
reflection and self-adaptation is one method for learning in
such a complex domain. In this method, the game-playing
agent contains a model of its own reasoning processes.
When the agent fails to win a game, it uses its self-model
and (possibly) traces of its execution to analyze the failure
and modify its knowledge and reasoning accordingly. In this
paper, we describe an experimental investigation of model-
based reflection and self-adaptation for a specific task
(defending a city) in a computer war strategy game called
Civilization. Our results indicate that at least for limited
tasks, model-based reflection enables effective learning, and
further, when traces are used in conjunction with the model,
the effectiveness of learning appears to increase with the
size of the trace.

Game Playing
 As AI techniques for learning become increasingly
sophisticated, it becomes feasible to operate AI agents in
increasingly complex environments. There are, however,
many environments whose complexity outstrips the ability
of current AI techniques to guide the agent to take proper
actions. This problem is particularly evident in game
playing.
 Many game-playing agents use traditional search
techniques such as minimaxing (VonNeumann and
Morgenstern 1944). Some agents, such as TD-Gammon,
use reinforcement learning to determine the proper moves
to make for a given game state (Tesauro 1995). Both of
these techniques enable optimal game playing under
certain circumstances and hence may be a good choice for
some games. Unfortunately, these techniques also have
some drawbacks. The biggest drawback of these
techniques is their computational complexity when dealing
with large state spaces even in relatively straight-forward
two-player, fully observable games such as chess. At
present, it is unclear whether these techniques can be
scaled up to more complex two-player fully-observable
games such as GO, let alone multi-player partially-
observable games.

Model-Based Reflection and Self-Adaptation
Recently AI has developed a set of techniques for

model-based introspection/reflection. In this general
technique, an agent is endowed with a model of its
reasoning processes. The agent uses its self-model to
analyze its experiences and to make modifications to its
knowledge and reasoning accordingly. This general
technique has been used in domains ranging from route
planning (Fox and Leake 1995; Stroulia and Goel 1994,
1996) to assembly and disassembly planning (Murdock
and Goel 2001, 2003) to playing chess (Krulwich et al
1992). It has proved useful for learning new concepts
(Krulwich et al 1992), improving case indexing (Fox and
Leake 1995), reorganizing domain knowledge and
reconfiguring the task structure (Stroulia and Goel 1994,
1996), and adapting and transferring the domain
knowledge and the task structure to new problems
(Murdock and Goel 2001, 2003).

The goal of this work is to investigate the use of model-
based reflection in learning to play multi-player games in
partially observable worlds with extremely large state
spaces. In order to conduct experiments, we needed to
adopt a specific model-based reflection technique.
Murdock (2001) describes in detail a knowledge-based
shell called the Reflective Evolutionary Mind (REM) that
uses a knowledge-representation called the task-method-
knowledge language (TMKL). An agent, such as a game-
playing agent, is encoded in TMKL, which specifies the
task-method-knowledge structure of the agent. A task is
specified by the types of information it takes as input and
gives as output. A task may have multiple methods
applicable to it. A method decomposes a task into subtasks
and specifies the control of processing over the subtasks.
The primitive tasks at the lowest level of this recursive
task-method decomposition either correspond to an action
in the world or an associated knowledge-based procedure
for accomplishing them. Thus, a TMKL model of an agent
specifies its reasoning architecture, including the tasks the
agent accomplishes and the knowledge it uses to
accomplish them.

REM reflects on an agent encoded in TMKL. In
particular, it uses the TMKL model and the trace of the
agent’s processing to localize the modification needed to
an agent to address a failure or to accomplish a new task. A
trace is a record of the agent’s processing in the execution
of a particular task, and is expressed in terms of the
sequence of subtasks that were executed and the
knowledge states each subtask generated. Thus the trace
specifies the actual internal processing of the agent. When
the agent fails at a particular task, REM uses information
about the failure, the trace of processing, and the TMKL
model to localize the modifications needed to agent to
address the failure.
 Once REM has localized the modification to a portion of
the task-method-knowledge structure of the agent, it
identifies a specific modification and executes it. Its set of
general adaptation methods include failure-driven
adaptation, generative planning, and reinforcement
learning. Thus, REM combines model-based reflection
with both generative planning and reinforcement learning.
However, in the experiments reported in this paper, we
used only REM’s method of failure-driven adaptation.

The Civilization Game
We chose a popular computer war strategy game called

Civilization as the domain for this work. Many
incarnations of this game exist ranging from several
commercial variations designed for play on a computer,
board game variations, as well as a free variant available in
the public domain called FreeCiv that was used in this
work. Civilization is a multiple-player game in which a
player competes against several software agents that come
with the game. Each player takes control of a civilization
from its primitive beginnings at the start of the game and,
as the game progresses, develops the early civilization into
a modern civilization at the termination of the game. As
the game continues, each player explores the world and
learns more about it and also encounters other players.
Each player can make alliances with other players, or
attack the other players while defending its own assets
from them. In the course of a game (which can take a few
hours to play), each player makes a large number of
decisions for his civilization ranging from when and where
to build cities on the playing field, what sort of
infrastructure to build within the cities and between the
civilization’s cities, to how to defend the civilization.
Civilization belongs to the genre of war strategy games
that are often called 4X games, where the four X’s
represent the four main tasks in the game: exploration,
expansion, exploitation, and military extermination.
 We chose FreeCiv as the domain for a number of
reasons. As mentioned above FreeCiv is a multi-player
game with a partially-observable world. In addition,
FreeCiv has a huge state space making it intractable for
general search based or reinforcement learning techniques;
hence, an agent designed to play the game would need to
use techniques to reduce the complexity of adapting the

agent within the game so as to make the problem tractable.
Since FreeCiv is an incredibly complex game, we believe
that it will need a modular agent design, where each
module may encapsulate smaller, simpler, more easily
addressed aspects of game play.

The Defend City Task
Due to the extremely complex nature of the Civilization

game, this work addresses only one component of the
game to serve as a means of determining the effectiveness
of model-based reflection and self-adaptation. The
component addressed in this work deals with the defense
of one of the agent’s cities from enemy civilizations. This
task was chosen for several reasons. The task is important
to the creation of a general purpose civilization playing
agent in that the player’s cities are the cornerstone in the
player’s civilization. Most actions in the game consist of
building, upgrading, and fighting for cities. This task is
also common enough such that the agent must make
numerous decisions concerning the proper defense of the
city during the time span of a particular game.

Figure 1 illustrates a TMKL model of the city defense
task. The overall Defend City task can be decomposed into
two sub-tasks: the evaluation of the defense needs for a
city and the building of a particular structure or unit at that
city. The Evaluate Defense Need task can be further
decomposed into two additional subtasks, a task to check
internal factors in the city for defensive requirements and a
task to check for factors external to the immediate vicinity
of the city for defensive requirements. The Defend City
task is executed at different times throughout the game. It
is executed each turn that the agent is not building a
defensive unit in a particular city in order to determine if
production should be switched to a defensive unit. It is
also executed whenever a city has finished production of a
particular building or unit.

The internal evaluation task utilizes knowledge
concerning the current number of troops that are
positioned in a particular city to determine if the city has
an adequate number of defenders barring any extraneous
circumstances. The external evaluation of a city’s defenses
examines the area around a city for a specified radius for
nearby enemy combat units. It utilizes the knowledge of
the number of units, their distance from the city, and the
number of units currently allocated to defend the city in
order to provide an evaluation of the need for additional
defense. These evaluation tasks are represented as linear
value functions, the results of which are knowledge states
which are then utilized by the agent to build the
appropriate item at the city. The Build Defense task
utilizes the knowledge states generated by the evaluation
subtasks along with knowledge concerning the current
status of the build queue, as well as the technology
currently known by the agent to determine what should be
built for a given iteration of the task. The Build Defense
task then proceeds to build a defensive unit appropriate to

Figure 1. Defend City Task Model

the civilization’s technological level or wealth to keep the
citizens of the city happy.

The goal of the Defend City task is to provide for the
defense of a city for a certain number of years. The task is
considered successful if the city has not been conquered by
opponents by the end of this time span. If an enemy takes
control of the city, the task is considered a failure. In
addition, if the city enters civil unrest, a state in which the
city revolts because of unhappiness, usually caused due the
neglect of infrastructure in a particular city, then again the
task is considered to have failed.

Implementation
 We developed a simple software agent, called the
FreeCiv agent, capable of playing the Civilization game in
the REM/TMKL framework. Figure 2 illustrates the
working of the FreeCiv agent. Note that the Defend City
task illustrated in Figure 1 is a subtask of the Get Packet
task illustrated in Figure 2 as it is executed as a response to
certain packets received.

A number of scalability problems arose while
integrating the FreeCiv agent with the REM system. In
order to reduce both memory and time overhead, we
directly endowed the FreeCiv agent with a model of the
Defend City task. In addition, the execution trace for these
tasks in these models was created and analyzed within the
FreeCiv framework, bypassing REM’s trace generation
and analysis mechanism. This enabled rapid execution of
the agent. The entire trace was kept within memory for the
lifetime of the agent. When a failure is detected, the
execution of the agent is stopped and a routine for the
analysis of the trace is called. The analysis performed is a
variant of REM’s failure-driven model transfer. Figure 3
illustrates the high-level algorithm for failure-driven
adaptation. The first step is the localization of the cause
for the failure through the use of information about the

Figure 2. FreeCiv Agent Model

failure and the model of the failed task. Information about
the failure is simply the type of failure that occurred.
Using this information, the model is analyzed to determine
in which task the failure has occurred. Given the trace and
the location of the model in which the cause for the failure
is suspected to lie, the agent then analyzes the execution
traces available to it to determine to the best of its ability
where precisely in the given portion of the model the error
may have occurred. This is done through the use of a
failure library containing common failure conditions found
within the Defend City task. Figure 4 depicts the failure
library for the Defend City task. Failure types for specific
levels in that task hierarchy are shown. Specific failures
for a given task may be indexed through trace analysis. If
a failure has been determined to occur, it is then used to
index into a library of adaptation strategies that will
modify the task such in the manner indicated by the
library. Figure 5 illustrates the library of adaptation
strategies used in the Defend City. If multiple errors are
found within the trace analysis, a single error is chosen
probabilistically so as to minimize the chance of over-
adaptation of the agent.

Experimental Setup
 To determine the effectiveness of using model based

reflection within the FreeCiv game and more specifically
the Defend City task, a series of experiments were
conducted. In each individual experiment, twenty-five
games of FreeCiv were played by the agent. Each game
was conducted with a total of 8 players including the
FreeCiv agent described above. The trials were set to run
for one hundred turns at the hardest difficulty level. If the
task was successful no adaptation occurred. If during the
trial, the agent’s city is conquered or the city’s citizens
revolt, the Defend City task is considered failed. When a

Algorithm: failure-driven-model-analysis-adaptation (model, trace, feedback)
Inputs: model: Model of task to be analyzed
 trace: Portion of the execution traces of model to be analyzed
 feedback: Feedback received concerning task failure
Outputs: Task model with possible modifications
Effects: Possible modification to given model to address diagnoses causes of failure in task execution
failure-driven-model-analysis-adaptation (model, trace, feedback)
 failure-location = localize-failure(model, feedback)
 for each task execution in trace
 execution-instance = next-trace-instance(trace)
 error-type = index-failure-library(execution-instance, failure-location)
 add-hypothesis(error-type)
 error-selection = select-hypotheses()
 adapted-model = adaptation-model(error-selection, model)
 return adapted-model

Figure 3. Algorithm for failure driven model analysis and adaptation

Model Location (task) Types of Failures (indexed via traces)

Defend-City Unit-Build-Error, Wealth-Build-Error, Citizen-Unrest-Misevaluation, Defense-Present-
Misevaluation, Proximity-Misevaluation, Threat-Level-Misevaluation, None

Evaluate- Defense-Need Citizen-Unrest-Misevaluation, Defense-Present-Misevaluation, Proximity-Misevaluation,
Threat-Level-Misevaluation, None

Build-Defense Unit-Build-Error, Wealth-Build-Error, None
Evaluate-Internal-Factors Citizen-Unrest-Misevaluation, Defense-Present-Misevaluation, None
Evaluate-External-Factors Proximity-Misevaluation, Threat-Level-Misevaluation, None

Figure 4. Failure library used for the Defend City task by model location

Adaptation Strategies Effects
Increase Search Radius Increases the radius in which to search for enemies
Decrease Search Radius Decreases the radius in which to search for enemies
Increase Base Defense Increases the number of defenders to build regardless of outside factors
Decrease Base Defense Decreases the number of defenders to build regardless of outside factors
Increase Enemy Activity Threshold Increases the threshold for the number of enemies nearby required to generate response
Decrease Enemy Activity Threshold Decreases the threshold for the number of enemies nearby required to generate response
Increase Ally Proximity Radius Increases the radius in which to account for ally proximity in defense evaluation
Decrease Ally Proximity Radius Decreases the radius in which to account for ally proximity in defense evaluation

Figure 5. Library of adaptation strategies available for Defend City task

failure occurs, execution of the task is halted and the
reflection sequence is initiated. The trace of execution is
examined for the failure point. In addition to the trace of
the task execution generated at the time of failure, the
agent could also utilize the trace of up to the last ten
executions of the Defend City task. We also conducted a
series of control trials lesioning the ability of the agent to
adapt via reflection. In a third experimental condition, the
agent reflected upon only the failure that occurred without
trace information. The number of successful trials for
each configuration was measured as well as the number of
trials in which failures were present and adaptation
occurred. The resulting weights in the linear value
function utilized for the Evaluate Internal Factors and
Evaluate External Factors tasks were recorded.

Result Summary
A summery of the results can be seen in Figure 6. All
three agent configurations (no ability to adapt – the
control condition, model-based adaptation only, and
model and trace-based adaptation) complete several trials
but the number of successful trials increases with the
amount of trace utilized in the analysis of task failures.
Interestingly, the trials in which the model was the only
means of aiding reflection resulted in equal or better
performance than all trials except for those trials that
utilized significant amounts of trace. The increase in the
number of task execution traces utilized corresponds

with a similar increase in the number of adaptation
strategies used in model-based adaptation. In the trials in
which only the model was utilized, the model enabled
localization of the causes of the failure but did not
necessarily identify the failure. In this condition, causes for
failures were chosen randomly from the failure library
based upon where the failure was localized in the model.
This resulted in unusually high levels of adaptation, many
of which proved beneficial. This seems to indicate that
reflection with only the model and feedback may prove
effective when the number of failures remains manageable.
 This is because the agent is able to localize the error
with sufficient accuracy to determine a point of
modification. This localization alone illustrates one of the
advantages of such a model-based approach. The
reduction in applicable adaptation strategies due to the
localization allows for significant advantages in selecting a
specific modification (even if done at random). On the
other hand, without execution traces to illustrate how the
agent actually executed the task within the context of its
current knowledge states, it is forced to assume the failure
was due to the improper execution of the task and select an
adaptation strategy regardless of whether the task was
executed properly or not. It was indeed noted that
although performance of the methods of model-based
adaptation and model-based adaptation with use of traces
appears to be equally good in some sense, the specific
modifications made by the two methods are quite different.
The lack of available trace information results in an overall
increase in the number of modifications made, which may
prove detrimental as the complexity of the tasks addressed
increases.

Conclusions and Future Work
 The results from the experiments that utilized reflection
to guide the learning of an agent in a subset of the FreeCiv
game indicate that model-based reflection is an effective
means in which an agent can learn to act in highly
complex, partially observable environments. The ability to
localize the failure within the task model coupled with the
utilization of task execution traces to further narrow the
space of possible adaptations allow for significant
performance improvements in the task described herein.
The results also show that the larger the number of the task
execution traces analyzed, the better the performance of
that agent in the Defend City task. Future work will focus
on using the localization capabilities of model-based
reflection to allow the agent to determine where in the state
space adaptation must occur and then utilizing numerical
machine learning techniques upon this reduced state space
thus eliminating the adaptation libraries.

References
Bates, M. A.; Bowden, B. V.; Strachey, C.; and Turing, A. M.
1953. "Digital Computers Applied to Games" in B.V. Bowden,
ed., Faster Than Thought, Pitman, 286-310.

Trial Success and Failure Detection Rates

0%
20%
40%
60%
80%

100%

Contro
l

Model O
nly 1 2 4 6 8 10

Trace Window Size

%
 o

f T
ria

ls

Unsuccessful
Trials with No
Failures Found
Unsuccessful
Trials with Failures
Found
Successful Trials

Figure 6. Success and failure rates for trials performed with
varying trace window sizes. Failed trials further illustrated as

trails in which model based reflection found an error and
trails in which it did not.

Fox, S. and Leake, D.B. 1995. Learning to Refine Indexing by
Introspective Reasoning. In Proceedings of the 14th International
Joint Conference on Artificial Intelligence, Montreal, Canada:
Morgan Kaufmann.

Krulwich, B., Birnbaum, L., and Collins, G. 1992. Learning
Several Lessons from One Experience. In Proceedings of the
Forth Annual Conference of the Cognitive Science Society, 242-
247. Bloomington, In.

Murdock, J. W. and Goel, A. K. 2001. Meta-Case-Based
Reasoning: Using Functional Models to Adapt Case-Based
Agents. In Proceedings of the 4th. International Conference on
Case-Based Reasoning, 407-421. Vancouver, Canada.

Murdock, J. W. and Goel, A. K. 2003. Localizing Planning with
Functional Process Models. In Proceedings of the Thirteenth
International Conference on Automated Planning & Scheduling.
Trento, Italy.

Murdock, J. W. 2001 Self-Improvement through Self-
Understanding: Model-Based Reflection for Agent Adaptation,
Ph.D. Thesis, College of Computing, Georgia Institute of
Technology.

Stroulia, E. and Goel, A.K. 1994. Learning Problem-Solving
Concepts by Reflecting on Problem Solving. In Proceedings of
the 1994 European Conference on Machine Learning. p. 287-
306.

Stroulia, E. and Goel A.K. 1996. A Model-Based Approach to
Blame Assignment: Revising the Reasoning Steps of Problem
Solvers. Proceedings of AAAI'96, 959-965. AAAI Press.

Von Neumann, J. and Morgensten, O. 1944. The Theory of
Games and Economic Behavior. Princeton University Press, New
Jersey, 1980 ed.

