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Abstract 
Computer war strategy games offer a challenging domain 
for AI techniques for learning because they involve multiple 
players, the world in the games is only partially observable 
and the state space is extremely large. Model-based 
reflection and self-adaptation is one method for learning in 
such a complex domain. In this method, the game-playing 
agent contains a model of its own reasoning processes. 
When the agent fails to win a game, it uses its self-model 
and (possibly) traces of its execution to analyze the failure 
and modify its knowledge and reasoning accordingly. In this 
paper, we describe an experimental investigation of model-
based reflection and self-adaptation for a specific task 
(defending a city) in a computer war strategy game called 
Civilization.  Our results indicate that at least for limited 
tasks, model-based reflection enables effective learning, and 
further, when traces are used in conjunction with the model, 
the effectiveness of learning appears to increase with the 
size of the trace.  

Game Playing 
 As AI techniques for learning become increasingly 
sophisticated, it becomes feasible to operate AI agents in 
increasingly complex environments. There are, however, 
many environments whose complexity outstrips the ability 
of current AI techniques to guide the agent to take proper 
actions. This problem is particularly evident in game 
playing.  
 Many game-playing agents use traditional search 
techniques such as minimaxing (VonNeumann and 
Morgenstern 1944).  Some agents, such as TD-Gammon, 
use reinforcement learning to determine the proper moves 
to make for a given game state (Tesauro 1995).  Both of 
these techniques enable optimal game playing under 
certain circumstances and hence may be a good choice for 
some games. Unfortunately, these techniques also have 
some drawbacks. The biggest drawback of these 
techniques is their computational complexity when dealing 
with large state spaces even in relatively straight-forward 
two-player, fully observable games such as chess. At 
present, it is unclear whether these techniques can be 
scaled up to more complex two-player fully-observable 
games such as GO, let alone multi-player partially-
observable games. 

Model-Based Reflection and Self-Adaptation 
Recently AI has developed a set of techniques for 

model-based introspection/reflection. In this general 
technique, an agent is endowed with a model of its 
reasoning processes. The agent uses its self-model to 
analyze its experiences and to make modifications to its 
knowledge and reasoning accordingly. This general 
technique has been used in domains ranging from route 
planning (Fox and Leake 1995; Stroulia and Goel 1994, 
1996) to assembly and disassembly planning (Murdock 
and Goel 2001, 2003) to playing chess (Krulwich et al 
1992). It has proved useful for learning new concepts 
(Krulwich et al 1992),  improving case indexing (Fox and 
Leake 1995), reorganizing domain knowledge and  
reconfiguring the task structure (Stroulia and Goel 1994, 
1996), and adapting and transferring the domain 
knowledge and the task structure to new problems 
(Murdock and Goel 2001, 2003).  

The goal of this work is to investigate the use of model-
based reflection in learning to play multi-player games in 
partially observable worlds with extremely large state 
spaces.  In order to conduct experiments, we needed to 
adopt a specific model-based reflection technique. 
Murdock (2001) describes in detail a knowledge-based 
shell called the Reflective Evolutionary Mind (REM) that 
uses a knowledge-representation called the task-method-
knowledge language (TMKL). An agent, such as a game-
playing agent, is encoded in TMKL, which specifies the 
task-method-knowledge structure of the agent. A task is 
specified by the types of information it takes as input and 
gives as output. A task may have multiple methods 
applicable to it. A method decomposes a task into subtasks 
and specifies the control of processing over the subtasks. 
The primitive tasks at the lowest level of this recursive 
task-method decomposition either correspond to an action 
in the world or an associated knowledge-based procedure 
for accomplishing them. Thus, a TMKL model of an agent 
specifies its reasoning architecture, including the tasks the 
agent accomplishes and the knowledge it uses to 
accomplish them.  



REM reflects on an agent encoded in TMKL. In 
particular, it uses the TMKL model and the trace of the 
agent’s processing to localize the modification needed to 
an agent to address a failure or to accomplish a new task. A 
trace is a record of the agent’s processing in the execution 
of a particular task, and is expressed in terms of the 
sequence of subtasks that were executed and the 
knowledge states each subtask generated. Thus the trace 
specifies the actual internal processing of the agent. When 
the agent fails at a particular task, REM uses information 
about the failure, the trace of processing, and the TMKL 
model to localize the modifications needed to agent to 
address the failure.   
 Once REM has localized the modification to a portion of 
the task-method-knowledge structure of the agent, it 
identifies a specific modification and executes it. Its set of 
general adaptation methods include failure-driven 
adaptation, generative planning, and reinforcement 
learning. Thus, REM combines model-based reflection 
with both generative planning and reinforcement learning. 
However, in the experiments reported in this paper, we 
used only REM’s method of failure-driven adaptation. 

The Civilization Game  
We chose a popular computer war strategy game called 

Civilization as the domain for this work. Many 
incarnations of this game exist ranging from several 
commercial variations designed for play on a computer, 
board game variations, as well as a free variant available in 
the public domain called FreeCiv that was used in this 
work.  Civilization is a multiple-player game in which a 
player competes against several software agents that come 
with the game. Each player takes control of a civilization 
from its primitive beginnings at the start of the game and, 
as the game progresses, develops the early civilization into 
a modern civilization at the termination of the game. As 
the game continues, each player explores the world and 
learns more about it and also encounters other players. 
Each player can make alliances with other players, or 
attack the other players while defending its own assets 
from them. In the course of a game (which can take a few 
hours to play), each player makes a large number of 
decisions for his civilization ranging from when and where 
to build cities on the playing field, what sort of 
infrastructure to build within the cities and between the 
civilization’s cities, to how to defend the civilization.  
Civilization belongs to the genre of war strategy games 
that are often called 4X games, where the four X’s 
represent the four main tasks in the game: exploration, 
expansion, exploitation, and military extermination.   
 We chose FreeCiv as the domain for a number of 
reasons. As mentioned above FreeCiv is a multi-player 
game with a partially-observable world. In addition, 
FreeCiv has a huge state space making it intractable for 
general search based or reinforcement learning techniques; 
hence, an agent designed to play the game would need to 
use techniques to reduce the complexity of adapting the 

agent within the game so as to make the problem tractable. 
Since FreeCiv is an incredibly complex game, we believe 
that it will need a modular agent design, where each 
module may encapsulate smaller, simpler, more easily 
addressed aspects of game play. 

The Defend City Task  
Due to the extremely complex nature of the Civilization 

game, this work addresses only one component of the 
game to serve as a means of determining the effectiveness 
of model-based reflection and self-adaptation. The 
component addressed in this work deals with the defense 
of one of the agent’s cities from enemy civilizations.  This 
task was chosen for several reasons.  The task is important 
to the creation of a general purpose civilization playing 
agent in that the player’s cities are the cornerstone in the 
player’s civilization.  Most actions in the game consist of 
building, upgrading, and fighting for cities.  This task is 
also common enough such that the agent must make 
numerous decisions concerning the proper defense of the 
city during the time span of a particular game.  

Figure 1 illustrates a TMKL model of the city defense 
task.  The overall Defend City task can be decomposed into 
two sub-tasks:  the evaluation of the defense needs for a 
city and the building of a particular structure or unit at that 
city.  The Evaluate Defense Need task can be further 
decomposed into two additional subtasks, a task to check 
internal factors in the city for defensive requirements and a 
task to check for factors external to the immediate vicinity 
of the city for defensive requirements.  The Defend City 
task is executed at different times throughout the game.  It 
is executed each turn that the agent is not building a 
defensive unit in a particular city in order to determine if 
production should be switched to a defensive unit.  It is 
also executed whenever a city has finished production of a 
particular building or unit. 

The internal evaluation task utilizes knowledge 
concerning    the    current    number   of   troops   that   are 
positioned in a particular city to determine if the city has 
an adequate number of defenders barring any extraneous 
circumstances. The external evaluation of a city’s defenses 
examines the area around a city for a specified radius for 
nearby enemy combat units.  It utilizes the knowledge of 
the number of units, their distance from the city, and the 
number of units currently allocated to defend the city in 
order to provide an evaluation of the need for additional 
defense.  These evaluation tasks are represented as linear 
value functions, the results of which are knowledge states 
which are then utilized by the agent to build the 
appropriate item at the city.  The Build Defense task 
utilizes the knowledge states generated by the evaluation 
subtasks along with knowledge concerning the current 
status of the build queue, as well as the technology 
currently known by the agent to determine what should be 
built for a given iteration of the task.  The Build Defense 
task then proceeds to build a defensive unit appropriate to  



 
Figure 1.   Defend City Task Model 

the civilization’s technological level or wealth to keep the 
citizens of the city happy. 

The goal of the Defend City task is to provide for the 
defense of a city for a certain number of years.  The task is 
considered successful if the city has not been conquered by 
opponents by the end of this time span. If an enemy takes 
control of the city, the task is considered a failure.  In 
addition, if the city enters civil unrest, a state in which the 
city revolts because of unhappiness, usually caused due the 
neglect of infrastructure in a particular city, then again the 
task is considered to have failed. 

Implementation  
 We developed a simple software agent, called the 
FreeCiv agent, capable of playing the Civilization game in 
the REM/TMKL framework. Figure 2 illustrates the 
working of the FreeCiv agent. Note that the Defend City 
task illustrated in Figure 1 is a subtask of the Get Packet 
task illustrated in Figure 2 as it is executed as a response to 
certain packets received. 

A number of scalability problems arose while 
integrating the FreeCiv agent with the REM system. In 
order to reduce both memory and time overhead, we 
directly endowed the FreeCiv agent with a model of the 
Defend City task. In addition, the execution trace for these 
tasks in these models was created and analyzed within the 
FreeCiv framework, bypassing REM’s trace generation 
and analysis mechanism. This enabled rapid execution of 
the agent.  The entire trace was kept within memory for the 
lifetime of the agent.  When a failure is detected, the 
execution of the agent is stopped and a routine for the 
analysis of the trace is called.  The analysis performed is a 
variant of REM’s failure-driven model transfer.  Figure 3 
illustrates the high-level algorithm for failure-driven 
adaptation.  The first step  is  the localization  of  the  cause  
for  the  failure through the use of information about the  

 
Figure 2.    FreeCiv Agent Model 

failure and the model of the failed task. Information about 
the failure is simply the type of failure that occurred.  
Using this information, the model is analyzed to determine 
in which task the failure has occurred. Given the trace and 
the location of the model in which the cause for the failure 
is suspected to lie, the agent then analyzes the execution 
traces available  to  it  to determine to the best of its ability 
where precisely in the given portion of the model the error 
may have occurred.  This is done through the use of a 
failure library containing common failure conditions found 
within the Defend City task.  Figure 4 depicts the failure 
library for the Defend City task.  Failure types for specific 
levels in that task hierarchy are shown.  Specific failures 
for a given task may be indexed through trace analysis.  If 
a failure has been determined to occur, it is then used to 
index into a library of adaptation strategies that will 
modify the task such in the manner indicated by the 
library. Figure 5 illustrates the library of adaptation 
strategies used in the Defend City. If multiple errors are 
found within the trace analysis, a single error  is  chosen  
probabilistically  so  as  to  minimize  the chance of over-
adaptation of the agent. 

Experimental Setup  
 To determine the effectiveness of using model based 

reflection within the FreeCiv game and more specifically 
the Defend City task, a series of experiments were 
conducted. In each individual experiment, twenty-five 
games of FreeCiv were played by the agent. Each game 
was conducted with a total of 8 players including the 
FreeCiv agent described above. The trials were set to run 
for one hundred turns at the hardest difficulty level.  If the 
task was successful no adaptation occurred.  If during the 
trial, the agent’s city is conquered or the city’s citizens 
revolt, the Defend City task is considered failed. When a  
 



Algorithm: failure-driven-model-analysis-adaptation (model, trace, feedback) 
Inputs: model: Model of task to be analyzed 
 trace: Portion of the execution traces of model to be analyzed 
 feedback: Feedback received concerning task failure 
Outputs: Task model with possible modifications 
Effects: Possible modification to given model to address diagnoses causes of failure in task execution 
failure-driven-model-analysis-adaptation (model, trace, feedback) 
   failure-location = localize-failure(model, feedback) 
   for each task execution in trace 
       execution-instance = next-trace-instance(trace) 
       error-type = index-failure-library(execution-instance, failure-location) 
       add-hypothesis(error-type) 
   error-selection = select-hypotheses() 
   adapted-model = adaptation-model(error-selection, model) 
   return adapted-model 

Figure 3.  Algorithm for failure driven model analysis and adaptation 

 
Model Location (task) Types of Failures (indexed via traces) 

Defend-City Unit-Build-Error, Wealth-Build-Error, Citizen-Unrest-Misevaluation, Defense-Present-
Misevaluation, Proximity-Misevaluation, Threat-Level-Misevaluation, None 

Evaluate- Defense-Need Citizen-Unrest-Misevaluation, Defense-Present-Misevaluation, Proximity-Misevaluation, 
Threat-Level-Misevaluation, None 

Build-Defense Unit-Build-Error, Wealth-Build-Error, None 
Evaluate-Internal-Factors Citizen-Unrest-Misevaluation, Defense-Present-Misevaluation, None 
Evaluate-External-Factors Proximity-Misevaluation, Threat-Level-Misevaluation, None 

Figure 4.  Failure library used for the Defend City task by model location 

 
Adaptation Strategies Effects 
Increase Search Radius Increases the radius in which to search for enemies 
Decrease Search Radius Decreases the radius in which to search for enemies 
Increase Base Defense Increases the number of defenders to build regardless of outside factors 
Decrease Base Defense Decreases the number of defenders to build regardless of outside factors 
Increase Enemy Activity Threshold Increases the threshold for the number of enemies nearby required to generate response 
Decrease Enemy Activity Threshold Decreases the threshold for the number of enemies nearby required to generate response 
Increase Ally Proximity Radius Increases the radius in which to account for ally proximity in defense evaluation 
Decrease Ally Proximity Radius Decreases the radius in which to account for ally proximity in defense evaluation 

Figure 5.    Library of adaptation strategies available for Defend City task 

 
failure occurs, execution of the task is halted and the 
reflection sequence is initiated.  The trace of execution is 
examined for the failure point.  In addition to the trace of 
the task execution generated at the time of failure, the 
agent could also utilize the trace of up to the last ten 
executions of the Defend City task.  We also conducted a 
series of control trials lesioning the ability of the agent to 
adapt via reflection.  In a third experimental condition, the 
agent reflected upon only the failure that occurred without 
trace information. The number of successful trials for 
each configuration was measured as well as the number of 
trials in which failures were present and adaptation 
occurred.  The resulting weights in the linear value 
function utilized for the Evaluate Internal Factors and 
Evaluate External Factors tasks were recorded. 

Result Summary  
A summery of the results can be seen in Figure 6.  All 
three agent configurations (no ability to adapt – the 
control condition, model-based adaptation only, and 
model and trace-based adaptation) complete several trials 
but the number of successful trials increases with the 
amount of trace utilized in the analysis of task failures.  
Interestingly, the trials in which the model was the only 
means of aiding reflection resulted in equal or better 
performance than all trials except for those trials that 
utilized significant amounts of trace. The increase in the 
number of task execution traces utilized corresponds    



with  a  similar increase in the number of adaptation 
strategies used in model-based adaptation. In the trials in 
which only the model was utilized, the model enabled 
localization of the causes of the failure but did not 
necessarily identify the failure. In this condition, causes for 
failures were chosen randomly from the failure library 
based upon where the failure was localized in the model.  
This resulted in unusually high levels of adaptation, many 
of which proved beneficial.  This seems to indicate that 
reflection with only the model and feedback may prove 
effective when the number of failures remains manageable. 
 This is because the agent is able to localize the error 
with sufficient accuracy to determine a point of 
modification.  This localization alone illustrates one of the 
advantages of such a model-based approach.  The 
reduction in applicable adaptation strategies due to the 
localization allows for significant advantages in selecting a 
specific modification (even if done at random).  On the 
other hand, without execution traces to illustrate how the 
agent actually executed the task within the context of its 
current knowledge states, it is forced to assume the failure 
was due to the improper execution of the task and select an 
adaptation strategy regardless of whether the task was 
executed properly or not.  It was indeed noted that 
although performance of the methods of model-based 
adaptation and model-based adaptation with use of traces 
appears to be equally good in some sense, the specific 
modifications made by the two methods are quite different.  
The lack of available trace information results in an overall 
increase in the number of modifications made, which may 
prove detrimental as the complexity of the tasks addressed 
increases.   

Conclusions and Future Work 
 The results from the experiments that utilized reflection 
to guide the learning of an agent in a subset of the FreeCiv 
game indicate that model-based reflection is an effective 
means in which an agent can learn to act in highly 
complex, partially observable environments.  The ability to 
localize the failure within the task model coupled with the 
utilization of task execution traces to further narrow the 
space of possible adaptations allow for significant 
performance improvements in the task described herein. 
The results also show that the larger the number of the task 
execution traces analyzed, the better the performance of 
that agent in the Defend City task.   Future work will focus 
on using the localization capabilities of model-based 
reflection to allow the agent to determine where in the state 
space adaptation must occur and then utilizing numerical 
machine learning techniques upon this reduced state space 
thus eliminating the adaptation libraries. 
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