
Rules versus Scripts in Games Artificial Intelligence 

Nathan Combs, Jean-Louis Ardoint 
BBN Technologies, ILOG S.A. 

ncombs@bbn.com 
ardoint@ilog.fr 

 
 

                                                

 
Abstract 

Most game behavior is written using scripts instead of rules.   
Rules are declarative representations that, given variables in 
the game, encode relationships and facts about the game.   
From these facts one can reason about truth in the game 
world.  Scripts are imperative representations: they provide 
a set of instructions that are used to process game variables 
and compute some conclusion.  Scripting is more intuitive 
for game designers and developers to work with. It is easier 
to conceptualize and write a script that says: "go right, go 
left, turn around twice, go straight, then fire your gun..." 
then it is to formulate a set of rules that could shape an 
entities movement to the same effect.   

 
While scripting allows developers to construct sophisticated 
behaviors, typically these behaviors are brittle outside of the 
environment for which they were designed.   As game 
worlds grow in size and sophistication, a challenge for the 
game industry will be how to satisfy the increased demand 
for cost-effective, high quality content to place in those 
worlds.   
 
We believe that games Artificial Intelligence (AI) and rule-
based programming are important sources of  games content 
for this future.  This paper outlines the current design 
pattern of games AI, and introduces why current practices 
will likely need to change.  Working from discussions 
within the Rule-based Systems (RBS) Workgroup of the 
Artificial Intelligence Interface Standards Committee 
(AIISC) of the International Game Developers Association 
(IGDA), this paper will present the general argument that 
rule-based programming is advantageous for scripting 
games AI. Furthermore, we suggest that RBS middleware 
may enhance the ability of developers to script AI more 
efficiently in the long term. 

Environment-based Programming Style  
Most AI development in games is dominated by a three 
step design pattern.   First, the developer specifies an 
environment – terrain, textures, a map, etc.  Second, the 
developer specifies objects to embed in that environment:  
objects can be static, or fixed in that environment; objects 
can be dynamic, e.g. move around; or objects can signify 
episodic scenario behaviors, e.g. triggers.  Third, in the 
case of dynamic objects, the developer can link them up to 

 
  Copyright © 2004, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 

indicate where they should move, e.g. pathways.  The 
developer can coordinate objects and events graphically as 
well as embed logic with the objects - behavior is added to 
the objects by “drilling in” and associating scripts and/or 
changing property values. 
 
While details differ across individual games and genres, 
the pattern is similar.   For example, Operation Flashpoint  
(Codemasters) provides a graphical mission editor, 
whereas, Unreal Tournament uses a more complex CAD 
level-editor.   This design pattern is an “environment-
based programming” style that has its roots in early game 
systems (e.g., RuthMOO’s “Programming the 
Environment”) – where both the content and programming 
are intermingled. 
 
An environment-based programming style may rely more 
upon the scripts embedded in the objects, or it may rely 
more upon tools that can manipulate the top-level 
organization of those objects and events.  The key point, 
however, is that both are imperative, rather than 
declarative, in their approach.  This minimizes surprises by 
producing exact and repeatable behaviors that can be 
examined and debugged, whereas the alternative is to use a 
behavior model that is not explicit but somehow emerges 
from a set of rules. 
 
An imperative program design lends itself well to easy-to-
create and testable AI.  In contrast, developing rules from 
which behaviors emerge is harder.   Yet, rules, are likely to 
be more scalable in the long-term.  Rules are declarative, 
they represent relationships that can be generalized across 
individual environments and scenarios.  In contrast, the 
imperative nature of the environment-based programming 
style tends to contextualize the logic and prevents its re-
use across scenarios, and it also leaves the logic brittle to 
changes in the scenario. 
 
In Figure 1. we see an Operation Flashpoint mission editor.   
A graphical tool is used to layout game entities in a map 
and to construct their movement in that space using 
modeling elements such as waypoints and trigger points.   
The behaviors described at this level are rudimentary and 
involve coarse coordination among multiple elements in 
space and time (movement, synchronization).  Once the 
entities are established on the map,  then using other 



mission editor commands or by scripting, more 
sophisticated behaviors can be created and associated with 
them. 
 
For example, a designer can create, say,  a truck object and 
place it on the map.   A truck is a dynamic entity that can 
be linked to a path and instructed to move via waypoints.   
Objects traveling a path can be instructed to change their 
behavior at waypoints, e.g. how they move (cautiously, 
carelessly.. etc).  Trigger points encapsulate event logic 
related to the scenario – such as  “explode when a Blue 
team member moves within 500 ft of this point.”    
Waypoints and triggers are placed on the mission map in 
much as the same manner as other objects.  However, 
waypoints and triggers are not visible to the player.   
 

_a = _shells

#start

_bomb1 = "grenade" camCreate
[_xco + Random(_areaX2) -
_area,_yco + Random(_areaX2) -
_area,_zco + 150]

~1

_bomb2 = "grenade" camCreate
[_xco + Random(_areaX2) -
_area,_yco + Random(_areaX2) -
_area,_zco + 150]

 
Figure 1  Operation Flashpoint Mission Editor. The 
overlay text is fragment of an  “artillery 
bombardment” script associated with a trigger point. 

 
In Figure 2. we see an example from an  Unreal 
Tournament (UT) AI guide (Polge).  It illustrates how a 
UT game level is quantized so that behaviors can be 
spatially decomposed and placed.   Pathnode objects are 
used by the AI or level designer to first decompose and 
then link the important points (from a scenario perspective) 
within an UT level.  The pathnodes are invisible to the 
player and  are used by the designer to script AI bots to 
heed specific locations and take specific actions.  
  
On the one hand, the environmental AI design approach 
does provide the AI designer with an intuitive means for 
laying out and visualizing the elements of a scenario and 
for spatially relating them (e.g. movement).   The 
downside is that this leads to an ad-hoc behavior design 
that will not transport easily between scenarios and maps. 
 
We believe that this approach won’t scale: large sets of AI 
objects in dynamic environments will require better 
abstractions for building behaviors.   We already see a 

trend in the industry towards emergent AI algorithms (not 
necessarily rules-based) for precisely this reason, e.g.  AI 
for the life-like movement of groups of entities (Reynolds).  
As a point of contrast, programming steering behaviors 
using scripted entities and waypoints would be verbose 
and tedious.  We feel that this trend towards developing 
better abstractions for games AI is likely to continue 
rapidly into the future. 
 

 

Figure 2  An example from Unreal Tournament:  paths 
are constructed by placing pathnode objects in the 
scenario designer. 

Scripts versus Rules? 
Scripted computer opponents can be made to appear 
surprisingly realistic so long as the player acts within 
parameters anticipated by the scenario designer.  These 
behaviors are ad-hoc in the sense they are designed for a 
game environment and only that game environment.  The 
attraction to a developer is that they only need specify 
"turn right, turn left,..." versus a more general reasoning 
model such as: "evade attacks by turning away from 
attacker; try to run from an attacker much stronger than 
you... etc. 
 
At recent Game Developer Conferences  speakers  (e.g. 
Peter Molyneux, Will Wright) indicated that games AI will 
play an increasingly important  role - as the source of 
“dynamics” and “emergent behaviors” that leads to new 
(generated/emergent) content within games.  We also 
believe that this trend will drive game development 
towards more sustainable  “rules” based programming 
styles. 
 
In the games community a script loosely refers to a 
relatively easily modifiable program for implementing 



game behavior.  It may be written in a “glue” language that 
rides above lower-level functions.    For example, consider 
these words from a forum discussion (Game Design X):  
 

"…have some gnarly C code… You expose functions to 
the scripting language;  these functions do the heavy 
lifting and the object-oriented script provides the 
creative element."   

 
To the games industry, scripting is a means of partitioning 
concerns between the developers and the level (content) 
designers.   Doing so implies these advantages (Matheson): 
 

1. Means a coder is concerned in writing 
engine/tool code, rather than game logic… 

2. Designers like to be able to 'twiddle' with 
things. Scripting allows them easy access to 
this functionality. It also allows them more 
flexibility to try things out in the level that 
they normally would have to get a coder 
involved with.  

3. You don't have to re-compile if you want to 
change functionality in the game. Simply 
modify the script.  

4. You want to break the tie between engine 
code and game code. They should be two 
separate pieces. That way, it's easy to use 
the engine for multiple games (hopefully). 

 
Scripting is favored in games AI because it allows content 
developers to quickly create and tweak the behaviors of 
game objects.  The online FAQ for a massively multiplayer 
game (Eve-Online), for example, describes the advantages 
of using a variant of the Python programming language 
(Stackless Python) on their game servers.  The advantage 
they emphasize is its ability to allow designers to write lots 
of independent bits of behavior.  In other words it is seen 
as productivity tool for  designers: 
 

…Our game logic scripters are thereby freed 
from many of the mundane tasks associated with 
models that don’t benefit from the control 
structures provided by Stackless. The creative 
process of writing interesting game behavior is 
no longer bogged down by software or system 
limitations.  

 
Scripts can be either compiled or interpreted.  Typically, 
their language form falls into one of two categories:  
Imperative, or Declarative.  Imperative scripts share 
properties with imperative programming languages: 
 
• Implicit state:  variables 
• State modification through assignment: side effecting 
• Instruction sequencing (begin-end blocks, loops,…) 
 

Whereas declarative scripts share properties with 
declarative programming languages: 
 
• No implicit state, no assignments 
• Expression evaluation instead of instruction 

sequencing 
• Chaining (recursion) instead of loops 
• Can be functional  

 
Scripts of the imperative form are most common with 
games.  A poll conducted at a game developer’s site 
(GameDev.Net), for example, identified  these imperative 
languages: Lua, “C”, and Python as the most commonly 
used scripting languages (excluding “I made my own”).    
 
In the following pseudo-code fragment of a script from 
Morrowind (Bethesuda Softworks),  the pattern we 
described earlier is clear: a game map is assumed and is 
populated with objects that are reified with scripts to 
respond to events (e.g. in this case, a non-player character 
transaction): 
 

// Loop through all the Player Character’s items.. 
// reward her, if she has a goblin ear… 
While( obj= getEachItem() ) { 
     IsA(obj, “goblin ear”) { 
             // Give 10 Gold Pieces to Player Character… 
             GiveGoldToPlayerCharacter(playerChar, 10); 
             // Give 100 XP to Player Character 
             GiveXPToPlayerCharacter(playerChar, 100); 
             // Take the goblin ear from the player character 
             // and throw away… 
             Destroy(obj); 
     } } 
 

One can consider rules as a special declarative form whose 
statements are in a  Condition -> Action format.    
Declarative scripts are occasionally seen in games.  
Anecdotally, they are more likely to be seen with 
“strategy” games whose  logic tends to be globally 
applicable - across individuals and map locations.   For 
example, the rule for selling excess resources  in Age of 
Empires II  (Ensemble Studios) is given below.  This rule 
can be easily applied to all of the game AI players. 
 

 // Rule to sell excess resources 
(defrule 
         (wood-amount > 1200) 
         (or (food-amount < 1600) 
                 (or (gold-amount < 1200) 
                     (stone-amount < 650))) 
         (can-sell-commodity wood) 
         => 
         (chat-local-to-self "excess wood") 
         (release-escrow wood) 
         (sell-commodity wood)) 
 



A declarative model of game behaviors describes the 
relationships of the elements within a game.  Whereas, an 
imperative model prescribes a process for computing the 
behavior of those entities.  The former describes the what, 
leaving the how implicit.  The latter prescribes the how, 
leaving the what implicit.   
 
There are a number of reasons why shifting from an 
imperative style towards a declarative style may benefit 
games AI development long-term.  The reasons are on 
grounds of pragmatics, of scalability, of usability, and of 
logic expressiveness. 
 
A declarative style is more pragmatic than an imperative 
one because it separates implementation from the logic of 
the behavior.  This can lead to more maintainable 
engineering and code.   Furthermore, a rules-based 
representation provides a more concise and direct 
relationship between specification and implementation that 
would simplify testing .  Separating the game engine from 
the game rules allows independent simulation and testing 
of each (for related discussion see Combs – note 
supporting comments by online game executives).  
Analogously, one could develop a declarative annotation 
or specification (for an imperative language, say)  that is 
then analyzed, e.g. a discussion here with first order 
predicates (Makela).  The problem with this is that it is 
cumbersome and prone to error, e.g. the specification can 
drift from the implemented behavior.   
 
A declarative style can lead to more scalable AI in that it 
makes it easier to separate logic about type or class from 
logic pertaining to the instance.  So, for example, rules 
about cars and 8_ cylinder_ engines, can be left distinct 
from logic about my_red_ford_thunderbird.   This 
facilitates componentization of the building blocks of 
games AI.  Separating the logic from the implementation 
also enables reasoning about the logic by iteself: 
 

• Is it complete? 
• Are all rules reachable? 
• Can we use look-ahead? 
• Can learning algorithms be applied? 

 
For example, rules promise to be more easily validated by 
analyzing their conditions and actions than by examining 
script code.  Consider rule subsumption:  under what 
circumstances is a rule subsumed by another rule?  This is 
in contrast to a much more difficult (and often likely 
intractable) analysis proposition: under what circumstances 
is a Lua/Python/C script fragment subsumed by another 
Lua/Python/C script fragment?  
 
Beyond scaling the AI, a declarative style of programming 
where logic maintained separately from code is likely more 
usable to mod developers - witness this trend with business 
software.    Increasingly games builders are looking to 

appeal to 4th party developers (Sawyer) to develop outside 
content to extend the life of the product as well as to 
broaden its appeal.  Such, we speculate, could lead to a 
“virtuous cycle”  equivalent to one that developed in  the 
applications sector. There we saw emerge for commercial 
use tools geared towards development of large rule-based 
systems (e.g. ILOG) as well as products such event 
simulators that support testing application logic 
independent of the middleware implementation (e.g. 
Tivoli).    We anticipate that equivalent tools for game-
oriented rule-systems can be developed. 
 
The expressive need for both declarative and imperative 
forms is straightforward: sometimes it is just easier to think 
in  rules and compute consequences; sometimes it is vice 
versa.  Consider two different approaches for specifying 
behavior: the first approach (imperative) is to describe the 
consequences or the process first; the second (declarative) 
is to describe the goals or rules first: 
 
A.) "I want Buck Rogers to run here and fire his gun"  
(process, consequences first) 
 
B.)  "Sun-tzu said (The Art of War): The grounds are 
accessible, entrapping, stalemated, narrow, steep, and 
expansive... For entrapping ground, if the enemy is 
unprepared, advance and defeat him."  (goals, rules first) 
 
Developers shouldn't have to write in a style of (A.) to say 
(B.).  Both language styles have their place, depending 
upon what needs to be said.  (A.) is preferable to express 
behaviors that are specific to location, objects, and 
scenario.  (B.) is preferable for general behaviors that 
transcend individual scenarios, objects and instances.   
 
The ability to interchange rules with scripts is useful for a 
final reason.  It will help designers and developers choose 
the right language to build behaviors for their game.  More 
options can lead to better trade-offs when considering 
game design, the technical platform, etc.  
 
Wright and Marshall (2000) suggest that mixing 
imperative and declarative forms can improve the 
expressiveness of game logic by helping design of different 
(and more appropriate) representations: 
 

… scripting languages for game AI based on 
procedural languages, such as Java or subsets of 
C, are misguided: they are too similar to the 
main game language. The extra complexity 
introduced to the development process is not 
offset by any new language advantages. And 
any benefits obtained from the extra level of 
indirection between AI code and game engine 
code introduced by using a procedural scripting 
language can be also be obtained by simply 
implementing a good AI/game engine interface. 



 
Keep in mind that a hybrid between imperative games AI 
scripting and a declarative approach could be found with 
functional declarative programming styles.   A common 
pattern in games AI is to delegate low-level state and 
computation to the game-engine and reserve high-level 
logic (and state) to the scripting language.  A functional 
programming style while descriptive (declarative) can 
indicate ways of computing through the function semantics 
– thereby preserving some of the imperative control.  In 
this way a functional declarative language can represent a 
useful bridge between the declarative and imperative 
styles. 

Convergence of Scripts and Rules? 

Building upon Wright and Marshall’s suggestion to mix 
imperative and declarative forms for maximum effect - can 
we assert a stronger claim:  that perhaps rules processing 
and script processing can be merged?    Consider the 
earlier example (Age of Empires II), where scripting can 
take on a simple rules form.    Baldur’s Gate has also been 
cited as an example of “a rules-based approach that 
operates in a strictly linear fashion” (Woodcock). 
 
At the level of integration, scripting and rules pose similar 
problems.  They both have to relate to the game engine.  Is 
their relationship synchronous? Where is the game state? 
Will they support functional call-backs? Etc.  Should the 
game engine be able to reach-in and tune performance?  In 
the AIISC working group we have hypothesized how these 
approaches might ultimately converge behind an interface 
rooted in an industry standard, JSR-94 (Java Specification 
Requests).  We start with the view that an RBS is a rules-
engine that (words adapted from JSR-94): 
 
1. Acts as an if/then statement interpreter. Statements are 

rules.  
2. Promotes declarative programming by externalizing 

...game logic. 
3. Acts upon input objects to produce output objects. 

Input objects are often referred to as facts and are a 
representation of the state of the ...game. Output 
objects can be thought of as conclusions or inferences 
and are grounded by the game in the... game domain. 

4. Executes actions directly and affect the game, the 
input objects, the execution cycle, the rules, or the rule 
engine. 

5. Creates output objects or may delegate the 
interpretation and execution of the output objects to 
the caller. 
 

We believe that a JSR-94 based interface can support a 
range of RBS middleware (more powerful to less powerful 
RBS components).  An RBS can script game logic in a 
declarative style.  It can also  implement a functional 

declarative rules language that shares imperative elements 
more familiar to current game designers.  Evaluating rules 
in a stateless session (e.g. JSR-94 interface) can be 
functional when the rules call functions against the game 
engine (call-backs).  Thus, one might choose a functional 
declarative rules language to serve as an entry-point into 
rules-based scripting for games. 
 
From the applications sector there is a precedent for 
merging rules with scripting.  This sector has evolved a 
range of products that uses rules-based scripting to 
customize middleware (e.g. for two different examples, see 
Kozlenkov et. al., and Siliware Rules Engine).   Consider 
large system architectures servicing business processes.  
Typically such architectures integrate a range of products 
and contain much “glue code” (including scripts) whose 
behavior is conditioned on the values in the data as it 
passes through, e.g. real-time data feeds etc.  Such systems 
often represent metadata using rules:  by separating the 
representation from the implementation (code) it simplifies 
maintenance. 
 
Where might we see the convergence between declarative 
and imperative forms first in the games industry?   In the 
AIISC working group we considered the possibility that it 
might occur first with server based games (e.g. online 
multiplayer games), for a couple of reasons.   First, server 
architectures tend to be already largely componentized 
(e.g. database, login, etc.) - adding a new RBS component 
on the server is likely more feasible than on highly 
optimized clients. Second, server-resident games share a 
number of requirements with commercial server-
applications, e.g., performance, scalability, and supporting 
dynamic loading and "hot swapping" of AI logic to 
achieve agility (Sinur). 
 
While rules-scripting for single-seat games can be 
simplistic (e.g., the earlier Age of Empires II example) – 
RBS integration with multiplayer online game servers will 
require considerations beyond a JSR-94 based interface.  
For example, discussion on the vworld-tech mailing list 
suggests that RBS optimizations that work well in 
commercial business domains may need to be modified for 
use in online games (e.g. Rete-based rule matching, see 
discussion at Vworld-tech Mailing List).  By first agreeing 
upon the interface, however, the games industry can then 
let the middleware providers compete on specific 
solutions. 

Conclusions 
Games AI will be important sources of games content for 
this future.  Rules and more generally declarative scripting 
practices will enhance the ability of game developers and 
designers to script AI more efficiently in the long term.   
Online multiplayer games are likely to be the first 



beneficiaries of rule-based scripting.   However, the 
industry as a whole can benefit by increased use of 
declarative programming practices.  We also hypothesize 
upon the convergence of declarative and imperative 
scripting behind a common interface. 

Acknowledgements 
Special thanks to Alexander Nareyek and to the members 
of the Rule-Based Systems Workgroup of the Artificial 
Intelligence Interface Standards Committee (AIISC)  of the 
International Game Developers Association. 

References 

AIISC of the AI SIG of the International Game Developers 
Association.  Website URL:  http://www.igda.org/ai/ 

Bethesuda Softworks LLC.  The Elder Scrolls 
(Morrowind).  Website URL:  
http://www.elderscrolls.com/index.php 

Bioware Corp. Baldur’s Gate.  Website URL: 
http://www.bioware.com/games/baldurs_gate/ 

CodeMasters.  Operation Flashpoint. Website URL: 
http://www.codemasters.com/flashpoint/front.htm 

Combs, Nathan.  Can We Save MMOGs From Ourselves 
(Using Simulation).   March 3, 2004.  Article on Terra 
Nova. Website URL:   http://terranova.blogs.com/ 

Ensemble Studios.  Computer Player Strategy Builder 
Guide, AI Expert Documentation for Age of Empires II: 
The Age of Kings.   

Eve-Online, FAQ.   1997-2004.  Website URL: 
http://www.eve-online.com/faq/faq_07.asp 

Game Design X Forum.  Jan 2, 2004.  Website URL:  
http://p215.ezboard.com/fgamedesignxfrm7.showMessage
?topicID=1.topic 

GameDev.Net.   Poll Results: Which language do you use 
for scripting in your game engine?   1999-2004.  Website 
URL: 
http://www.gamedev.net/gdpolls/viewpoll.asp?ID=163 

ILOG JRules™ 4.6  Rule Builder Tutoria.l  February 
2004. Website URL:   http://www.ilog.com/ 

Java Specification Requests.  JSR 94: JavaTM Rule Engine 
API.  Website URL: http://www.jcp.org/en/jsr/detail?id=94 

Kozlenkov, Alex, Michael Schroeder.  Prova: A Language 
for Rule-based Java Scripting, Data Integration, and 
Agent Programming.    Website URL:  
http://comas.soi.city.ac.uk/prova/ 
Lua.org.  Website URL:  http://www.lua.org 

Makela, Sami.  NPC Scripting and Reasoning about the 
NPC behavior.  November 2001, World Forge newsletter.  
Website URL: 

http://www.worldforge.org/project/newsletters/November2
001/NPC_Scripting 

Matheson, A.  Why a Scripting Language. Website URL: 
http://gamestudies.cdis.org/~amatheson/writing/LUA-
Part01/Part01-section02.html 

Molyneux, Peter.  AI: Gameplay & Design: A Marriage of 
Heaven or Hell? Presentation at Game Developer’s 
Conference.  March 24, 2004. 

Polge, Steven. Unreal Tournament 2003 AI for Level 
Designers (Version 2).  Feb. 15 2004.  Website URL: 
http://unreal.epicgames.com/ut2ai.htm 

Reynolds, Craig.  Steering Behaviors for Autonomous 
Vehicles.  Website URL:  http://www.red3d.com/cwr/steer/ 

RuthMOO: Programming the Environment.  Website 
URL: 
http://confabulation.com/~sam/ruthmoo/progging.html 

Sawyer, Ben.  The Next Ages of Game Development.  Sept 
30 2002.    Website URL: 

http://www.avault.com/developer/avscreenshot.asp?pic=bs
awyer1&num=1 

Siliware Rules Engine.  Website URL: 
http://design.iwebsight.com/siliware/rules-engine.htm 

Sinur, J.  Architecting Agility With Business Rules, COM-
19-9972, Gartner report, Research Note 2003 

Stackless Python: A Python Implementation That Does Not 
Use The C Stack.  Website URL:    
http://www.stackless.com/ 

Sun-Tzu The art of war  BC.  Website URL: 
http://www.sonshi.com/sun10.html 

Tivoli (IBM) Rule Builder’s Guide.  Website URL: 
http://publib.boulder.ibm.com/tividd/td/tec/GC32-0669-
01/en_US/HTML/RBGmst40.htm 

Vworld-tech Mailing List.   VWorld Ontology.   April 14, 
2004. Website URL:  
http://lists.puremagic.com/pipermail/vworld-tech/ 

Woodcock, Steve.  Games Making Interesting Use of 
Artificial Intelligence Techniques.  Website URL: 
http://www.gameai.com/games.html#BGATE 

Wright, W.    Dynamics for Designers.   Game Developers 
Conference, 2003. 

Wright, I. P. & Marshall, J. A. R. (2000) RC++: a rule-
based language for game AI. In: Proceedings of the First 
International Conference on Intelligent Games and 
Simulation (GAME-ON 2000). SCS Europe BVBA 

http://www.igda.org/ai/
http://www.elderscrolls.com/index.php
http://www.codemasters.com/flashpoint/front.htm
http://terranova.blogs.com/
http://www.eve-online.com/faq/faq_07.asp
http://www.gamedev.net/gdpolls/viewpoll.asp?ID=163
http://www.ilog.com/
http://www.jcp.org/en/jsr/detail?id=94
http://comas.soi.city.ac.uk/prova/
http://www.lua.org/
http://unreal.epicgames.com/ut2ai.htm
http://confabulation.com/~sam/ruthmoo/progging.html
http://www.avault.com/developer/avscreenshot.asp?pic=bsawyer1&num=1
http://www.avault.com/developer/avscreenshot.asp?pic=bsawyer1&num=1
http://www.stackless.com/
http://www.sonshi.com/sun10.html
http://lists.puremagic.com/pipermail/vworld-tech/

	A declarative style is more pragmatic than an imperative one because it separates implementation from the logic of the behavior.  This can lead to more maintainable engineering and code.   Furthermore, a rules-based representation provides a more concise

