

The Suffering: A Game AI Case Study

Greg Alt

Surreal Software

701 N. 34th Street, Suite 301
Seattle, WA 98103
galt@eskimo.com

Abstract
This paper overviews some of the main components of the
AI system for The Suffering, a single-player 1st/3rd-person
action/horror game by Surreal Software for the PlayStation
2 (PS2) and XBox consoles (2004). A simpler version was
used in the PC and PlayStation 2 versions of Lord of the
Rings: The Fellowship of the Ring (2002). The behavior
hierarchy, pathfinding, and steering components are
described. The AI system was designed to satisfy goals
based on lessons learned from previous projects and work
within the constraints of developing a commercial title for
videogame consoles. The main goals were to have: a
modular behavior system able to support a large variety of
behaviors, memory-efficient and robust saved games, many
distinct NPC types with different styles of movement and
combat, fast and robust pathfinding, robust movement and
collision, and modular steering behaviors. The goals were
largely met, though some issues became apparent in the
course of development, primarily difficulties for designers
with setting up movement graphs and NPC logic.

Introduction

This paper describes the AI system for The Suffering, a
single-player 1st/3rd-person action/horror game by Surreal
Software for the PS2 and XBox consoles (2004). A
simpler version was used in the PC and PS2 versions of
Lord of the Rings: The Fellowship of the Ring (2002).
 Because there were many problems extending the AI
code from Drakan: Order of the Flame (1999) for Drakan:
The Ancients' Gates (2002), it was clear that a complete
redesign and rewrite of the AI code was necessary for The
Suffering. The main problems were a slow grid-based
pathfinding system, an inflexible flat finite state machine
for NPC behavior, an ad-hoc monolithic design with all
behaviors sharing data, and a lack of a unified component
responsible for moving the NPC.
 The Suffering required a wide variety of NPC behavior,
including melee combat, ranged combat, and fully capable
companion NPCs. To make this possible and avoid many
of the problems from Drakan, the behavior, movement, and

steering systems of the new AI were designed with the
goals of having:
• A modular behavior system capable of scaling to a

large variety of behaviors.
• Memory-efficient and robust restoring from saved

games (with saving allowed at any time).
• Support for human NPCs and 12 significantly different

creature NPCs, each with different abilities and
different styles of movement and combat.

• Fast, robust pathfinding anytime, for more purposes
than just planning movement to a target position.

• Movement without getting stuck on objects or leaving
valid terrain.

• A flexible movement system with modular steering
behaviors.

Constraints

The constraints for the AI system came from two sources:
the limited resources of the target platforms and the
scheduling dictated by the commercial game industry.
 The hardware constraints for the PS2 were about 1% of
the 32 Megs of RAM for all NPCs at any given time and
about 10% of the 33 ms available CPU time per frame.
These were not hard limits, especially CPU time, as it was
acceptable for CPU usage to have occasional spikes of
20% or more. Also, because CPU and memory usage
fluctuated based on the complexity of the current scene,
there were some tradeoffs between resources for more
NPCs and resources for scene geometry in different areas
of the game.
 The scheduling constraints required an incremental
development approach to avoid risk and to avoid
temporarily losing ground for frequent milestones. For
example, the "first playable" milestone for The Suffering
required that the first enemy creature be largely finished
within the first 6 months of development. Soon after that,
The Fellowship of the Ring needed its AI system to be

fully implemented and debugged. Later improvements
were added incrementally for The Suffering, which had a
much longer development cycle even though both projects
started at the same time.

Behavior System
To achieve the goals of scalability in the behavior system
and small saved-game sizes, a hierarchical behavior system
was developed. The system borrowed some ideas from the
hierarchy of actions described in (Atkin et al. 2000).
 With this behavior system, all NPCs are controlled by a
hierarchical finite state machine, which is represented as a
tree of current behaviors. Each behavior is a separate C++
class that contains all necessary dynamic state for the
behavior as member variables. Behaviors are allocated
when added by their parent behavior, and they are deleted
when removed by the parent.
 Thus, data for current behaviors only is in memory or
saved to a saved-game, creating memory-efficient and
robust restoring from saved games. The behaviors are
hardcoded in C++, but each behavior has constant
parameters specified by designers for information such as
specific animations, pause times, and speeds, as well as
parameters that control the logic of the behavior.
 Each behavior has a limited interface with member
functions for startup (taking arguments from the parent
behavior), cleanup when removed, repeated update,
handling of messages from child behaviors, handling of
messages from the rest of the world (like animation events
for arming a weapon), and loading and saving of important
data.
 Behaviors at the top of the tree are abstract and
generally use child behaviors to achieve subtasks. The
behaviors tend to be small and responsible for just one
task. Creating small behaviors allowed greater reuse of
behaviors and made debugging easier.
 One issue with this style of behavior tree is that all state
in a behavior is lost when the behavior is removed. In
general this is not a problem, as most data does not need to
persist across different instantiations of a behavior. In the
few cases where it is necessary, a separate permanent
component can be added to the NPC and the behaviors be
given access to it. A more general solution, not used in
The Suffering, would be to have each behavior have the
option of a persistent data class specific to the behavior.
 Figure 1 shows an NPC’s behavior tree when
encountering an enemy while leading the player. The NPC
currently has a path to the attack position and is moving
there using steering behaviors. Figure 2 shows the NPC’s
behavior tree after all its enemies are destroyed but before
it finds a path to the next waypoint when leading the
player.

WayPoint

KillEnemies

KillObject

KillMelee

MeleeCombatReposition

MoveTo

FollowPath

SimpleMoveTo

FlankingSteer ArriveSteer MovementAnim

Figure 1. Behavior tree when moving to attack.

WayPoint

 MoveTo

 FindPath

Figure 2. Behavior tree when finding path to next
waypoint.

 This system allows complex behavior and variety among
different NPC types (including human NPCs and 12
significantly different creature NPCs) by allowing
alternative behaviors at different levels in the hierarchy.
For example, there are several different NPC-specific
KillMelee behaviors. The KillMelee behavior is used as a
child of the KillObject behavior. It is generally responsible
for moving to good positions to attack and for using
MeleeAttack behavior to attack a target, though it also
handles things like taunting and pausing between attacks.
 Having NPC-specific versions means that Slayers can
attack from the ceiling, Burrowers can taunt the player
character by approaching and looping around him, and
Infernas can encircle him with their fire-trails. Specific
NPCs are hardcoded to use their specific alternate behavior
when, for example, the shared KillObject behavior tries to
add the generic KillMelee as a child behavior.
 Designers can change the root behavior of an NPC at
any time with BehaviorChanger objects that can be
triggered by a variety of events. Additionally, they can
specify behavior overrides so that a different set of
constant parameters is used for a behavior under different
circumstances. For example, when a Slayer has his head
shot off, he goes berserk and his combat parameters
become more aggressive.
 In all, there are 109 behaviors, with root behaviors such
as KillEnemies, Waypoint, Death, and Conversation. At

the bottom there are leaf behaviors such as PlayAnim,
SimpleFall, ArriveSteer, PlayLineOfDialogue, FindPath,
and FaceTowards.
 While this system satisfied the initial goals of flexibility
and robustness, several issues came up in the course of
development.
 The rigid, hardcoded structure of the behavior tree
meant that designers didn't have the same benefits of
modularity that programmers had. Allowing two NPCs of
the same type to have fundamentally different behavior
required a programmer to add a parameter to the parent
behavior that amounted to "Use Method A or Method B."
For example, the Flee behavior could just try to get the
NPC as far away from an enemy as possible, or it could try
to get the NPC to cower in a safe spot. Having multiple
strategies in one behavior made the code more complicated
and confused designers.
 Another issue was the mechanism for interrupting
behaviors. When an NPC is shot and reacts, the current
behavior tree is pushed onto a 1-level stack. When the
HitReaction behavior is done, the stack is popped and the
previous behaviors continue. Often (but not always) the
HitReaction behavior leaves the NPC in a state in which
the original behavior doesn't make any sense. This meant
that code had to be added to many behaviors to do the right
thing when restored.

Movement Graph and Pathfinding
The NPC movement graph is similar to the one described
in (Hancock 2002) but uses square nodes instead of circles
to better cover areas with right angles. Nodes are placed
and connected manually by designers. Each node is a
square with width, 2D rotation, and height. An edge
between two nodes defines a convex volume--the 2D
convex hull of the two node squares, aligned to a plane
going through the centers of the nodes and extruded
vertically about a meter in both directions. Each NPC
keeps track of his current edge region and uses A* (Nilsson
1998 and Higgins 2002) to find paths on the fly from the
current edge region to a goal edge region. Figure 3 shows
a sample movement graph.

Figure 3. Sample movement graph.

 Additionally, this graph is used to mark areas where an

NPC is allowed to move. If an NPC attempts to move
horizontally outside a valid edge region, he is constrained
by a vertical plane of the convex volume, preventing him
from leaving valid terrain. This also allows designers to
build the movement graph around static objects, preventing
NPCs from having to test them for collisions and
eliminating the problem of NPCs getting stuck on
complicated static objects.
 Because the edge regions are often very large, paths are
cleaned up using string-pulling, as described in (Tozour
2003), within the movement graph. This straightens paths
and shortens them so they are more realistic than they
would be with connecting node centers. Steering
behaviors and limits for turn speed and acceleration also
smooth out movement, by softening turns.
 Ceiling movement works just like floor movement but
with inverted gravity and up-vector. Transitions between
ceiling and floor use precomputed transition points that are
associated with edges that go between ceiling nodes and
floor nodes and are guaranteed to be lined up with both the
ceiling and floor movement graphs. When an NPC has a
path that transitions, he moves towards the transition point
and begins the transition once he is able to.
 While the movement graph is generally static, there is
support for toggling specific edges to handle bridges being
destroyed or passageways being cleared. There is also
support for special types of edges: ceiling/floor transition
edges, doors, and ladders. Additionally, there is support
for tagging edges to exclude specified NPC types.
 Once a path is found, the FollowPath behavior is used
move to the target. The type of each edge in the path
determines the child behavior used to traverse that edge.
SimpleMoveTo is used to move across ordinary floor or
ceiling edges, FloorCeilingTransition is used to jump up to
the ceiling, LadderClimb is used for ladders, and so on.
 To avoid spikes when multiple NPCs try to find paths at
the same time, only one path can be found during each
frame. Other requests must wait until the next frame. This
keeps CPU usage to acceptable levels and prevents the
added memory expense of several pathfinding attempts
that occur concurrently over the course of a few frames.
 The worst-case memory and CPU expense occurs when
an NPC tries to find a path to an unreachable goal and the
trivial reject test doesn’t work. Generally, if no path is
possible, this is detected immediately when the region ID
of the start and goal are compared. The movement graph is
preprocessed to automatically mark separate disconnected
regions using a simple flood-fill algorithm. In some cases,
this trivial reject test doesn’t work because an edge is not
valid (for example, sometimes two edges are in the same
region but the only connection passes through an edge that
excludes a specific NPC type or is toggled off by an edge
toggler). The CPU and memory expense of this worst case
is acceptable and occurs rarely.

 The quarry level is a good example of the complexity of
movement graphs in The Suffering. This is the largest
level, roughly 380 meters by 130 meters. It contains 626
movement graph nodes and 2100 edges, counting each bi-
directional edge as 2 edges. Generally, each node is
connected to 3 others with bi-directional edges, making an
average of about 6 edges connected to each node, though
this ranges from a minimum of 2 edges (for dead-end
nodes) and a maximum of 16 edges.
 As an example of the constraints of scheduling,
pathfinding was initially implemented using a simple
iterative deepening search (Nilsson 1998) with all edges
having equal cost for the "first playable" milestone. As
implemented, this algorithm was less efficient than A* and
wasn't guaranteed to generate optimal paths, but it
provided necessary functionality for early milestones and
required just a few lines of code. Later, when higher-
priority functionality had been implemented, A* was added
as a drop-in replacement for iterative deepening.
 This system satisfied the original goal of speed and
allowed NPCs to find paths frequently. Since pathfinding
was so fast, it was used not only to determine how to
navigate to a goal position but also to try to navigate a
specified distance away from a position; to determine
actual path length instead of straight-line distance for some
behavior logic; and to determine whether the player was
ahead or behind a friendly NPC on their waypoint path.
 Constraining NPCs to the movement graph also satisfied
the goals of not getting stuck on static objects, not moving
into invalid terrain, and not having to perform expensive
collision tests against static objects outside the movement
graph.
 The main problem with this system is that it was very
difficult and time-consuming for designers to manually set
up and debug. A designer would spend roughly 8 hours
setting up and debugging a movement graph for an indoor
level and up to 20 hours for a large outdoor level. This is
largely due to the primitive interface and a lack of good 3D
visualization tools. Ideally, this process would be more
automated, but it is not clear how feasible this would be,
given that designers would still need to be able to adjust
and debug the automated graph.

Steering and Collision
Steering was implemented as a collection of behaviors that
are simultaneously children of the SimpleMoveTo
behavior for an NPC. These are essentially the same as the
steering behaviors included in (Reynolds 1999): Arrival,
Evade, Wander, ObstacleAvoidance,
UnalignedCollisionAvoidance, Containment, and
Separation. Another steering behavior, Flanking, was
added. This caused an NPC to try to approach an enemy
from the side or behind. Each steering behavior outputs an

acceleration vector to the low-level movement system.
The movement system adds these together and applies the
maximum acceleration limit before generating and limiting
the new velocity. The NPC is then moved and animated
based on this velocity. This system is described in more
detail in (Alt and King 2003).
 The NPC's collision system is mostly the same as the
player's. A stack of spheres is used to detect collisions,
and the lowest sphere is used to detect the ground. The
main difference is that NPC collision detection is
optimized to consider only collisions with objects that
intersect a movement graph edge region--each edge region
has a list of objects that is autogenerated for easy lookup.
 The steering and collision systems satisfied the primary
goals of having realistic movement without getting stuck
on static objects or walking out of the level, but there were
still some issues with getting stuck on dynamic objects,
which required designers to take steps to prevent. Also,
the large variety of NPCs were difficult to set up, because
the various designer-specified parameters needed separate
tweaking for each NPC type. A common problem was
handling tradeoffs in which tweaking a parameter to
improve the look of an NPC's movement caused problems
like overshooting narrow doorways, while tweaks to
improve functionality made for otherwise less realistic
movement.
 The ObstacleAvoidance and CharacterAvoidance
steering behaviors were also problematic because it was
difficult to tune their acceleration weights, and the initial
implementation for searching for nearby objects was
computationally expensive. This led to designers turning
off these steering behaviors for many of the NPCs.

Conclusion
To a large extent, the AI system for The Suffering satisfied
the original goals. The modularity of the code resulted in
much fewer bugs than previous projects and with a
significant increase in functionality and diversity of NPCs.
 The primary problems encountered were the difficulty
for designers to set up NPC logic and movement graphs.
For the movement graph, this was due to the fact that the
graph had to be created and tweaked manually with a less-
than-ideal interface and visualization tools. For NPC logic,
the problem was that the modularity of the code didn't
directly translate into a modular interface for designers.
 Future enhancements may help prevent these problems.
The difficulty in creating movement graphs can be
significantly lessened with a level editor interface that
better shows the movement graph the NPCs will use.
Also, to aid in debugging movement graphs, more in-game
debug tools can be added. Finally, to prevent the behavior
tree from being hardwired, alternate versions of some

behaviors can be made available to designers regardless of
NPC type.

References
Atkin, M., King, G., Westbrook, D., and Cohen, P. 2000.
Some Issues in AI Engine Design, Artificial Intelligence
and Interactive Entertainment: Papers from the 2000 AAAI
Spring Symposium: AAAI Press.
Hancock, J. 2002. Navigating Doors, Elevators, Ledges,
and Other Obstacles, AI Game Programming Wisdom:
Charles River Media.
Higgins, D. 2002. Generic A* Pathfinding, AI Game
Programming Wisdom: Charles River Media.
Nilsson, N. 1998. Artificial Intelligence: A New Synthesis:
Morgan Kaufmann.
Tozour, P. 2003. Search Space Representations, AI Game
Programming Wisdom 2.: Charles River Media
Alt, G., and King, K. 2003. Intelligent Movement
Animation for NPCs, AI Game Programming Wisdom 2:
Charles River Media
Reynolds, C. W., 1999. Steering Behaviors for
Autonomous Characters, GDC 1999 Conference
Proceedings, 763-782: Miller Freeman Game Group
http://www.red3d.com/cwr/steer/

