
Design Issues for Software Tools for Optimization

Andrew Davenport
IBM T.J.Watson Research Center, Yorktown Heights, New York 10598

davenport@us.ibm.com

Abstract

We discuss issues relating to the deployment of complex tech-
nologies from the fields of artificial intelligence and opera-
tions research. We argue that for such technologies to gain
wider acceptance in the user community, more emphasis must
be placed on designing intuitive interfaces at the right level of
abstraction for non-experts to use.

Researchers in the fields of artificial intelligence and op-
erations research have been very successful at developing
technologies for solving combinatorial optimization prob-
lems as they arise in range of industries, from operations
planning and scheduling (Okano et al. 2004; Kalagnanam et
al. 2000), to product design, configuration and procurement
(Hohner et al. 2003). Success stories from applying such
innovative technologies are presented frequently at confer-
ences such as IAAI, INFORMS, and the INFORMS Edel-
man Award series. However, most of these success stories
describe projects involving active researchers with deep ex-
pertise in their particular area. One of the major hurdles
limiting the wider adoption of these technologies is the lack
of software tools embodying these technologies that can be
easily understood and deployed by non-expert developers.
This is a problem for two reasons: firstly the number of ex-
perts in a particular area that can work on projects is limited,
and such experts often prefer to work on innovative projects;
and secondly, software developed with the help of experts
often needs to be maintained by non-experts after the end
of the project. Concern about maintenance issues can often
limit the adoption of innovative but unproven technologies
by organisations.

In our experience, we have found that talented software
developers (who do not have a research background) can
learn to have a very good understanding of abstractions of
problems that are often encountered when solving combina-
torial optimization problems, if the abstraction is at the right
level. For example, we have found that although many peo-
ple have difficulties understanding and using the modelling
languages provided by integer programming and constraint
programming packages, they are able to easily grasp the un-
derlying concepts of higher level primitives in optimization
such as network flow problems, travelling salesman prob-

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

lems and matching problems. Such users are often able to
understand how solving a particular problem, such as an in-
ventory matching problem (Kalagnanam et al. 2000), can
be achieved by modelling it as a weighted bipartite match-
ing problem, even though they do not understand the un-
derlying algorithms for solving these problems. However an
integer programming formulation of the same problem, even
though it may capture more the problem’s objectives and
constraints, will not be understood by many developers and
will be harder to maintain by them. We are not claiming that
the bipartite matching problem provides the best modelling
abstraction for this particular problem, but our experience is
that is does provide a better modelling abstraction than inte-
ger programming. This may lead to the situation where an
inferior but easy to understand model is preferred to a dif-
ficult to understand model that captures all of a problem’s
constraints and objectives and provides a better solution.

There is a vast amount of algorithmic research from the
fields of artificial intelligence, operations research and com-
puter science that can be applied to problems arising in in-
dustry. It should not be necessary to understand how these
algorithms work in order to deploy them. However fre-
quently it is: for instance some variation of the travelling
salesman problem (TSP) often forms the core of many real
world optimization problems ((Okano, Morioka, & Yoda
2002)), such as the TSP with time windows, the prize col-
lecting TSP and the multiple TSP. However, as far as we
are aware, there are no commercial tools available providing
specialised and efficient implementations of algorithms for
solving TSP’s. This limits the adoption of research in this
area to people who understand the algorithms and how to
implement them, despite their wide applicability.

As a result of our experiences on applied optimization
projects, we believe that research is needed into how to pro-
vide the right abstractions and modelling layers so that they
can be deployed by experienced software developers, who
are not experts in any of these research fields. One example
of where providing the right abstraction layer for a technol-
ogy whose underlying algorithms are complicated and un-
derstood by few is the field of databases. Another success
in an area more closely related to optimization is LEDA, a
Library of Efficient Data-types and Algorithms (Mehlhorn,
Näher, & Uhrig 1997). LEDA provides a C++ library of
commonly used data structures, including graph data struc-



tures and visualization tools, as well as efficient implemen-
tations of a wide range of polynomial time graph based algo-
rithms, such as for solving shortest path problems, matching
problems and network flow problems. LEDA can be used
easily by software developers to solve such problems with-
out understanding how the underlying algorithms work.

Many optimization problems are NP-hard however, and
require expertise in modelling and implementation. Stan-
dard problem models, such as TSP, knapsack problems and
job shop scheduling, may not be sufficient to capture all the
constraints in a problem. General purpose solvers, such as
those based on integer and constraint programming, do not
provide modelling languages geared towards the intuitions
of the non-expert software developer. Some promising ini-
tial research in constraint programming has identified the
use of design patterns as a way of specifying modelling ex-
pertise for constraint programs (Walsh 2003). We believe
that further research into appropriate level of modelling ab-
stractions is necessary for optimization technology to reach
its full potential.

References
Hohner, G.; Reid, G.; J., R.; Ng, E.; Davenport, A.;
Kalagnanam, J.; Lee, H. S.; and An, C. 2003. Combina-
torial and quantity-discount procurement auctions benefit
mars, incorporated and its suppliers. Interfaces 33(1).
Kalagnanam, J.; Dawande, M.; Trumbo, M.; and Lee, H. S.
2000. The surplus inventory matching problem in the pro-
cess industry. Operations Research 48(4).
Mehlhorn, K.; Näher, S.; and Uhrig, C. 1997. The LEDA
platform for combinatorial and geometric computing. In
Proceedings of the 24th International Colloquium on Au-
tomata, Languages and Programming (ICALP’97), 7–16.
Springer-Verlag, LNCS 1256.
Okano, H.; Davenport, A.; Trumbo, M.; Reddy, C.; Yoda,
K.; and Amano, M. 2004. Finishing line scheduling in the
steel industry. Technical report, IBM Research.
Okano, H.; Morioka, T.; and Yoda, K. 2002. A heuris-
tic solution for the continuous galvanizing line scheduling
problem in a steel mill. Technical Report RT0478, IBM
Research Report.
Walsh, T. 2003. Constraint patterns. In Proceedings of the
Ninth International Conference on Principles and Practice
of Constraint Programming (CP2003).


