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Abstract 

It can be difficult to design and develop artificial intelligence 
systems to meet specific quality standards. Often, AI systems 
are designed to be �as good as possible� rather than meeting 
particular targets. Using the Design for Six Sigma quality 
methodology, an automated insurance underwriting expert 
system was designed, developed, and fielded. Using this 
methodology resulted in meeting the high quality expectations 
required for deployment. 

Introduction 

Six Sigma1 
Six Sigma originated as a methodology for applying 
statistical rigor to improve manufacturing processes. The 
methodology was developed to pinpoint sources of defects, 
identify their root causes, and assist engineers in searching 
the design space for solutions. The term �Six Sigma� 
describes the goal of reducing process variability to the 
point where the short-term mean is at least six standard 
deviations (sigmas) away from any control limits on the 
output. This results in no more than 3.4 defects per million 
opportunities in the process in the long term. 

GE has been utilizing the Six Sigma methodology for 
over seven years to improve manufacturing processes. 
While these techniques proved valuable for reducing 
defects in existing processes, they did not fully address new 
product design and development. Therefore, these 
techniques were adapted to the design of new systems; this 
adaptation, called Design for Six Sigma (DFSS), involves 
designing quality into a process or system. By using Six 
Sigma rigor during system design and development, most 
quality issues during production can be avoided altogether. 

The DFSS process is composed of several steps 
represented by the acronym DMADOV (Hoerl 2001): 
 
• Define: determine the scope of the problem to be 

solved; identify CTQs (Critical To Quality system 
characteristics) 

                                     
Copyright © 2004, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 

• Measure: validate the measurement system used for 
determining the system quality 

• Analyze: identify approaches to solve the problem and 
perform trade-off studies 

• Design: perform system design; evaluate overall 
system quality based on the design 

• Optimize: utilize statistical rigor to optimize the 
design 

• Verify: confirm the system meets the requirements; 
define processes to ensure that the system will 
continue to meet the CTQs over time 

 
The DFSS methodology can be applied to the design and 
development of a new AI system as readily as it can be 
applied to the design of a new refrigerator or gas turbine. 
This paper describes how the DFSS steps were used to 
develop an expert system that classifies insurance 
applicants into discrete risk categories. The following 
section introduces the insurance underwriting problem. 
The remaining sections describe how each of the DFSS 
steps was applied to solve the problem. 

Medical Insurance Underwriting 

Traditionally, a human underwrites GE medical insurance 
applications. These �underwriters� are responsible for 
reviewing applications and, based on the applicant�s 
medical history, assigning the applicant to a discrete risk 
category that dictates the premium to be paid for the 
insurance (or declining the applicant altogether). The 
higher risk category, the higher the premium. 
 Underwriters follow business guidelines specified in an 
underwriter manual, but also rely upon extensive medical 
knowledge and personal experience when underwriting 
cases. The fact that they use their own experience and 
judgment to make decisions makes this a difficult problem 
to automate. It is critical to the business that applicants are 
placed in appropriate risk categories. Underestimate the 
risk category and the applicant would not pay enough to 
cover the financial risk GE incurs by insuring the 
individual. Overestimate the risk category and GE 
insurance will not be price competitive; they will be 
unlikely to win new or retain existing customers. 



 Automating this process has a number of benefits, 
including improving consistency and reducing the number 
of defects while allowing the case volume to grow. 
Reducing defects allows GE to remain price competitive 
while effectively managing risk. In addition, if the 
automated process can efficiently generate decisions on a 
large volume of cases, the capacity of the underwriting 
process will also improve. 
 Previous work describes the development of an 
automated underwriting system to solve GE�s �clean� 
(unimpaired) cases (Aggour & Pavese 2003). The present 
problem addresses automating the underwriting of more 
complex cases: applicants who suffer from hypertension. 
This requires the development of a discrete AI 
classification algorithm with three placement categories. 

Define 

The main step of the DFSS Define phase is to identify the 
project goals in terms of CTQs. As stated previously, CTQs 
are aspects of the algorithm that are deemed Critical To 
Quality. The customer typically defines the CTQs. They 
should be both quantifiable and measurable. For this 
problem, the customer identified two requirements for 
automating their insurance underwriting processes: 
 
1. Accuracy no worse than the current human-based 

underwriting process 
2. Touch-free operation 
 
While these two requirements were very important, they 
were not Six Sigma CTQs (they were neither quantifiable 
nor measurable). After additional discussion, these 
responses were refined. The final CTQs were: 
 
1. The algorithm must produce decisions that agree with 

the business underwriting staff. The rate of agreement 
must equal or exceed that of current manual 
assessments. 

2. Coverage of 50% of insurance applications (assuming 
historical application distribution). 

 
Note that �touch-free operation� was determined to be 
unrealistic since even human underwriting sometimes 
requires validation by experts. Additionally, it would be 
impossible to develop an automated system in anticipation 
of all possible scenarios. Additional CTQs were identified, 
but they are beyond the scope of this paper. 

Measure 

Two things are needed to validate the underwriting 
algorithm: (1) a set of solved cases against which the 
algorithm can be validated, and (2) a clear definition (or 
gauge) of how to measure for rate misclassifications. 

Gold Standard Cases 

A set of accurate decisions was needed before the 
automated decision algorithm could be verified. These 
decisions, a standard reference data set of �gold standard� 
cases, were taken from a stratified random sample of the 
historical population of applicants suffering from 
hypertension and no other impairments. Expert 
underwriters then verified the decisions. Comparing the 
original underwriter decisions on these cases to the expert 
decisions produced a benchmark of the current process. 
Cases were filtered out of the gold standard data set that 
contained incomplete data or were outside the scope of the 
algorithm (e.g., cases with impairments other than 
hypertension, as well as cases with multiple impairments). 
 Additional validation of gold standard cases was 
performed via consistency checking. Attributes of the cases 
were defined such that �less is better� and therefore, a 
partial ordering of the cases could be performed. In this 
manner, it was possible to identify incorrect rate classes 
based on a dominance relation. If two cases, A and B, have 
values such that for all inputs, XA ≤ XB, then their 
corresponding rate classes must also reflect the same 
ordering, i.e., YA ≤ YB. Case consistency was improved by 
eliminating cases that were incompatible with this 
dominance relation (Figure 1). 
 

 
 

Figure 1: Case Consistency 
for Two Attribute Example 

 
Measurement System (The Gauge) 
In this example, a measurement system must be defined 
that will accurately characterize how well the algorithm is 
performing compared to the expert human underwriters. 
Any decision that the algorithm makes will be either 
correct or incorrect according to the underwriters; however, 
because there are multiple, ordered rate classifications, 
more information than correct/incorrect can be captured. 
Type I/Type II error classification is insufficient for 
capturing the accuracy of the algorithm. 

A confusion matrix, a popular measurement tool for 
pattern recognition, allows for measurement of the relative 
distance among results. A matrix is used to correlate 
algorithm results with the known outcomes (Figure 2). 
Counts of results are placed in each cell; for example, if 
200 cases were correctly categorized as A, then �200� 
would appear in the upper-leftmost cell. Entries along the 



main diagonal are correct. Entries in all other cells are 
�confused� for other outputs (they represent incorrect 
classifications). For ordered outputs such as these, entries 
that are further away from the main diagonal represent 
larger errors in classification. 
 

 
 

Figure 2: Confusion Matrix Structure 
 
 This measurement system relies upon the accuracy of the 
expert underwriters� decisions for comparison, both for 
initial validation as well as for periodic checks after the 
system is put into production. While expert underwriters 
will be used for algorithm validation, this still presents 
challenges: experts may disagree on rate classifications and 
even make mistakes. This is not a perfect measurement 
system, but it is the best available. Because of these 
imperfections in the gauge, it is important not to take the 
expert decisions at face value but to ensure that they are 
consistent with previous decisions. 

Analyze 

During the Analyze phase of DFSS, the design space is 
explored for solutions to meet the CTQs. This process can 
include: comparing design alternatives, developing designs 
to meet reliability requirements, and creating a scorecard 
for measuring the quality of the algorithm throughout the 
life of the system. 

Trade-Off Analysis 

A design trade-off study was performed to select an 
approach for the automated underwriting algorithm. Based 
on the design team�s past experiences, four alternatives 
were selected for the study: neural nets, fuzzy logic rules, 
case-based reasoning, and multivariate adaptive regression 
splines. Evaluation criteria were developed based on the 
CTQs described earlier. For example, accuracy, 
consistency, coverage, and ease of use were a few of the 
many criteria evaluated for each alternative. For each 
alternative, each criterion was assigned a value from 1 (low 
applicability) to 5 (high). The result of this analysis clearly 
indicated that fuzzy logic rules were most applicable to this 
application. In particular, the fuzzy logic rules surpassed 
the other alternatives in consistency and ease of 
optimization. 

Design for Reliability 

It is important not only to ensure that the algorithm 
performs correctly initially, but also to ensure that the 
algorithm performs well over time in the face of change. In 

this insurance underwriting example, change is inevitable. 
The characteristics of the applicant pool change over time, 
the business� underwriting rules change, and government 
regulations change; each may require updates to the 
automated underwriting algorithm. 

One of the keys to long-term reliability of any algorithm 
is to design for extensibility. This means using a 
component methodology that enables developers to easily 
make changes. It also means making sure algorithm and 
software system configuration parameters are not hard-
coded, but are accessible in configuration files. 

Defining a Scorecard 

A Six Sigma scorecard is a mechanism for tracking the 
quality of the algorithm�s decisions. The confusion matrix 
described earlier can be thought of as the measuring stick, 
while the scorecard is the report card. The scorecard 
provides an instant view into how well the system is 
performing. 
 To create a scorecard, a set of metrics must be defined 
that will characterize the quality of the system. For the 
automated underwriting algorithm, three metrics were 
selected: coverage, relative accuracy, and global accuracy. 
These metrics are defined in Figure 3. 
 

 

Coverage:  Total number of decisions made as a fraction 
of the total number of cases (N) 

Coverage = ΣΣ M(i, j)/N 
 
Relative Accuracy:  Total number of correct decisions 
as a fraction of the total number of decisions 

Relative Accuracy = ΣM(i,i)/ΣΣ M(i,j) 
 
Global Accuracy:  Total number of correct decisions as 
a fraction of the total number of cases 

Global Accuracy = ΣM(i,i)/N 
  

 
Figure 3: Definitions of Scorecard Metrics 

 
 

These metrics can be evaluated from the data contained 
within the confusion matrix. A confusion matrix and 
scorecard containing the performance of the human 
underwriters is shown in Figure 4. 
 

 
 

Figure 4: Human Underwriter 
Confusion Matrix and Scorecard 



Design 

The objective of the Design phase is to develop the transfer 
function and evaluate its initial effectiveness. In Six Sigma 
terms, the transfer function quantitatively describes the 
relationship between the critical inputs (X�s) and the 
output (Y). In DFSS for algorithms, the transfer function 
can be thought of in terms of the inputs and outputs of the 
actual algorithm. The parameters to an algorithm transfer 
function are the variables that affect the behavior of the 
algorithm. In essence, the transfer function is equivalent to 
the core decision algorithm. As such, it should be 
implemented in such a way that all parameters are easily 
modified, and any other reasonable adaptations can be 
made without rewriting code. This allows the algorithm�s 
parameters to be optimized in an efficient manner. 
 From the results of the design trade-off analysis (Analyze 
phase), it was decided to develop an algorithm based on 
fuzzy logic rules. Fuzzy logic is a superset of conventional 
Boolean (true/false or 1/0) logic, allowing values to be 
equal to any real number in the interval [0,1]. Intermediate 
values denote a �partial degree of satisfaction� of some 
statement or condition (Zadeh 1965). A Fuzzy Logic Rules 
Engine (FLRE) was designed and developed to implement 
the automated insurance underwriting transfer function. 
This transfer function takes as input a set of continuous X�s 
(the applicant�s medical information), and outputs a 
discrete Y�a risk classification for the applicant 
(Bonissone, Subbu, and Aggour 2002). 
 The FLRE encodes the underwriter guidelines into a set 
of fuzzy rules. These rules identify fuzzy cut-offs for each 
X being evaluated (for example, cholesterol levels) to 
determine the customer�s risk placement. The objective of 
the FLRE is to identify the most competitive rate class for 
the applicant while ensuring that the combined effects of 
the applicant�s medical factors meet the constraints 
imposed for that rate class. If a constraint is not satisfied for 
a rate class, then the applicant should be placed in the next 
best rate class. Refer to Aggour & Pavese (2003) for details 
on how the FLRE makes decisions. 

After implementation of the FLRE algorithm, the 

baseline performance of the algorithm was measured, 
producing the initial results found in Figure 5. 
 
 

 
 

Figure 5: Initial Baseline FLRE 
Confusion Matrix and Scorecard 

 
 

While the initial fuzzy cut-offs were determined from the 
underwriter guidelines (and sessions with the medical staff 
and actuaries), it was unknown whether these cut-offs were 
optimal. 

Optimize 

During the DFSS Optimize phase, the transfer function 
parameters are tuned to achieve optimal results from the 
algorithm. A tolerance analysis is performed to ascertain 
acceptable limits on the transfer function inputs to produce 
outputs that are within specification. 
 Once the baseline performance of the algorithm had been 
ascertained (Figure 5), the next step was to optimize the 
algorithm to improve its performance. An Evolutionary 
Algorithm (EA) approach was selected to automate the 
process of identifying optimal parameters for the algorithm 
(Goldberg 1989). 

The FLRE uses an EA of chromosomes containing 
elements that represent each tunable parameter within the 
configuration. Since a chromosome defines a complete 
FLRE configuration, a new instance of the FLRE can be 
initialized and evaluated for each chromosome. Figure 6 
shows the interaction of the EA (on the left) with the FLRE 
(on the right). For each generation of the EA, a separate 

Figure 6: FLRE Optimization using Evolutionary Algorithms 



instance of the FLRE was instantiated per chromosome (via 
the �Chromosome Decoder� in Figure 6). The gold standard 
reference set of test cases was then used to evaluate the 
FLRE to determine how effective the parameter 
configuration was at producing the correct results (those 
results most closely matching that of the expert underwriter 
panel). From the confusion matrix, the EA fitness function 
assigned a fitness score to the chromosome, which was 
then used to determine if the chromosome would be 
discarded, selected to undergo mutation and/or be passed 
unchanged into the next generation. 
 From the confusion matrix in Figure 2, it is clear that an 
optimal set of parameters would generate a completely 
diagonal matrix. Therefore, the fitness function drives the 
EA to find a set of parameters that can produce this result, 
or come as close as possible to doing so. Once the EA 
optimization was complete, a configuration was found such 
that the final confusion matrix was in fact completely 
diagonal. The post-optimization confusion matrix and 
scorecard can be found in Figure 7. 
 
 

 
 

Figure 7: Optimized FLRE 
Confusion Matrix and Scorecard 

 

Tolerance Analysis 

In typical Six Sigma manufacturing process design, the 
next step would be to perform statistical tolerancing to 
determine acceptable limits on the inputs to produce parts 
within acceptable limits at the output. For this algorithm, 
however, there are predefined limits for each of the inputs, 
and so a standard tolerance analysis is not necessary. But it 
is important to understand the potential significance that 
variations in the inputs will have on the output. Since it is 
unknown if a drift in the input is actually affecting the 
output, limits on the variability of the outputs must be 
identified to determine when a drift in the output is 
occurring. Control charts are used to monitor variance in 
the output over time and to alert stakeholders when 
unexpected variance occurs that may result in defects. The 
key is to determine how much variability in the inputs can 
be handled before the algorithm begins to break down. 

For this project, control chart limits that quantify the 
meaning of �too much variance� in the outputs are 
unknown. Therefore, appropriate limits are dynamically 
determined by running the algorithm for a period of time. 
Once sufficient data has been collected on the execution of 

the algorithm, statistical analysis of the data enables the 
inference of appropriate control limits on the outputs. To 
verify these control limits, an additional pilot period was 
executed during which the control charts were monitored 
and the quality of the limits verified. The control charts 
will be discussed further below. 

Verify 

During the final phase in the DFSS process, the transfer 
functions are verified and the algorithm is transitioned to 
the customer. Verification involves confirming the 
customer CTQs have been met. A monitor and control plan 
is developed to watch key leading indicators of risk and 
identify a plan to mitigate any risks that appear. Finally, 
documentation on the whole system is completed, and 
training and transition is performed. Once the algorithm 
has been optimized, it must be verified that the parameters 
have not been over-optimized to the training data set. 
Therefore, an out-of-sample verification is performed (out-
of-sample meaning test cases not previously seen by the 
algorithm were used). The results of the out-of-sample 
verification can be found in Figure 8. 
 
 

 
 

Figure 8: Out-of-Sample Verification 
Confusion Matrix and Scorecard 

 

Confirm CTQs Satisfied 

The out-of-sample verification is used to confirm that the 
CTQs have been satisfied. The customer CTQs were: 
 
1. The algorithm must produce decisions that agree with 

the business underwriting staff. The rate of agreement 
must equal or exceed that of current manual 
assessments. 

2. Coverage of 50% of insurance applications (assuming 
historical application distribution). 

 
For the first CTQ, Figure 8 indicates the algorithm has a 
relative accuracy of 100%, versus the benchmark 
underwriter performance of 79% in Figure 4. This CTQ has 
been satisfied. For the second CTQ, Figure 8 also indicates 
that the coverage of the algorithm is 100%, so all of the 
cases sent to the engine were placed. Therefore, the second 
CTQ was also satisfied. 



Monitor and Control Plan 

The next objective is to develop a monitor and control plan 
for when the algorithm is in production. The objective of 
monitoring is to signal stakeholders when statistically 
significant changes to leading indicators occur. The 
objective of control is to define a clear process for 
stakeholders to follow when diagnosing the cause of 
signaled changes and determining the appropriate action 
plan. Through monitoring and control, business risk and 
profit loss should be minimized via proactively identifying 
and reacting to significant changes in the system and its 
environment. 
 A decision must be made as to which leading indicators 
of risk to monitor. Both inputs (X�s) to the algorithm and 
its outputs (Y�s) may be monitored. In this algorithm, the 
key output to monitor is the engine rate class decision 
distribution. The engine should produce a fairly consistent 
distribution of decisions from week to week. Slight 
variations are to be expected, but barring any significant 
changes in the inputs the distribution should be consistent. 
Additionally, the percentage of cases the engine sends to 
the underwriter will be monitored to ensure adequate 
coverage by the engine. Figure 9 shows a control chart 
tracking the percentage of cases sent to the human 
underwriter. The last two readings on the chart exceed the 
Upper Control Limit (UCL), and would cause the monitor 
to generate a notification. 
 

 
 

Figure 9: Control Chart Tracking 
 

Document and Transition 

The maintainers of the algorithm are often different from 
the maintainers of the software, so adequate documentation 
must be produced to satisfy the requirements of both teams. 
The algorithm maintenance team must have sufficient 
documentation to update and re-optimize the FLRE. The 
system maintenance team must have information on how to 
use, add to, or modify the software, and also how to deploy 
the application in various environments. 
 Writing thorough and comprehensible documentation is 
necessary but not sufficient. Knowledge transfer and 
transition ensures that the recipients of the deliverables, 
both from an algorithm and software system perspective, 

are trained and capable of using and maintaining the 
system. For this process, the team developed a set of 
training material on how to work with the algorithm, 
including how to modify rules and optimize parameters. 
This included: 
• Defining a training curriculum customized for key 

personnel 
• Defining and documenting step-by-step processes for 

making various common changes 
• Delivering the training course at the customer site 
• Reviewing hands-on examples to ensure personnel can 

make changes with assistance from the team 
• Assigning �homework� to key personnel to ensure 

they can make changes without assistance 

Conclusions 

Using an established methodology such as Design for Six 
Sigma provided a valuable framework in which to design 
and develop an automated underwriting expert system. 
This system is responsible for automating the underwriting 
of medical insurance applicants suffering from 
hypertension. Using Six Sigma greatly facilitated the 
design, implementation, and transition process. It resulted 
in clearly defined goals that were met by the algorithm, 
enabling the successful fielding of the application. 
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