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Abstract

We consider a domain where each agent is an expert in a par-
ticular task type and can ask other, expert agents, to perform
tasks for which it is not an expert. Agents are self-interested
and respond favorably to requests for help only if the request-
ing agent is estimated to provide reciprocal benefits. It has
been shown that self-interested agents can develop mutually
beneficial cooperative relations with other like minded agents
of complementary expertise in such domains. Previous work
in the area presented a mechanism for forming coalition based
on previous interaction history and expected future interac-
tions. One constraint of that work was the assumption of
fixed agent expertise. In a dynamic environment with contin-
uously varying task distributions, however, agents will have
to change their area of expertise to increase profitability and
maintain competitiveness. The agent maintains a successful
coalition till it is profitable. In this paper, we present an adap-
tive mechanism for choosing task expertise that estimates the
likelihood of forming beneficial coalition with agents of com-
plementary expertise allowing the agent to improve its utility.
We augment this decision mechanism with an adaptive ex-
ploration strategy to improve robustness. Based on the exper-
imental results, the new adaptive mechanism is shown to be
more effective and responsive to the changes in the environ-
ment than other non-adaptive strategies.

Introduction
Autonomous agents interacting in an open world can be
considered to be primarily driven by self interests. We be-
lieve, however, that typical real-world environments abound
in cooperation possibilities: situations where one agent can
help another agent by sharing work such that the helping
cost of the helper is less than the cost saved by the helped
agent. The development of cooperative relationships (Dutta
& Sen 2001) leading to exchanges of help can improve
both agent and system-level performances (the latter through
minimizing resource consumption, increasing throughput,
etc.). Prior research has shown that these self-interested
agents can develop mutually beneficial cooperative relations
with other like minded agents of complementary expertise
depending on historical data as well as on the expectation
of future interaction (Saha, Sen, & Dutta 2003). In this re-
search, the agents learn, over extended interactions, to form

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

coalition with those agents from which it can expect future
savings. This also enables agents to recognize beneficial
coalition and to avoid exploitation by the malevolent agents.
But, in that framework, agent expertise were fixed. How-
ever, in a dynamic environment if an agent finds that it can
improve its utility by changing its expertise then it should
become an expert in a new task type and form more prof-
itable coalition.

We consider a society of self interested agents situated in
an environment where they are required to perform differ-
ent types of tasks. Each agent is an expert in a particular
task type. At a particular instance each of these agents is
given a set of tasks to accomplish. The task distribution is
assumed to be global, but is subject to change over time.
An agent can transfer a task in which it is not an expert to
an agent who is an expert in that type of task if the latter
agrees to help. An agent helps another agent based on a
decision mechanism which considers historical evidence as
well as future cooperation possibilities (Saha, Sen, & Dutta
2003). In a dynamic environment, an agent’s performance
vary depending on the expertise distribution of the popula-
tion, helping attitude of the other agents and the current task
distribution. Periodically, an agent decides, based on its past
interactions and expected future interactions with different
agents, whether changing expertise can yield more revenue.
An agent, however, incurs some cost to change its expertise.

In this paper, we design an integrated decision mechanism
used by reciprocative agents that determine their help-giving
behavior as well as selection of new expertise to adopt. We
endow our agents with an expectation on the future task dis-
tributions and the ability to adapt its help-giving behavior
to expertise changes of other agents. Also, as the distribu-
tion of tasks can change over time, we require these self-
interested agents to periodically re-evaluate its performance
and relationships with other agents and decide whether to
adapt some different expertise in order to maximize future
performance. To select a new expertise an agent estimates
the cooperation possibilities in the future, based on which
it calculates the expected utility for each type of exper-
tise. Since estimations based on past interaction history with
other agents loose fidelity over time, selective exploration by
sampling different expertise is needed to increase reliability.
The agent then switches its expertise to that task type which
is expected to realize maximum utility. Such adaption is es-



sential to survive in a competitive environment and we posit
that such an expected utility based decision mechanism is
effective in generating significant cost savings under time
varying task arrival distributions.

The expertise adaptation strategy recommends that an
agent should change its expertise if the expected additional
future savings generated by changing expertise in the future
is more than the cost for changing expertise. The primary
impediment to such adaptation is the paucity of information
about the profitability of assuming other expertise. Let us
assume a scenario having three types of tasks: T1, T2, and
T3. An adaptive agent who is an expert in T1, finds it dif-
ficult to estimate the other agent’s help-giving behavior to-
wards it if it were to change its expertise to task type T2 or
T3. To circumvent this problem we incorporate an initial
exploratory phase, wherein an agent iteratively adopts each
type of expertise for a certain period to obtain an estima-
tion of the profitability of different task expertise under the
initial task distribution. Though the information collected
in this initial phase can be used to choose initial expertise,
the premise of such choice becomes obsolete with time as
the task distribution changes. A possible solution to this
problem is to repeat the exploration cycle at regular inter-
vals. With randomly changing task distribution this scheme
allows agents to adapt expertise but suffers from the cost of
regular exploration, as exploration requires the agent to try
out all strategies for some length of time and some of these
strategies have poor payoffs. For environments where task
distribution changes have some predictable patterns an agent
may be able to extrapolate past experience to compute pre-
ferred expertise and thus save on significant fraction of ex-
ploration costs. We present a predictive strategy where the
agent tries to extrapolate future trends from its previous ex-
ploration results. The deviation between the predicted value
and actual exploration results is used to tune the frequency
of explorations. Small deviations signal prediction accuracy
and hence the agent explore at longer intervals. In effect the
agent skips unnecessary explorations for static or monotoni-
cally changing environments. Large deviations between pre-
diction and observed performance, however, signifies abrupt
changes in the environment and the agent explores more fre-
quently to respond effectively to these fluctuations. In this
paper, we experiment with different agent population con-
figuration and task distributions and show the benefit of our
prescribed mechanism for adaptive expertise selection.

Reciprocal behavior in agent societies
In the literature of the social sciences and economics, the
adaptation of a group of self-interested agents is dealt with
a great importance. The social sciences researchers analyze
the nature of altruism and the cause for its evolution and
sustenance in animal groups (Axelrod 1984). Mathematical
biologists and economists evaluate the rationality of altruis-
tic behavior in groups of self-interested agents by proposing
fitness models that analyze the success of altruistic individ-
uals and the evolution of altruistic genetic traits (Dugatkin
et al. 1994; Nowak, May, & Sigmund 1995). We do not in-
tend to model altruistic behavior in animals or humans and
hence do not address the issues raised in the social science or

experimental economics literature on this topic (Hoffman,
McCabe, & Smith 1998). A significant body of work by
mathematical biologists or economists on the evolution of
altruistic behavior deals with the idealized problem called
Prisoner’s dilemma (Rapoport 1989) or some other repeti-
tive, symmetrical, and identical ‘games’. To consider a well-
known study in this area, Axelrod demonstrates that a sim-
ple, deterministic reciprocal scheme or thetit-for-tat strat-
egy is quite robust and efficient in maximizing local utility
(Axelrod 1984). Sen criticizes the simple reciprocative strat-
egy is not the most appropriate strategy to use in most real-
life situations because most of the underlying assumptions
that motivate its use are violated in these situations (Sen
1996). The evaluation framework used by Axelrod consid-
ers an evolving population composition by allowing propa-
gation of more successful behaviors and elimination of un-
successful ones. Senet. al., showed (Sen & Dutta 2002)
what behaviors emerge to be dominant or are evolutionarily
stable. In this paper, we show for a given task distribution
and agent population how the agents adapt to new expertise
in order to reach the stable population that produce maxi-
mum utility to each of the self-interested agents and in turn
increase the profit of the entire system.

Decision procedure for changing expertise
Here, we have considered a task completion domain where
each agent is assigned a set of tasks to accomplish. We as-
sume a set ofA agents executing tasks from a setΥ and the
set of task types is given byΓ. Let H denote the interac-
tion histories of the agents.H is an ordered list of tuples
where each tuple is of the form〈i, j, x, t, ci, cj , help〉 where
the components are respectively the agent requesting help
for a task, the agent being asked for help, the task type, the
time instance, the cost of performing the task to the request-
ing agent, the cost of performing the task to the agent being
asked for help, and whether or notj helpedi. In our model,
an agent asks for help from other agents in the group when
it needs to accomplish a task in which it is not an expert. For
simplicity, we have assumed that it asks for help randomly
(without replacement) from the other agents. LetHi,j ⊆ H
be the part of the history that contains interactions between
agentsi andj only. Let H denote the space of all possible
histories. In our model, given the task setΥ and the expertise
of the different agents inA, a self-interested agentag ∈ A
needs to take two different types of decisions. First, whether
to honor a help request asked by another agent and second,
after all the tasks are accomplished in one iteration, whether
it will change its expertise and become an expert in some
other task type that maximizes its expected future savings.

We have discussed the first decision procedure in (Saha,
Sen, & Dutta 2003) as:
F : A × A × Υ × H → Y es/No that maps a request
from an agent to another agent to a boolean decision based
on the task type involved and the interaction history of these
two agents. We presented an expected utility based deci-
sion mechanism used by the reciprocative agents to decide
whether or not to honor a request for help from another
agent. When requested for help, an agent, estimates the util-
ity of agreeing to the request by evaluating its chance of ob-



taining help from the asking agent in future. The agent uses
a statistical summary of its past interactions with the request-
ing agent as a metric for evaluating its expected interaction
pattern with the latter in future. Using this information, it
evaluates the difference between the expected savings from
the asking agent and the expected cost it might incur for that
agent by helping it in the future. The agent helps only if its
expected benefit exceeds the estimated risk over all future
interactions with the requesting agent.

In this paper we introduce a future expected utility maxi-
mizing decision mechanism for the second type of decisions
for the agents (i.e. whether to change expertise). An adap-
tive agent takes this decision after each iterationi.e. after it
accomplishes all tasks assigned to him. We present the de-
cision function as:G : A×Υ×H × T → Γ. This function
yields the task types in which a given agent will change its
expertise to maximize future utility given the task set, inter-
action history, and current time.

In the following, we present the expected utility based de-
cision mechanism that agentm uses to choose a task type in
which to become an expert.

G(m, τ, δ, T ) = arg max
β∈Γ

∑

a∈A
K(m,a, T , β, δ)−chcost(τ, β),

(1)
The functionchcost(τ, β) represents the cost of changing
expertise and is 0 ifτ = β. Summation ofK(m,a, β) over
all a in the set of agentsA gives the total future expected
utility of an agentm if its expertise is in task typeβ in the
next iterations. Taking maximum ofβ overΥ, G returns that
task type which yields maximum future utility over extended
period of action.

K(m,a, T , β, δ) =
∞∑

t=T
γt−T [

∑

x∈Γ

(Dt
m(x)Pr1m,a(x, β, δ)costm(x))−

∑

x∈Γ

(Dt
a(x)Pr2a,m(x, β, δ)costm(x))], (2)

wherecosti(x) is the expected cost thati incurs doing a task
of typex, γ is the time discount, andΓ is the set of different
task types.τ is the current expertise of the deciding agent
andβ ∈ Γ is another task type that the agent is considering
changing its expertise to. In equation 2,K(m,a, T , β, δ)
is the expected future utility, or gain, of the agentm from
agenta, starting from time T, if the agentm’s expertise is
β and given the interaction historyδ. This evaluation of
the expected utility of agentm helping agenta considers
all possible interactions in future and for all task types. In
equation 2,Dt

m(x) is the expected future distribution of task
types that agentm will receive at time instancet. We define
Pr1i,j(x, β, δ) as the probability that agenti will receive help
from agentj if agenti is of expertiseβ, given it has a task
of type x andPr2i,j(x, β, δ) as the probability that agenti
will receive help from agentj if the agentj is of expertise
β, given it has a task of typex. Both these probabilities
are dependent on the interaction historyδ. Therefore, the

first sum in equation 2, represents the time discounted (with
discount factorγ) expected savings ofm by receiving helps
from a in future if agenti is of expertiseβ. Similarly, the
second sum in equation 2, represents the time discounted
expected cost incurred by agentm for helping agenta in
future if agenti is of expertiseβ. HenceK(m,a, T , β, δ)
is the expected future utility (or gain) of the agentm from
agenta if the agentm’s expertise isβ. When an agentm
is helped with task typex, it incurs no cost and hence its
savings iscostm(x), its own cost for doing that task.

So, after each iteration, the adaptive agent evaluates the
maximum utility generating expert types based on earlier
interactions and expected future expectations. Now, in a
practical scenario we may not know the probabilities used in
equation 2. To counter this problem the adaptive agent will
need to perform exploration at regular intervals. We pre-
sented results in the experimental section using this scheme.
However, as pointed out earlier this strategy seems to be
somewhat naive as it explore unnecessarily even for static or
uniformly changing task distribution. During exploration,
each expertise is adopted for a full iteration and hence the
agent performance drops when adopting expertise with low
utility. To overcome this problem our agent tries to predict
the future utility values from past exploration information.
The degree of accuracy of prediction then governs the fre-
quency of exploration. If prediction is accurate, the agent
will explore less often and hence can improve performance
by delaying exploring expertise with low payoff.

At any time t let et
n(β) be the time instance where the

nth exploration of expertiseβ before timet took place, with
et
1(β) be the time for the immediately preceding exploration.

To accommodate the possibility of a changing environment,
we use an extrapolation term, based on the last two explo-
ration experiences, in the calculation of the currently pre-
ferred expertise, i.e. we redefine theG function as:

G(m, τ, δ, T ) = arg max
β∈Γ
E(m, T , β, δ)− chcost(τ, β),

(3)
where the extrapolated expected benefit for changing to ex-
pertiseβ is

E(m, T , β, δ) = S(m, T , β, δ) + P(m, T , β, δ),

where theS function represents the total expected benefit
from all agents given the information from the last explo-
ration

S(m, T , β, δ) =
∑

a∈A
K(m,a, T , β, δ) (4)

and theP function incorporates an average predicted trend
from the last two explorations to account for steady drifts in
the environment

P(m, T , β, δ) =
S(m, eT1 (β), β, δ)− S(m, eT2 (β), β, δ)

eT1 (β)− eT2 (β)
.

(5)
Just after the exploration of an expertise, we calculate the
time for the next exploration of that expertise. The gap in ex-
ploration should be more if our last exploration results were
consistent with the immediately preceding expectations and



vice versa. The time for the next exploration of expertiseβ
is calculated as:

N (m, T , β, δ) = (eT1 (β)− eT2 (β))(1 + e−λD(m, T , β, δ))

+eT1 (β),

whereλ is a tuning constant and the functionDmeasures the
fractional difference between the expected and the explored
values of the benefit of expertiseβ

D(m, T , β, δ) =
|S(m, eT1 (β), β, δ) − E(m, eT1 (β) − 1, β, δ)|

E(m, eT1 (β) − 1, β, δ)
.

(6)

Problem domain
We evaluate our hypothesis using simulations in a job com-
pletion problem domain. In this domain each ofN agents
are assignedm jobs. There areΥ job types and each agent
has expertise in exactly one of these job types. Each job re-
quires a finite timet and a quality of performanceq to be
completed. The total cost of finishing a job ist/q, wheret
is the time taken to complete the task andq is a quality mea-
sure indicating how well the task was completed. An agent
who is an “expert” in a particular job type can do jobs of
that type in less time and with higher quality, and therefore
at lower cost, than other job types.

In our simulation, we generate the time and quality of
performance from a normal distribution with a preset mean
and a standard deviation. We use two different values of the
mean: “high” and “low”. For a task type in which an agent
is expert, the time required to complete the task is computed
from the distribution using the “low” mean value, i.e., the
agent completes the task in which it is an expert, in less
time. We draw the quality of performance of an expert us-
ing the “high” mean value i.e. experts produce higher qual-
ity task completions. For performance measure of a non-
expert, however, we use the “high” and “low” mean values
for computing the time and quality respectively. The stan-
dard deviation of performance is the same for both experts
and non-experts. Each agent is assigned the same number
of tasks at each time period of our simulation that runs for a
total of τ time periods. Once tasks are assigned, the agents
ask for help from one another. When asking for help, agents
compute the costC1, incurred by itself to do that task. The
estimated costC2 that the prospective helping agent incurs
for that task is also computed. Help is obtained only if
C2 < C1. This condition corresponds to a “cooperation
possibility”. Agents have estimates of their own abilities to
do the different job types. Estimates are of two types:time
estimate, which reflects the possible time of completion of
the job, andquality estimate, which reflects the possible per-
formance level of an agent to do that job. Agents also keep
estimates of every other agents’ abilities.

Initially, agents have neutral estimates about their own
abilities and that of other agents. To obtain accurate esti-
mates about their own abilities, agents must themselves per-
form jobs of different types. When an agent performs a task,
it requires a certain time and achieves a certain quality of

performance. These values are used by the agents to mea-
sure their performance. When an agent helps another, the
helped agent updates its estimate of the helper agent’s capa-
bility of the relevant task type using the time taken and qual-
ity produced by the helper agent. The reinforcement scheme
that we use to update the time and quality estimates, after
n + 1 observations, is given by

tn+1
ij ← (1− α)tnij + αtij ,

wheretij is the time taken by agenti to do taskj on thenth

interaction between the two agents for this task type, andα
is a learning parameter with values in the interval(0, 1]. We
use a similar update policy for the quality of performance
qij .

The agents complete all the assigned jobs for one time
period and then receive their assignments for the next time
period. The simulation runs for a fixed number of time peri-
ods. We have used a population of reciprocative agents only.

Experimental results
We present the performance of our adaptive agent under dif-
ferent dynamic scenarios. We compare the performance of
the three strategies:

Basic Reciprocative (BR): These are reciprocative agents
that do not change expertise. This is also referred to as
the non-adaptive strategy.

Adaptive Reciprocative (AR): Reciprocative agents that
adapt their strategies based on the information obtained
from exploration at fixed intervals. These agents explore
every N iterations (we have used N=10 in our experi-
ments). This is also referred to as the non-predictive adap-
tive strategy.

Predictive Adaptive Reciprocative (PAR): Adaptive
reciprocative agents who vary their exploration frequency
based on prediction mismatches. These agents adjust the
time to next exploration based on past prediction errors.

In our experiments, all agents in each group is of the BR
type. Only one agent in each group is either of type AR or
of type PAR.

We also evaluate the effect of expertise distribution of the
agent population on the performance of the adaptive agent.
In this paper we have experimented with the task comple-
tion domain where agents are required to complete assigned
tasks of different types. In our experiments, we have con-
sidered three task types{0, 1, 2} and each run consisted of
40 instances of task allocations to agents. Unless otherwise
mentioned, the number of experts in different task types are
the same.

When an agent helps another agent, the helping agent
incurs a cost by which it increases its “balance” with the
helped agent. The helped agent, having saved some cost,
decreases its balance with the helping agent by the cost it
saved. Hence, more negative balance indicates better per-
formance.

In the first experiment, we consider a total of 10 agents
in the society. At the start of each iteration, 400 tasks are
assigned to each agent. In this experiment we have used
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Figure 1: Performance of BR, AR, and PAR agents under
static task distribution.

an asymmetric but static task distribution. We consider
{200,150,50} as the number of tasks of three types that is
received by each agent at the beginning of each iteration. It
is seen that under these conditions adaptive agents (both pre-
dictive and non-predictive) will change their expertise and
become an expert in task type 2. This is an important ob-
servation. This means that the adaptive agents try to be an
expert of a task which is less frequent in the environment.
The reason here is, since all the agents are reciprocative, it
finds helping agents for its non-expert tasks and incurs more
profit (as it does not incur any cost for accomplishing that
task) and on the other hand in return it needs to help in less
number of tasks as tasks of its expertise is the least frequent
task in the task distribution. So, the adaptive agent takes
this decision to change its expertise to type 2 it earns maxi-
mum future utility. So the adaptive strategy make most out
of the environment which suits its self interested perspec-
tive. Figure 1 also shows that the predictive agent performs
better than his non-predictive peer. This happens as predic-
tive agent captures the static nature of the environment and
skips unnecessary explorations whereas the latter fails to do
so and thus falls short. However, we must understand that
non-adaptive agents who are expert in the most profitable
task type from the beginning performs equally well in this
static condition.

In the second experiment, we changed the task arrival dis-
tribution after each iteration. The agent population config-
uration is same as the last experiment. In the first iteration,
number of{0, 1, 2} types of tasks are{133, 133, 134}. We
introduced a seasonal variation in the task distribution. We
increased the number of tasks of type 1 monotonically for
the first 15 instances and decrease that of task type 2 keep-
ing the total number of tasks constant. After 15 instances
we reverse the scenario. Having this seasonal, regular fluc-
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Figure 2: Performance of BR, AR, and PAR agents when
task distribution is changing seasonally.

tuation in the environment the predictive agent outperforms
the other two agents by a large margin. Figure 2 shows that
the performance of non-adaptive agents drop after instance
number 15 due to its incapability to adapt to the changes.
The predictive agent adapts successfully and also extrapo-
lates its past exploration results to save exploration costs.
The non-predictive agent, although adapting, lags behind
the predictive agent as it cannot track the regularity of the
change in the environment.

In the next experiment we varied the task distribution ran-
domly. The number of experts in each task type is kept
identical to previous experiments. The experimental results
when plotted in Figure 3 confirms our hypothesis that in case
of random changes in task distribution, our predictive agent
performs only as effectively as the non-predictive agent and
hence the two plot converges. The PAR agents cannot pre-
dict accurately and hence end up exploring as often as the
AR agent. We also observe, however, that their perfor-
mances are much superior to that of the basic reciprocative
agents who could not respond to such abrupt fluctuation in
the environment.

In the next experiment, we have shown the effect of pop-
ulation configuration on the adaptive strategy. In the earlier
two experiments we used equal distribution of agent exper-
tise and changed the task distribution. In this experiment, we
kept the task distribution static but allow some agents to ran-
domly change their expertise. This results in a dynamically
changing population configuration and thus provides scope
for adaption. We see from the results plotted in figure 4 that
in this case also the predictive agent adapts successfully to
this other kind of environmental dynamics and outperforms
the non-adaptive agents.
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Figure 3: Performance of BR, AR, and PAR agents when
task distribution is changing randomly.

Conclusions and future work
In this paper we have studied the performance enhancement
by the adaptive expertise-selection strategy in more realistic
scenarios where agents can change their behavior if such a
change is perceived to be beneficial. We have analyzed the
effect of changes in the task distribution and the effect of
initial population on the success of adaptive expertise selec-
tion. In the experiments, we have shown how the adaptive
agents dominate the non-adaptive ones. We have seen that
agents change their expertise in direction where it requires to
do less number of help but receives more help from the other
agents for tasks in which they are not experts. In this paper,
we have considered only reciprocative agents and as a result
the agents find it more beneficial to be in that group which
consists of more experts. Because then it needs to help less
number of people. We believe that the condition will change
if there are some selfish agents in the domain. The benefit
of adaptation will be magnified over longer time periods and
hence such adaptive mechanisms are particularly well-suited
for use in semi-stable long-lasting social networks.

We have also developed a predictive adaptive agent
that saves on exploration cost by tracking environmental
changes. This agents are particularly effective when task
distribution changes or changes of expertise distribution in
the population follows a regular pattern. Experimental con-
firmation lends support to the effectiveness of this predictive
adaptive strategy.

The mechanism proposed in this paper relies on historical
interaction with other agents. The richer the history and the
more stable such interactions, the more the benefit that can
possibly accrue from using this adaptive decision procedure.
As such the mechanisms of reciprocity is particularly well-
suited for long-term interaction in agent groups that though
open, are semi-stable in nature, i.e., agents are free to join
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Figure 4: Performance of BR, AR, and PAR agents when
population configuration is changing.

and leave such groups, but the statistical characteristics de-
scribing group composition changes only slowly over time.

One future goal is to analytically capture the dynamics of
the evolution of agent population. It will be interesting to
see the performance of the adaptive agents when the agent
population changes continually after each iteration. We have
also plan to see the effect of other adaptive agents in the per-
formance of an adaptive agent when there is more number
of adaptive agents in the environment. We are also planning
to see the performance of the different agents under different
population compositions.
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