
Investigating Reinforcement Learning in Multiagent Coalition Formation 

Xin Li and Leen-Kiat Soh 

Department of Computer Science and Engineering 
University of Nebraska-Lincoln 

115 Ferguson Hall, Lincoln, NE 66588-0115 
{xinli, lksoh}@cse.unl.edu 

 
 

 

Abstract 

In this paper we investigate the use of reinforcement learn-
ing to address the multiagent coalition formation problem in 
dynamic, uncertain, real-time, and noisy environments. To 
adapt to the complex environmental factors, we equip each 
agent with the case-based reinforcement learning ability 
which is the integration of case-based reasoning and rein-
forcement learning. The agent can use case-based reasoning 
to derive a coalition formation plan in a real-time manner 
based on the past experience, and then instantiate the plan 
adapting to the dynamic and uncertain environment with the 
reinforcement learning on coalition formation experience. 
In this paper we focus on describing multiple aspects of the 
application of reinforcement learning in multiagent coali-
tion formation. We classify two types of reinforcement 
learning: case-oriented reinforcement learning and peer-
related reinforcement learning, corresponding to strategic, 
off-line learning scenario and tactical, online learning sce-
nario respectively. An agent might learn about the others’ 
joint or individual behavior during coalition formation, as a 
result, we identify them as joint-behavior reinforcement 
learning and individual-behavior reinforcement learning. 
We embed the learning approach in a multi-phase coalition 
formation model and have implemented the approach. 
 

Introduction 
Coalition formation in multiagent systems is a process 
where agents form coalitions and work together to solve a 
joint problem via coordinating their actions within each 
coalition (Sandholm 1999, Shehory and Kraus 1998). It is 
useful as it may increase the ability of agents to execute 
tasks and improves their payoffs. In general, each autono-
mous agent is incapable of performing specific global 
tasks all by itself. So some agents may form coalitions to 
allocate tasks among them to achieve the global goals. 

However, in complex real-world environments, an agent 
only has incomplete even inaccurate information about the 
dynamically changing world and the occurrence of events 

may require the agents to react in a real-time manner. 
When designing multiagent systems in dynamic real-world 
environments, it is impossible to foresee all the potential 
situations an agent may encounter and specify an agent 
behavior optimally in advance. To increase problem-
solving coherence and improve the total performance of 
the system as a whole, agents should be equipped with 
learning abilities so that they can learn from their own be-
haviors as well as their interaction patterns and adapt to the 
environment (Sycara 1998). 

In recent years, reinforcement learning of agents’ behav-
iors has attracted more attention of the community of mul-
tiagent systems because of its adaptability to dynamic en-
vironments. It has been applied to multiagent problems 
such as the robotic soccer (e.g., Salustowicz, Wiering, and 
Schmidhuber 1998), the predator-prey pursuit game (e.g., 
Kohri, Matsubayashi, and Tokoro 1997), and the pris-
oner’s dilemma game (e.g., Sandholm and Crites 1995). 

We have implemented a case-based reinforcement learn-
ing (CBRL) approach to multiagent coalition formation 
problem in dynamic, uncertain, real-time, and noisy envi-
ronments. In such an environment, (1) each agent only has 
a partial view of the dynamically changing environment 
and the uncertain behavior of other agents, (2) the initial 
states that prompt the decision making process may change 
while the decision making process is still going on, (3) 
actions performed are not guaranteed to result in expected 
outcomes, (4) the coalitions need to be formed in real-time 
manner, and (5) the accurate event sensing or peer interac-
tion is not guaranteed due to the noise during the agent 
perception. As a result, a coalition-initiating agent cannot 
exactly know which peer agents are able, or are willing to 
join the coalition to perform a global task. It also cannot 
exactly expect the computational and communication cost 
of coalition formation process or coalition’s execution 
outcome. 

Our CBRL approach integrates case-based reasoning 
(CBR) and reinforcement learning (RL) to utilize the 
agent’s past coalition formation experience on the current 
problem and reinforce the utility of its experience with the 
current coalition formation outcome. Specifically, we ap-



ply case-based reasoning to store and reuse previous coali-
tion formation strategies, and its role in coalition formation 
is to provide a basis for suitability study of a coalition for-
mation plan given a particular task. We apply reinforce-
ment learning to evaluate and score each plan based on the 
outcomes, and continuously learn about other agents’ be-
haviors in joining coalitions. Its role in coalition formation 
is to continuously increase the likelihood of a good plan 
being selected in the next coalition formation tasks and 
identify high-utility peer agents as coalition candidates. 

Here we investigate the multiple aspects of reinforce-
ment learning application in our CBRL approach: (1) case-
oriented reinforcement learning vs. peer-related rein-
forcement learning, (2) strategic reinforcement learning 
vs. tactical reinforcement learning, (3) off-line reinforce-
ment learning vs. online reinforcement learning, and (4) 
joint-behavior reinforcement learning vs. individual-
behavior reinforcement learning. The case-oriented rein-
forcement learning is to learn about the utilities of cases in 
casebase while the peer-related reinforcement learning is 
to learn about other agents’ behaviors. They correspond to 
the strategic, off-line reinforcement learning scenario and 
the tactical, on-line scenario respectively since the case-
oriented reinforcement learning provides a strategic learn-
ing approach to facilitate the planning of coalition forma-
tion strategies and it occurs outside of the coalition forma-
tion process while the peer-related reinforcement learning 
provides a tactical learning approach to learn how to in-
stantiate the planned strategy and it occurs during the coa-
lition formation process. In addition, we classify the peer-
related reinforcement learning into joint-behavior and in-
dividual-behavior reinforcement learning. The former is to 
learn about a peer agent’s social characteristics in joining 
coalitions, e.g., helpfulness of the peer to the agent, while 
the latter is to learn about a peer agent’s personal charac-
teristics, e.g., the availability degree of a specific capabil-
ity which indicates whether the peer possesses the desired 
capability to perform a task. 

We embed the case-based reinforcement learning in a 
multi-phase coalition formation model. The model consists 
of three phases: coalition planning, coalition instantiation, 
and coalition evaluation. Reinforcement learning is em-
ployed in coalition instantiation and coalition evaluation. 

 

Background and Related Work 
Reinforcement learning is the process of learning to be-
have optimally with respect to some scalar feedback value 
over a period of time (Sen and Weiss 1999). It can be re-
garded as a memoryless learning technique, in which an 
agent chooses an action only based on the last observation. 
In the standard reinforcement learning model, on each step 
of interaction the agent receives as input some indication 

of the current state of the environment; the agent then 
chooses an action to generate as output. The action 
changes the state of the environment, and the value of this 
state transition is communicated to the agent through a 
scalar reinforcement signal. The agent should choose ac-
tions that tend to increase the long-run sum of values of the 
reinforcement signal. It can learn to do this over time by 
systematic trial and error (Kaelbling, Littman, and Moore 
1996). 

With the basics of multiagent characteristics and proper-
ties defined in recent years, multiagent learning has be-
come an important research issue (Excelente-Toledo and 
Jennings 2002, Sen and Weiss 1999, Stone and Veloso 
2000). Compared with single-agent systems, the multi-
agent systems are more complex partially because of the 
dynamic inter-agent interactions. Agents possibly need to 
learn from their previous behaviors and other agents’ be-
haviors to decide on the next actions (Alonso et al. 2001). 
There are generally three aspects: (1) an agent learns about 
the other agents and their environments by observation in 
order to predict their behaviors or to produce a model of 
them (e.g., Hu and Wellman 1998, Nagayuki, Ishii, and 
Doya 2000); (2) agents learn how to coordinate or cooper-
ate to achieve common goals (e.g., Haynes and Sen 1996, 
Tan 1993); and (3) an agent meta-learns what particular 
coordination mechanisms to use (e.g., Prasad and Lesser 
1997, Soh and Li 2003, Soh and Tsatsoulis 2001, Suga-
wara and Lesser 1998). In these areas, few address rein-
forcement learning to form coalitions among agents. In 
(Soh and Li 2003, Soh and Tsatsoulis 2001), the learning 
is about how to negotiate between two agents, at a lower 
level com-pared to our proposed approach in this paper. 

In traditional coalition formation, a rational agent can 
solve the combinatorial problem optimally without paying 
a penalty for deliberation. In (Sandholm and Lesser 1995), 
a bounded rationality is evident in which agents are guided 
by performance profiles and computational costs in their 
coalition formation processes. Similarly, our agents are 
aware of their communication and computational costs as 
well as time constraint in the coalition formation process. 
Agents learn about peer agents’ characteristics to select 
low-cost but high-utility coalition candidates and thus re-
duce the communication and computational cost during 
coalition formation. 

 

Multiagent Coalition Formation 
The application context of our reinforcement learning is 
multiagent coalition formation. We have designed a Multi-
Phase Coalition Formation (MPCF) model to address fac-
tors such as uncertainty, noise, real-time and dynamic is-
sues. The model consists of three phases: coalition plan-
ning, coalition instantiation and coalition evaluation, as 



depicted in Figure 1. In coalition planning, the coalition-
initiating agent derives a coalition formation plan. In coali-
tion instantiation, the agent carries out the planned forma-
tion strategy, identifying and negotiating with other agents 
fitting the specifications of the plan. In coalition evalua-
tion, the agent evaluates the coalition formation process, 
the formed coalition (if a coalition is successfully formed), 
and the coalition execution outcome (if the coalition is 
executed eventually) to determine the utility of the plan. 

In coalition planning, the coalition-initiating agent de-
rives a specific coalition formation plan for the current 
problem. A coalition formation plan specifies the number 
of coalition candidates, the number of expected coalition 
members, the time allocated for coalition instantiation, the 
allocation algorithm, and the number of messages recom-
mended. 

The coalition instantiation phase implements the coali-
tion formation plan to form a coalition. At first, the coali-
tion-initiating agent normalizes the task—dividing the task 
into separate execution units as different negotiation is-
sues, computing the potential utilities of its peers, and 
ranking the peers based on their potential utilities. Then 
the agent concurrently negotiates with each selected peer 
agent on the set of subtasks in an attempt to form the in-
tended coalition. Each negotiation is argumentative where 
the initiating agent attempts to persuade the responding 
agent to perform a task or provide a resource by providing 
support or evidence for its request (Soh and Tsatsoulis 
2001). 

Dynamic 
Profiling 

Reinforcement 
Learning 

Coalition 
Execution 

 Task 

Coalition 
Planning 

Case Base Coalition 
Instantiation 

Coalition 
Evaluation 

Other 
Agents 

Profiles 

interaction 

success? 

CBR 

yes no 

CBRL 

Coalition 
Requirement 
Analysis 

Coalition formation problem 

 
Figure 1. Learning-based MPCF model 

The coalition evaluation phase provides the basis for an 
agent to improve its coalition formation plans. This phase 
evaluates both the coalition instantiation process (in terms 
of time spent, number of messages used, number of peers 

approached, etc.) and the execution outcomes of the sub-
tasks agreed upon in the coalition (in terms of the number 
of subtasks performed by highly-capable peers, etc.). In 
general, a good plan is one that uses little computational 
and communication resources with successful instantia-
tions and subsequent executions. 
 

Reinforcement Learning 
Our CBRL design, as shown in Figure 2, is aimed at (1) 
identifying the situation where a plan was successful and 
reinforcing that situation-plan pair in a case, and (2) learn-
ing about peer agents’ behavior in joining coalitions and 
identifying peer agents of high potential utilities to the 
current coalition formation. We identify the application of 
reinforcement learning in our coalition formation model as 
case-oriented reinforcement learning (CRL) and peer-
related reinforcement learning (PRL). The case-oriented 
reinforcement learning is applied specific to (1) and the 
peer-related reinforcement learning specific to (2). 
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Figure 2. Case-Based Reinforcement Learning. CRL = Case-
oriented Reinforcement Learning, and PRL = Peer-related Rein-
forcement Learning. 

A coalition formation case in the casebase consists of a 
problem description, a solution, an outcome, and its utility. 
The problem description consists of an agent’s external 
and internal environments and the task description. The 
solution part gives a coalition formation plan for the task 



to conduct the actual coalition formation process. The out-
come part indicates the subtask allocation result among 
agents at the end of the coalition formation process, sub-
tasks’ execution results in the case that subtasks are even-
tually executed by coalition members, and the evaluation 
values to the actual coalition formation process. The utility 
part indicates the quality of the case, specifically, the qual-
ity of the solution to solving the current coalition forma-
tion problem. 

The case-oriented reinforcement learning is to (a) learn 
the utility of a case based on its coalition formation plan 
and how well it was applied, and (b) retrieve high-utility 
cases more often. The peer-related reinforcement learning 
is to (a) learn the potential utility of each peer agent based 
on its coalition formation behavior, and (b) approach high-
utility peers more often. 

In our definition of the reinforcement learning, we fol-
low the multiagent reinforcement learning model (Sen and 
Weiss 1999) where agents are given a description of the 
current state and have to choose the next action from a set 
of possible actions so as to maximize a scalar reinforce-
ment received after each action. The traditional reinforce-
ment learning can be modeled by a finite-state Markov 
decision process (MDP) that can be represented by a 4-
tuple <S, A, P, r> where S is a set of states, A is a set of 
actions, P: S × S × A � [0, 1] gives the probability of 
moving from state s1 to s2 on performing action a, and r: S 
× A � ℜ is a scalar reward function. However, the rein-
forcement learning in a dynamic multiagent environment 
of multiple learning agents cannot be formulated exactly as 
an MDP as the state transition probability of the environ-
ment changes with time due to the uncertain behavior of 
the other agents. We modified the traditional learning 
model to adapt to the complex environment. 

Case-Oriented Reinforcement Learning 
Case-based reasoning is to reuse the past solution in cur-
rent similar problems. Due to the dynamic and uncertain 
environment, the past good plan may not be a good solu-
tion for the current problem; as a result, the outcome of the 
plan instantiation may be not good. This can be reflected in 
the case’s utility for the future case reference in planning. 
We employ the case-oriented reinforcement learning to 
learn and reinforce the cases’ utilities. 

After coalition instantiation and coalition execution, the 
agent evaluates the coalition formation process and the 
outcome. Coupling the evaluation and the problem de-
scription, the agent matches the new case to its casebase. If 
the new case differs significantly from the existing cases, 
the agent learns the case to increase the case space. Other-
wise, the agent updates the original best case’s utility using 
the evaluation result to reinforce the case. On one hand, 
this is because the casebase also should keep bad experi-

ence as lessons. On the other hand, the dynamic and uncer-
tain environment may make a plan with bad outcome able 
to produce good outcomes for other problems in the future. 

During case retention, the case-oriented reinforcement 
learning updates the utility of the best case retrieved, the 
solution of which was used in a coalition formation proc-
ess. The reinforcement learning algorithm is: 

11 ),()1(),( ++ ∗+∗−← ttt RasVasV αα  

where the state s corresponds to the current coalition 
formation problem; the action a corresponds to taking a 
coalition formation plan which is adapted from the plan in 
the best case; ),( asVt

 is the old utility value of the best 
case while ),(1 asVt+

 is the new utility value of best case; α 
is the learning rate (0 ≤ α ≤ 1); 1+tR  is the performance 
evaluation result on the actual instantiation process (i.e., 
the reward) at time t+1. This reward includes the quality of 
the coalition formation process and the quality of the coali-
tion. The learning result will be used in the agent’s coali-
tion case selection action. 

Peer-Related Reinforcement Learning 
At the end of coalition planning, the coalition formation 
plan for the current problem has been decided. The coali-
tion-initiating agent can know which type of peer agents 
should be approached for the coalition formation. For ex-
ample, an emergent task needs high-promptness peer 
agents to reduce coalition instantiation time. In coalition 
instantiation, the agent will select peer agents as coalition 
candidates according to the planned candidate type, and 
concurrently negotiate with each of them on the set of sub-
tasks in an attempt to form the intended coalition. How-
ever, an agent only has incomplete information about the 
environment and other agents, so the coalition-initiating 
agent needs to learn about the dynamic and uncertain be-
havior of peer agents in past coalition formation activities 
to perceive their characteristics and potential utilities as 
coalition candidates. We employ peer-related reinforce-
ment learning to learn the characteristics of each peer 
agent and the corresponding potential utility through inter-
actions between agents. 

The potential utility of a peer agent as a coalition candi-
date perceived by an agent is based on the cooperation 
relationship between the peer and the agent (Soh and Tsat-
soulis 2001), and the peer’s coalition-derived behaviors, 
negotiation-derived behaviors, and estimated capabilities. 
They are recorded in the neighborhood profile. The pa-
rameters profiled include: (1) the helpfulness of the peer to 
the agent indicating the satisfaction degree of requests to 
the peer, (2) the helpfulness of the agent to the peer indi-
cating the satisfaction degree of requests from the peer, (3) 
the reliance of the agent on the peer in terms of the ratio of 



sending requests to the peer among all peers, (4) the reli-
ance of the peer on the agent in terms of the ratio of re-
ceiving requests from the peer among all peers, (5) the 
peer’s tardiness degree indicating the communication de-
lay between the agent and the peer, in terms of the mes-
sage round-trip time (RTT) between agents, (6) the peer’s 
hesitation degree indicating how readily the peer is to 
agree to a request, in terms of the number of evidence 
messages the agent needs to provide to persuade the peer, 
(7) the availability degree of capability indicating whether 
the peer possesses the desired capability to solve task, (8) 
the reliability degree in coalition formation activities based 
on the standard deviations of the peer’s behaviors, and so 
forth. These parameters reflect varieties of characteristics 
of the peer agent. 

After each interaction (negotiation), the agent iA  up-
dates the potential utility (for future coalition formation 
activity) of its peer jA ’s kth characteristic k

Aj
C in the fol-

lowing manner: 

)1,(),,()1()1,,(
,,

+∗+∗−←+ tACtasPUtasPU i
k
ACACA j

k
jAi

k
jAi

ββ  

where the state s corresponds to the current coalition 
formation problem; the action a corresponds to coalition 
candidate selection; ),,(

,
tasPU k

jAi CA
 is the old potential 

utility of  k
Aj

C  and )1,,(
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 is the updated one; β  
is the learning rate (0 ≤ β  ≤ 1); and )1,( +tAC i

k
Aj

 is the 
peer jA ’s kth characteristic as measured by iA . The learn-
ing result will be used in the agent’s coalition candidate 
selection action. The potential utility of peer jA  is the 
weighted sum of the potential utilities of its characteristics. 
It is computed when agent iA  selects coalition candidates. 
The weight values adapt to the candidate type requirement. 
With this reinforcement, an agent prefers peer agents that 
have been helpful and coalition-worthy. 

The peer-related reinforcement learning in our coalition 
formation model can be identified as joint-behavior rein-
forcement learning and individual-behavior reinforcement 
learning further according to the peer agent’s different 
characteristics revealed through the interactions. The joint-
behavior reinforcement learning is to learn about a peer 
agent’s social characteristics in joining coalitions such as 
helpfulness degree, reliance degree, reliability degree, and 
so forth. The individual-behavior reinforcement learning is 
to learn about a peer agent’s inherent characteristics such 
as tardiness degree, hesitation degree, availability degree 
of capability. 

We distinguish the joint-behavior reinforcement learn-
ing and individual-behavior reinforcement learning to 
identify the different roles of different types of characteris-
tics of peer agents in coalition formation. In principle, the 
joint-behavior reinforcement learning is enough for a coa-
lition-initiating agent to identify the potential utility of a 

peer agent as coalition candidate based on the past coop-
eration experience. In the dynamic and uncertain environ-
ment, however, peer agents’ inherent characteristics may 
change as the time progresses. It will influence the peer’s 
participation to coalition formation activities. So we also 
employ individual-behavior reinforcement learning to ad-
dress the environmental factors. 

Case-Oriented RL vs. Peer-Related RL 
The case-oriented reinforcement learning occurs at the 
coalition evaluation phase and the learning result is applied 
at the coalition planning phase. We apply it into the coali-
tion formation model as a strategic learning approach to 
facilitate the planning of a coalition, adapting to the real-
time and environmental requirements. The peer-related 
reinforcement learning occurs at the coalition instantiation 
phase and the learning result is also applied at the coalition 
instantiation phase. We apply it into the coalition forma-
tion model as a tactical learning approach to address how 
to instantiate a coalition formation plan, taking into ac-
count uncertain and dynamic behaviors of the peer agents. 
In the dynamic, uncertain, and noisy environment, a good 
coalition formation plan of an agent is not guaranteed to 
succeed as planned. Thus, a “conceptually good” plan may 
not be a “practically good” plan. The continual tactical 
learning during coalition formation is necessary to address 
the change of the environment. 

Corresponding to the different occurrences, the case-
oriented reinforcement learning and the peer-related rein-
forcement learning are in the off-line reinforcement learn-
ing scenario and the online scenario respectively. The 
case-oriented reinforcement learning can be off-line be-
cause it does not directly need agents’ interactions. The 
peer-related reinforcement learning must be online because 
it directly needs the interactions between agents. We com-
bine off-line learning and online learning into our rein-
forcement learning to address the real-time, dynamic, un-
certain, and noisy environmental factors. Then agents can 
learn in both scenarios of without interactions and with 
interactions. 

In short, the application of case-oriented reinforcement 
learning in coalition formation is to meta-learn coalition 
formation processes as a strategic learning approach to 
conduct the actual coalition formation process. Its off-line 
application can reduce the agents’ computational costs 
spent on learning during coalition formation. The applica-
tion of peer-related reinforcement learning in coalition 
formation is to dynamically learn other agents’ behavior in 
the course of continual interactions as a tactical approach 
to learn how to instantiate the planned coalition formation 
strategy. The computational costs for this online learning 
scenario are necessary. 



Experiments and Results 
We have implemented a multiagent system where each 
agent is capable of performing multiple tasks and has mul-
tiple resources. Here we present our experiments and re-
sults to evaluate the performance of our reinforcement 
learning approach. Particularly, our experiments were to 
investigate the impact of learning on the success rate of 
coalition formation, and on the quality of the coalition 
formation process. 

We report our experiments on four versions of our mul-
tiagent design. The first version was CRLPRL in which 
both case-oriented reinforcement learning and peer-related 
reinforcement learning are used. The second version, 
OnlyPRL, used only the peer-related reinforcement learn-
ing. The third version, OnlyCRL, used only case-oriented 
reinforcement learning. The fourth version, NoLearning, 
did not use any learning at all. 

In our experiments, there were 9 agents in the system, 

1A ~ 9A , each of which could initiate coalition formation 
activities for task fulfillment. We randomly simulated a 
series of 40 tasks (timed to occur at different times) for 
each agent. Each task consisted of different subtasks and 
required different resources. All tasks required the agent to 
initiate coalitions. We ran the experiments about a dozen 
times to obtain the average values used in the following 
discussions. 

Impact of Learning on Coalition Formation Suc-
cess Rate 
Figure 3 shows the impact of reinforcement learning on an 
agent’s success rate in forming coalitions. 

0

10

20

30

40

50

60

CRLPRL OnlyPRL OnlyCRL NoLearning

Various Learning

Su
cc

es
s 

R
at

e 
(%

)

 
Figure 3. Success rates of coalition formation for different agent 
versions of learning mechanisms 

Note that the success rate of each version of our agent 
learning design was low (<60%). This was due to the envi-
ronment the agents operated in. Since the agents were han-
dling their own tasks which overlapped temporally, it was 
possible for a peer agent not able to entertain or agree to a 
coalition request. Real-time constraints also played a role. 

Each task was timed and thus a coalition formation process 
that had run too long would be terminated. An agent that 
had been too slow in responding or communication would 
cause such delays. From Figure 3, we observe the follow-
ing: 

The agent design with both case-oriented reinforcement 
learning and peer-related reinforcement learning 
(CRLPRL) outperformed all the other versions in terms of 
the success rates of coalition formation. This shows that 
our agents were able to learn to improve their performance 
in coalition formation. 

With learning, the agents were able to form coalitions 
more successfully. This is based on the observation that 
NoLearning yielded the lowest success rate at 35%. 

Peer-related reinforcement learning (OnlyPRL) yielded 
better success rate than case-oriented reinforcement learn-
ing (OnlyCRL), 48.75% to 40%. This indicates that the 
peer-related reinforcement learning played a more signifi-
cant role than the case-oriented reinforcement learning in 
our environment. In the dynamic, uncertain environment, 
the tactical, online reinforcement learning on peer agents’ 
behavior played a more significant role on the effective-
ness of coalition formation than the strategic, off-line rein-
forcement learning on the utilities of past coalition forma-
tion cases. 

Impact of Learning on Coalition Formation Qual-
ity 
Figure 4 shows the impact of learning on the coalition 
formation quality, which is an average of how well the 
coalition formation processes were (e.g., in terms of the 
number of messages, time spent vs. time expected, etc.) 
and the quality of the actual coalition formed (e.g., 
whether an expert peer contributed to the coalition, etc.). 
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Figure 4. Average coalition formation qualities for different agent 
versions of learning mechanisms 

In general, we observe similar patterns as in Figure 3. 
CRLPRL outperformed all others with an average quality 
of 80%. NoLearning and OnlyCRL were far behind, hov-



ering around 40%. This clearly showed that even when 
there was a good plan (derived from case-based reason-
ing), the actual coalition formation process or the coalition 
quality might not be better than that without a good plan 
(OnlyPRL, for example) in our environment. In the dy-
namic, uncertain environment, the tactical, online rein-
forcement learning on peer agents’ behavior played a more 
significant role on the efficiency of coalition formation 
than the strategic, off-line reinforcement learning on the 
utilities of past coalition formation cases. 
 

Conclusions 
We have described the use of reinforcement learning in a 
multi-phase coalition formation model. We investigated 
multiple aspects of the reinforcement learning application 
in multiagent coalition formation. We have conducted sev-
eral preliminary experiments and the results have been 
promising in proving the feasibility of reinforcement learn-
ing. With reinforcement learning, our agents form coali-
tions more effectively and efficiently. Our future work will 
focus on designing further experiments to test the impact 
of reinforcement learning on the effectiveness and effi-
ciency of coalition formation based on different degrees of 
heterogeneity in the agents’ characteristics. 

References 
Alonso, E., D’Inverno, M., Kudenko, D., Luck, M., and 
Noble, J. 2001. Learning in Multi-Agent Systems. The 
Knowledge Engineering Review 16(3):277–284. 

Excelente-Toledo, C. B., and Jennings, N. R. 2002. 
Learning to Select a Coordination Mechanism. In Pro-
ceedings of the First International Joint Conference on 
Autonomous Agents and Multi-Agent Systems 
(AAMAS’2002), 1106-1113, Bologna, Italy. 

Haynes, T., and Sen, S. 1996. Learning Cases to Re-
solve Conflicts and Improve Group Behavior. Interna-
tional Journal of Human-Computer Studies 48(1):31-49. 

Hu, J., and Wellman, M. P. 1998. Online Learning 
about Other Agents in a Dynamic Multiagent System. In 
Proceedings of the Second International Conference on 
Autonomous Agents, 239-246, Minneapolis, MN. 

Kaelbling, L.P., Littman, M.L., and Moore, A. W. 1996. 
Reinforcement Learning: A Survey. Journal of Artificial 
Intelligence Research 4:237-285. 

Kohri, T., Matsubayashi, K., and Tokoro, M. 1997. An 
Adaptive Architecture for Modular Q-Learning. In Pro-
ceedings of the Fifteenth International Joint Conference 
on Artificial Intelligence (IJCAI’1997), 820-825, Na-
goya, Japan. 

Nagayuki, Y., Ishii, S., and Doya, K. 2000. Multi-Agent 
Reinforcement Learning: An Approach Based on the 

Other Agent’s Internal Model. In Proceedings of the 
Fourth International Conference on Multi-Agent Sys-
tems, 215-221, Kyoto, Japan. 

Prasad, M. V. N., and Lesser, V. R. 1997. The Use of 
Meta-Level Information in Learning Situation-Specific 
Coordination. In Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence 
(IJCAI’1997), 640-646, Nagoya, Japan. 

Salustowicz, R. P., Wiering, M. A., and Schmidhuber, J. 
1998. Learning Team Strategies: Soccer Case Studies. 
Machine Learning 33(2/3):263-282. 

Sandholm, T. W. 1999. Distributed Rational Decision 
Making. In G. Weiss (Ed.), Multiagent Systems: A Mod-
ern Approach to Distributed Artificial Intelligence 241-
250, the MIT Press. 

Sandholm, T. W., and Crites, R. H. 1995. Multiagent 
Reinforcement Learning in the Iterated Prisoner’s Di-
lemmas. Biosystems 37:147-166. 

Sandholm, T. W., and Lesser, V. R. 1995. Coalition 
Formation amongst Bounded Rational Agents. In Pro-
ceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI’1995), 662-669, 
Montreal, Canada. 

Sen, S., and Weiss, G. 1999. Learning in Multiagent 
Systems. In Weiss, G. (ed.), Multiagent Systems: A 
Modern Approach to Distributed Artificial Intelligence 
259-298, the MIT Press. 

Shehory, O., and Kraus, S. 1998. Methods for Task Al-
location via Agent Coalition Formation. Artificial Intel-
ligence 101:165-200. 

Soh, L.-K. and Li, X. 2003. An Integrated Multi-Level 
Learning Approach to Multiagent Coalition Formation. 
In Proceedings of the Eighteenth International Joint 
Conference on Artificial Intelligence (IJCAI’2003), 
619-624, Acapulco, Mexico. 

Soh, L.-K., and Tsatsoulis, C. 2001. Reflective Negoti-
ating Agents for Real-Time Multisensor Target Track-
ing. In Proceedings of the Seventeenth International 
Joint Conference on Artificial Intelligence 
(IJCAI’2001), 1121-1127, Seattle, WA. 

Stone, P., and Veloso, M. 2000. Multiagent Systems: A 
Survey from a Machine Learning Perspective. Autono-
mous Robotics 8(3):345-383. 

Sugawara, T., and Lesser, V. 1998. Learning to Improve 
Coordinated Actions in Cooperative Distributed Prob-
lem-Solving Environments. Machine Learning 
33(2/3):129-153. 

Sycara, K. P. 1998. Multiagent Systems. AI Magazine 
19(2):79-92. 

Tan, M. 1993. Multi-Agent Reinforcement Learning: In-
dependent vs. Cooperative Agents. In Proceedings of 
the Tenth International Conference on Machine Learn-
ing (ICML’1993), 330-337, Amherst, MA. 


