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Abstract

In this paper we investigate the use of reinforagntearn-

ing to address the multiagent coalition formatioolgbem in

dynamic, uncertain, real-time, and noisy environtaeio

adapt to the complex environmental factors, we eeaich

agent with the case-based reinforcement learniritityab
which is the integration of case-based reasonirtram-

forcement learning. The agent can use case-baasdriag

to derive a coalition formation plan in a real-tim@anner
based on the past experience, and then instatitiatplan

adapting to the dynamic and uncertain environmeéttt thie

reinforcement learning on coalition formation expece.

In this paper we focus on describing multiple aspet the

application of reinforcement learning in multiagerdali-

tion formation. We classify two types of reinforoemt

learning: case-oriented reinforcement learning @eer-

related reinforcement learning, corresponding tatsgic,

off-line learning scenario and tactical, onlinertéag sce-
nario respectively. An agent might learn about atfeers’

joint or individual behavior during coalition forrii@n, as a
result, we identify them as joint-behavior reinfemeent

learning and individual-behavior reinforcement teag.

We embed the learning approach in a multi-phasétiooa
formation model and have implemented the approach.

I ntroduction

Coalition formation in multiagent systems is a @&
where agents form coalitions and work togetheroleesa
joint problem via coordinating their actions with@ach
coalition (Sandholm 1999, Shehory and Kraus 19883.
useful as it may increase the ability of agentextecute
tasks and improves their payoffs. In general, eadono-
mous agent is incapable of performing specific glob
tasks all by itself. So some agents may form doalit to
allocate tasks among them to achieve the globdsgoa
However, in complex real-world environments, anrdge
only has incomplete even inaccurate informationualbioe
dynamically changing world and the occurrence ants

may require the agents to react in a real-time mann
When designing multiagent systems in dynamic readav
environments, it is impossible to foresee all tlweptial
situations an agent may encounter and specify amtag
behavior optimally in advance. To increase problem-
solving coherence and improve the total performamice
the system as a whole, agents should be equipptéd wi
learning abilities so that they can learn from ithoein be-
haviors as well as their interaction patterns atepato the
environment (Sycara 1998).

In recent years, reinforcement learning of ageng$iav-
iors has attracted more attention of the commuofityul-
tiagent systems because of its adaptability to ohyoan-
vironments. It has been applied to multiagent potd
such as the robotic soccer (e.g., Salustowicz, Wjeand
Schmidhuber 1998), the predator-prey pursuit gaeng.,(
Kohri, Matsubayashi, and Tokoro 1997), and the -pris
oner’s dilemma game (e.g., Sandholm and Crites Y1995

We have implemented a case-based reinforcemenmt lear
ing (CBRL) approach to multiagent coalition forneati
problem in dynamic, uncertain, real-time, and nasyi-
ronments. In such an environment, (1) each agdgttas
a partial view of the dynamically changing envir@mh
and the uncertain behavior of other agents, (2)inh&l
states that prompt the decision making processahagge
while the decision making process is still going ¢B8)
actions performed are not guaranteed to resulkprected
outcomes, (4) the coalitions need to be formeatai-time
manner, and (5) the accurate event sensing orifteeac-
tion is not guaranteed due to the noise duringatpent
perception. As a result, a coalition-initiating ageannot
exactly know which peer agents aele, or arewilling to
join the coalition to perform a global task. It @alsannot
exactly expect the computational and communicatiost
of coalition formation process or coalition’s exton
outcome.

Our CBRL approach integrates case-based reasoning
(CBR) and reinforcement learning (RL) to utilizeeth
agent’s past coalition formation experience ondhgent
problem and reinforce the utility of its experiengith the
current coalition formation outcome. Specificallye ap-



ply case-based reasoning to store and reuse peco@ali-
tion formation strategies, and its role in coatitiormation
is to provide a basis for suitability study of aalition for-
mation plan given a particular task. We apply reioé-
ment learning to evaluate and score each plan haséue
outcomes, and continuously learn about other agbsts
haviors in joining coalitions. Its role in coalitidormation
is to continuously increase the likelihood of a dq@an
being selected in the next coalition formation &sind
identify high-utility peer agents as coalition cadates.
Here we investigate the multiple aspects of reoder
ment learning application in our CBRL approach:dqd3e-
oriented reinforcement learning vspeer-related rein-
forcement learning, (2ptrategic reinforcement learning
vs. tactical reinforcement learning, ()ff-line reinforce-
ment learning vsonline reinforcement learning, and (4)
joint-behavior reinforcement learning vs.individual-

behavior reinforcement learning. The case-oriented rein-

forcement learning is to learn about the utilittdases in
casebase while the peer-related reinforcement iteqris

to learn about other agents’ behaviors. They cpomed to
the strategic, off-line reinforcement learning saém and
the tactical, on-line scenario respectively since tase-
oriented reinforcement learning provides a stratégmrn-
ing approach to facilitate the planning of coalitiforma-
tion strategies and it occurs outside of the doaliforma-
tion process while the peer-related reinforcemeatring
provides a tactical learning approach to learn hovin-

stantiate the planned strategy and it occurs duhiagcoa-
lition formation process. In addition, we classife peer-
related reinforcement learning into joint-behavérd in-
dividual-behavior reinforcement learning. The forrigeto

learn about a peer agent’s social characteristigsining

coalitions, e.g., helpfulness of the peer to thenagwhile
the latter is to learn about a peer agent’s petsdmrac-
teristics, e.g., the availability degree of a sfiedapabil-
ity which indicates whether the peer possessesl¢seed
capability to perform a task.

of the current state of the environment; the ageen

chooses an action to generate as output. The action

changes the state of the environment, and the \adltigs
state transition is communicated to the agent tinoa
scalar reinforcement signal. The agent should ah@ms
tions that tend to increase the long-run sum aiesbf the
reinforcement signal. It can learn to do this otiere by
systematic trial and error (Kaelbling, Littman, akidore
1996).

With the basics of multiagent characteristics arappr-
ties defined in recent years, multiagent learniag be-
come an important research issue (Excelente-Toéedb

Jennings 2002, Sen and Weiss 1999, Stone and Veloso

2000). Compared with single-agent systems, the imult
agent systems are more complex partially becaugbeof
dynamic inter-agent interactions. Agents possil#gdto
learn from their previous behaviors and other agjeme-
haviors to decide on the next actions (Alonso e2@01).
There are generally three aspects: (1) an agemisl@doout
the other agents and their environments by observat
order to predict their behaviors or to produce alehmf
them (e.g., Hu and Wellman 1998, Nagayuki, Ishiid a
Doya 2000); (2) agents learn how to coordinatecaper-
ate to achieve common goals (e.g., Haynes and 9@, 1
Tan 1993); and (3) an agent meta-learns what péatic
coordination mechanisms to use (e.g., Prasad amdete
1997, Soh and Li 2003, Soh and Tsatsoulis 2001a-Sug
wara and Lesser 1998). In these areas, few addeass
forcement learning to form coalitions among agets.
(Soh and Li 2003, Soh and Tsatsoulis 2001), thenieg
is about how to negotiate between two agents, latvar
level com-pared to our proposed approach in thiepa

In traditional coalition formation, a rational ageran
solve the combinatorial problem optimally withowtying
a penalty for deliberation. In (Sandholm and Led4995),
a bounded rationality is evident in which agentsguided
by performance profiles and computational costshiir
coalition formation processes. Similarly, our ageate

We embed the case-based reinforcement learning in a aware of their communication and computational Test

multi-phase coalition formation model. The modehsists
of three phases: coalition planning, coalition amstation,
and coalition evaluation. Reinforcement learningeis-
ployed in coalition instantiation and coalition &agion.

Background and Related Work

Reinforcement learning is the process of learnmgé-
have optimally with respect to some scalar feedhadtite
over a period of time (Sen and Weiss 1999). It lcarre-
garded as a memoryless learning technique, in waith
agent chooses an action only based on the lastvaiies.
In the standard reinforcement learning model, arhestep
of interaction the agent receives as input someation

well as time constraint in the coalition formatiprocess.
Agents learn about peer agents’ characteristicsetect
low-cost but high-utility coalition candidates atiis re-
duce the communication and computational cost durin
coalition formation.

Multiagent Coalition Formation

The application context of our reinforcement leagis
multiagent coalition formation. We have designed ati-
Phase Coalition Formation (MPCF) model to address f
tors such as uncertainty, noise, real-time and hynas-
sues. The model consists of three phases: coalitiem-
ning, coalition instantiation and coalition evaloat as



depicted in Figure 1. Ieoalition planning the coalition-
initiating agent derives a coalition formation plémcoali-
tion instantiation the agent carries out the planned forma-
tion strategy, identifying and negotiating with ettagents
fitting the specifications of the plan. koalition evalua-
tion, the agent evaluates the coalition formation gece
the formed coalition (if a coalition is successfuibrmed),
and the coalition execution outcome (if the coaititiis
executed eventually) to determine the utility of gian.

In coalition planning, the coalition-initiating agtede-
rives a specific coalition formation plan for therent
problem. A coalition formation plan specifies thember
of coalition candidates, the number of expecteditiaa
members, the time allocated for coalition instéditig the
allocation algorithm, and the number of messagesme
mended.

The coalition instantiation phase implements thalieo
tion formation plan to form a coalition. At firghe coali-
tion-initiating agent normalizes the task—dividirgg ttask
into separate execution units as different negotiats-
sues, computing the potential utilities of its mgeand
ranking the peers based on their potential utiti€hen
the agent concurrently negotiates with each selepter
agent on the set of subtasks in an attempt to therin-
tended coalition. Each negotiation is argumentatiere
the initiating agent attempts to persuade the edipg
agent to perform a task or provide a resource byiging
support or evidence for its request (Soh and Tah$so

2001).
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Figure 1. Learning-based MPCF model

The coalition evaluation phase provides the basiaf
agent to improve its coalition formation plans. §phase
evaluates both the coalition instantiation prodgsserms
of time spent, number of messages used, humbeeekp

approached, etc.) and the execution outcomes o$ube
tasks agreed upon in the coalition (in terms ofrthmber
of subtasks performed by highly-capable peers).elc.
general, a good plan is one that uses little coatfmunal
and communication resources with successful ingtant
tions and subsequent executions.

Reinfor cement L earning

Our CBRL design, as shown in Figure 2, is aimedlat
identifying the situation where a plan was sucagsshd
reinforcing that situation-plan pair in a case, é2dlearn-
ing about peer agents’ behavior in joining coatitcand
identifying peer agents of high potential utilitiés the
current coalition formation. We identify the applion of
reinforcement learning in our coalition formatiomdel as
case-orientedreinforcement learning (CRL) angeer-
related reinforcement learning (PRL). The case-oriented
reinforcement learning is applied specific to (hdahe
peer-related reinforcement learning specific to (2)
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Figure 2. Case-Based Reinforcement Learning. CRlase-
oriented Reinforcement Learning, and PRL = Peeated| Rein-
forcement Learning.

A coalition formation case in the casebase consists
problem description, a solution, an outcome, asdifiity.
The problem description consists of an agent's external
and internal environments and the task descriptidre
solution part gives a coalition formation plan for the task



to conduct the actual coalition formation procddse out-
come part indicates the subtask allocation result among
agents at the end of the coalition formation precasb-
tasks’ execution results in the case that subtask®ven-
tually executed by coalition members, and the eatadn
values to the actual coalition formation procedse dtility

part indicates the quality of the case, specifijcahe qual-

ity of the solution to solving the current coalitidorma-
tion problem.

The case-oriented reinforcement learning is tolgajn
the utility of a case based on its coalition forimatplan
and how well it was applied, and (b) retrieve highity
cases more often. The peer-related reinforcemaniteg
is to (a) learn the potential utility of each pegent based
on its coalition formation behavior, and (b) apmiohigh-
utility peers more often.

In our definition of the reinforcement learning, V-
low the multiagent reinforcement learning modeln($ad
Weiss 1999) where agents are given a descriptiothef
currentstateand have to choose the nextionfrom a set
of possible actions so as to maximize a scalaforia-
ment received after each action. The traditionaifoece-
ment learning can be modeled by a finite-state Mhark
decision process (MDP) that can be represented 8y a
tuple <§ A, P, r> whereSis a set of state#\ is a set of
actions,P: Sx Sx A [0, 1] gives the probability of
moving from states; to s, on performing actiom, andr: S
x A 0 is a scalar reward function. However, the rein-
forcement learning in a dynamic multiagent envirenmn
of multiple learning agents cannot be formulatedotly as
an MDP as the state transition probability of tiwieon-
ment changes with time due to the uncertain behafio
the other agents. We modified the traditional leayn
model to adapt to the complex environment.

Case-Oriented Reinforcement L earning

Case-based reasoning is to reuse the past solationr-
rent similar problems. Due to the dynamic and uader
environment, the past good plan may not be a gobad s
tion for the current problem; as a result, the onte of the
plan instantiation may be not good. This can blecefd in
the case’s utility for the future case referencelanning.
We employ the case-oriented reinforcement learrimg
learn and reinforce the cases’ utilities.

After coalition instantiation and coalition exeautj the
agent evaluates the coalition formation process tued
outcome. Coupling the evaluation and the problem de
scription, the agent matches the new case to sesbese. If
the new case differs significantly from the exigticases,
the agent learns the case to increase the case. $pier-
wise, the agent updates the original best cas#ity wising
the evaluation result to reinforce the case. On loaued,
this is because the casebase also should keepxpad-e

ence as lessons. On the other hand, the dynamiarared-
tain environment may make a plan with bad outcobie a
to produce good outcomes for other problems irfuhee.

During case retention, the case-oriented reinfoezgm
learning updates the utility of the best case ewe#il, the
solution of which was used in a coalition formatjomc-
ess. The reinforcement learning algorithm is:

Vin(s@) « -a)D4(sa) +alRy,

where the states corresponds to the current coalition
formation problem; the actioa corresponds to taking a
coalition formation plan which is adapted from flan in
the best casey,(s,a) is the old utility value of the best
case whiley, (s a) is the new utility value of best case;
is the learning rate (& a < 1); R,, is the performance
evaluation result on the actual instantiation psscé.e.,
the reward) at time+1. This reward includes the quality of
the coalition formation process and the qualityhef coali-
tion. The learning result will be used in the a¢gebali-
tion case selection action.

Peer-Related Reinforcement L earning

At the end of coalition planning, the coalition fmation
plan for the current problem has been decided. ctiadi-
tion-initiating agent can know which type of peeeats
should be approached for the coalition formatioor. €x-
ample, an emergent task needs high-promptness
agents to reduce coalition instantiation time. tralition
instantiation, the agent will select peer agentsaadition
candidates according to the planned candidate tgpd,
concurrently negotiate with each of them on theo$estb-
tasks in an attempt to form the intended coalitidow-
ever, an agent only has incomplete information aloe
environment and other agents, so the coalitionatiity
agent needs to learn about the dynamic and uncdrtai
havior of peer agents in past coalition formatigtivities
to perceive their characteristics and potentialities as
coalition candidates. We employ peer-related rea#o
ment learning to learn the characteristics of epelbr
agent and the corresponding potential utility tlfointer-
actions between agents.

The potential utility of a peer agent as a coalittandi-
date perceived by an agent is based on the coaperat
relationship between the peer and the agent (SO aat-
soulis 2001), and the peer’'s coalition-derived bérs,
negotiation-derived behaviors, and estimated cépabi
They are recorded in the neighborhood profile. Plae
rameters profiled include: (1) thelpfulnesof the peer to
the agent indicating the satisfaction degree otiests to
the peer, (2) théelpfulnessof the agent to the peer indi-
cating the satisfaction degree of requests fronpter, (3)
therelianceof the agent on the peer in terms of the ratio of

peer



sending requests to the peer among all peershégl-
ance of the peer on the agent in terms of the ratioeof
ceiving requests from the peer among all peers,ttg)
peer’'stardinessdegree indicating the communication de-
lay between the agent and the peer, in terms ofribs-
sage round-trip time (RTT) between agents, (6)pther’'s
hesitation degree indicating how readily the peer is to
agree to a request, in terms of the number of ecile
messages the agent needs to provide to persuageehe
(7) theavailability degree of capability indicating whether
the peer possesses the desired capability to smbke (8)
thereliability degree in coalition formation activities based
on the standard deviations of the peer's behavamd, so
forth. These parameters reflect varieties of ctiarastics

of the peer agent.

After each interaction (negotiation), the ageft up-
dates the potential utility (for future coalitiomrfation
activity) of its peerAj 'S ki characteristicC‘;\J in the fol-
lowing manner:

PU, o (Sat+]) « A-ATPU, , (sat)+BICL(AL+D

where the states corresponds to the current coalition
formation problem; the actioa corresponds to coalition
candidate selectionpy (s at) is the old potential
utiity of CA andpy " “@at+n is the updated oneg
is the Iearniﬁg rate (é’c’}é < 1); and Ck (A,t+1) is the
peer AJ- 's ky, characteristic as measured By. The learn-
ing result will be used in the agent’s coalitiomdalate
selection action. The potential utility of pee‘t‘kj is the
weighted sum of the potential utilities of its cheteristics.
It is computed when agem, selects coalition candidates.
The weight values adapt to the candidate type remént.
With this reinforcement, an agent prefers peer tytmat
have been helpful anmbalition-worthy

The peer-related reinforcement learning in our ioal
formation model can be identified gsnt-behaviorrein-
forcement learning anthdividual-behaviorreinforcement
learning further according to the peer agent’s edéht
characteristics revealed through the interactidhs. joint-
behavior reinforcement learning is to learn abouiear
agent’s social characteristics in joining coalisosuch as
helpfulness degree, reliance degree, reliabilityrele, and
so forth. The individual-behavior reinforcementrkgag is
to learn about a peer agent’s inherent charadteristich
as tardiness degree, hesitation degree, availakiéigree
of capability.

We distinguish the joint-behavior reinforcementriea
ing and individual-behavior reinforcement learning
identify the different roles of different types ctiaracteris-
tics of peer agents in coalition formation. In pipie, the
joint-behavior reinforcement learning is enough docoa-
lition-initiating agent to identify the potentiakility of a

peer agent as coalition candidate based on thecpasgt
eration experience. In the dynamic and uncertairiremn-
ment, however, peer agents’ inherent charactesistiay
change as the time progresses. It will influenee gher's
participation to coalition formation activities. See also
employ individual-behavior reinforcement learnirgy ad-
dress the environmental factors.

Case-Oriented RL vs. Peer-Related RL

The case-oriented reinforcement learning occurghat
coalition evaluation phase and the learning raswpplied
at the coalition planning phase. We apply it irfie toali-
tion formation model as a strategic learning apphoto
facilitate the planning of a coalition, adaptingtte real-
time and environmental requirements. The peereadlat
reinforcement learning occurs at the coalitionangation
phase and the learning result is also appliedeattfalition
instantiation phase. We apply it into the coalitimnma-
tion model as a tactical learning approach to atdrew
to instantiate a coalition formation plan, takingoi ac-
count uncertain and dynamic behaviors of the pgenis.
In the dynamic, uncertain, and noisy environmergped
coalition formation plan of an agent is not guagaqit to
succeed as planned. Thus, a “conceptually good play
not be a “practically good” plan. The continual tieal
learning during coalition formation is necessaryatiress
the change of the environment.

Corresponding to the different occurrences, thee-cas
oriented reinforcement learning and the peer-rdlaésn-
forcement learning are in the off-line reinforcemésarn-
ing scenario and the online scenario respectivélye
case-oriented reinforcement learning can be o#-lbe-
cause it does not directly need agents’ interastidrhe
peer-related reinforcement learning must be orbeeause
it directly needs the interactions between ageffis.com-
bine off-line learning and online learning into orgin-
forcement learning to address the real-time, dynanom-
certain, and noisy environmental factors. Then tgean
learn in both scenarios of without interactions amith
interactions.

In short, the application of case-oriented reinéonent
learning in coalition formation is to meta-learnatiton
formation processes as a strategic learning approac
conduct the actual coalition formation processoftdine
application can reduce the agents’ computationadtsco
spent on learning during coalition formation. Thmpléca-
tion of peer-related reinforcement learning in @aal
formation is to dynamically learn other agents’ &ébr in
the course of continual interactions as a tactqgiroach
to learn how to instantiate the planned coalitiomfation
strategy. The computational costs for this onliearthing
scenario are necessary.



Experiments and Results

We have implemented a multiagent system where each

agent is capable of performing multiple tasks aasl imul-
tiple resources. Here we present our experimendsran
sults to evaluate the performance of our reinforem
learning approach. Particularly, our experimentsew®
investigate the impact of learning on the success of
coalition formation, and on the quality of the dtah
formation process.

We report our experiments on four versions of ouf-m
tiagent design. The first version w&RLPRL in which
both case-oriented reinforcement learning and peated

reinforcement learning are used. The second version
OnlyPRL, used only the peer-related reinforcement learn-

ing. The third versionDnlyCRL, used only case-oriented
reinforcement learning. The fourth versidWoL ear ning,
did not use any learning at all.

In our experiments, there were 9 agents in theegyst
A ~ A, each of which could initiate coalition formation
activities for task fulfillment. We randomly simtéal a
series of 40 tasks (timed to occur at differentesiinfor
each agent. Each task consisted of different skibtand
required different resources. All tasks requiresl digent to
initiate coalitions. We ran the experiments abowtozen
times to obtain the average values used in theviatig
discussions.

Impact of Learning on Coalition Formation Suc-
cess Rate

Figure 3 shows the impact of reinforcement learringan
agent’s success rate in forming coalitions.

60

50 +—

40

30 1

20 A

Success Rate (%)

10 +— -

CRLPRL OnlyPRL OnlyCRL  NoLearning

VariousLearning

Figure 3. Success rates of coalition formationdifferent agent
versions of learning mechanisms

Note that the success rate of each version of genta
learning design was low (<60%). This was due toeting-
ronment the agents operated in. Since the agemts vea-
dling their own tasks which overlapped temporaliyvas
possible for a peer agent not able to entertaiagoee to a
coalition request. Real-time constraints also pdageole.

Each task was timed and thus a coalition formatimtess
that had run too long would be terminated. An adbat
had been too slow in responding or communicationlg/o
cause such delays. From Figure 3, we observe tlwavfo
ing:

The agent design with both case-oriented reinfoergm
learning and peer-related reinforcement learning
(CRLPRL) outperformed all the other versions inrigrof
the success rates of coalition formation. This shohat
our agents were able to learn to improve theirqggaréince
in coalition formation.

With learning, the agents were able to form caaiti
more successfully. This is based on the observatiah
NoLearning yielded the lowest success rate at 35%.

Peer-related reinforcement learning (OnlyPRL) yaeld
better success rate than case-oriented reinfordelesm-
ing (OnlyCRL), 48.75% to 40%. This indicates thhe t
peer-related reinforcement learning played a mayeifs
cant role than the case-oriented reinforcemenniegrin
our environment. In the dynamic, uncertain envirentn
the tactical, online reinforcement learning on pagents’
behavior played a more significant role on the cife-
ness of coalition formation than the strategic;liofé rein-
forcement learning on the utilities of past coatitiforma-
tion cases.

Impact of Learning on Coalition Formation Qual-

ity

Figure 4 shows the impact of learning on the cioalit
formation quality, which is an average of how wle
coalition formation processes were (e.g., in teghghe
number of messages, time spent vs. time expected, e
and the quality of the actual coalition formed (e.g
whether an expert peer contributed to the coalitgn.).

90
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Figure 4. Average coalition formation qualities &bfferent agent
versions of learning mechanisms

In general, we observe similar patterns as in Ediir
CRLPRL outperformed all others with an average igual
of 80%. NoLearning and OnlyCRL were far behind, -hov



ering around 40%. This clearly showed that evenrwhe
there was a good plan (derived from case-basedmeas
ing), the actual coalition formation process or ¢oalition
quality might not be better than that without a dquan
(OnlyPRL, for example) in our environment. In thg-d
namic, uncertain environment, the tactical, onlién-
forcement learning on peer agents’ behavior playetbre
significant role on the efficiency of coalition foation
than the strategic, off-line reinforcement learnimgy the
utilities of past coalition formation cases.

Conclusions

We have described the use of reinforcement learimrey
multi-phase coalition formation model. We investagh
multiple aspects of the reinforcement learning afibn
in multiagent coalition formation. We have condacsev-
eral preliminary experiments and the results hagenb
promising in proving the feasibility of reinforcentdearn-
ing. With reinforcement learning, our agents foroale
tions more effectively and efficiently. Our futunerk will
focus on designing further experiments to testithgact
of reinforcement learning on the effectiveness effi
ciency of coalition formation based on differengoees of
heterogeneity in the agents’ characteristics.

References

Alonso, E., D’Inverno, M., Kudenko, D., Luck, M.na
Noble, J. 2001. Learning in Multi-Agent Systenihe
Knowledge Engineering Reviel$(3):277-284.

Excelente-Toledo, C. B., and Jennings, N. R. 2002.
Learning to Select a Coordination Mechanism.Pimo-
ceedings of the First International Joint Conferenmn
Autonomous Agents and Multi-Agent  Systems
(AAMAS’'2002) 1106-1113, Bologna, Italy.

Haynes, T., and Sen, S. 1996. Learning Cases to Re-
solve Conflicts and Improve Group Behavidnterna-
tional Journal of Human-Computer Studi#8(1):31-49.

Hu, J., and Wellman, M. P. 1998. Online Learning
about Other Agents in a Dynamic Multiagent Systém.
Proceedings of the Second International Conferemte
Autonomous Agent239-246, Minneapolis, MN.

Kaelbling, L.P., Littman, M.L., and Moore, A. W. 26.
Reinforcement Learning: A Surveyournal of Artificial
Intelligence Research:237-285.

Kohri, T., Matsubayashi, K., and Tokoro, M. 19970 A
Adaptive Architecture for Modular Q-Learning. Rro-
ceedings of the Fifteenth International Joint Coefece

on Artificial Intelligence (IJCAI'1997),820-825, Na-
goya, Japan.

Nagayuki, Y., Ishii, S., and Doya, K. 2000. MultgAnt
Reinforcement Learning: An Approach Based on the

Other Agent’s Internal Model. IfProceedings of the
Fourth International Conference on Multi-Agent Sys-
tems,215-221, Kyoto, Japan.

Prasad, M. V. N., and Lesser, V. R. 1997. The Use o
Meta-Level Information in Learning Situation-Specif
Coordination. InProceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence
(IJCAI'1997),640-646, Nagoya, Japan.

Salustowicz, R. P., Wiering, M. A., and Schmidhuyhkr
1998. Learning Team Strategies: Soccer Case Studies
Machine Learning33(2/3):263-282.

Sandholm, T. W. 1999. Distributed Rational Decision
Making. In G. Weiss (Ed.Multiagent Systems: A Mod-
ern Approach to Distributed Artificial Intelligenc241-
250, the MIT Press.

Sandholm, T. W., and Crites, R. H. 1995. Multiagent
Reinforcement Learning in the Iterated Prisoneris D
lemmas.Biosystem87:147-166.

Sandholm, T. W., and Lesser, V. R. 1995. Coalition
Formation amongst Bounded Rational Agents.Pho-
ceedings of the Fourteenth International Joint Gonf
ence on Artificial Intelligence (IJCAI'1995%62-669,
Montreal, Canada.

Sen, S., and Weiss, G. 1999. Learning in Multiagent
Systems. In Weiss, G. (ed.Multiagent Systems: A
Modern Approach to Distributed Artificial Intelligee
259-298, the MIT Press.

Shehory, O., and Kraus, S. 1998. Methods for Takk A
location via Agent Coalition Formation. Artificiahtel-
ligence 101:165-200.

Soh, L.-K. and Li, X. 2003. An Integrated Multi-LelV
Learning Approach to Multiagent Coalition Formation
In Proceedings of the Eighteenth International Joint
Conference on Atrtificial Intelligence (IJCAI'2003),
619-624, Acapulco, Mexico.

Soh, L.-K., and Tsatsoulis, C. 2001. Reflective blidg
ating Agents for Real-Time Multisensor Target Track
ing. In Proceedings of the Seventeenth International
Joint  Conference on Atrtificial Intelligence
(IJCAI'2001),1121-1127, Seattle, WA.

Stone, P., and Veloso, M. 2000. Multiagent Systefs:
Survey from a Machine Learning Perspectieitono-
mous Robotic8(3):345-383.

Sugawara, T., and Lesser, V. 1998. Learning to twer
Coordinated Actions in Cooperative Distributed RProb
lem-Solving  Environments. Machine  Learning
33(2/3):129-153.

Sycara, K. P. 1998. Multiagent Systemdd. Magazine
19(2):79-92.

Tan, M. 1993. Multi-Agent Reinforcement Learning: |
dependent vs. Cooperative Agents. Rnoceedings of
the Tenth International Conference on Machine Learn
ing (ICML'1993),330-337, Amherst, MA.



