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Abstract
We describe an approach for developing explanation
facilities for cognitive architectures based on techniques
drawn from object- and aspect-oriented software
engineering. We examine the use of responsibility-driven
design augmented with scenario-based techniques and class-
responsibility-collaboration (CRC) cards to identify
explanation behaviors for cognitive model elements, and
discuss the explanation benefits derived from encapsulating
model behaviors within aspects. Soar is used an example
cognitive architecture, but the methods and results as
illustrated would apply to any of the other architectures
commonly used to development psychologically plausible
intelligent systems.

Introduction
We are working to create a higher-level language for Soar
with the central objective of providing model developers
with tools to capture explanation content at design and
development time. Part of the project involves studying
what kinds of explanations users of cognitive models ask
of such systems (Councill et al., 2003). For explanation
facility development, we are using software engineering
techniques to drive specification of the explanation content
and behaviors required of different model elements. We are
finding these techniques have broad application to the
design of many aspects of cognitive architectures and
intelligent agent architectures, including human-interface
and model behavior development.

Principles of object-oriented design and programming
suggest a responsibility-driven perspective on the tasks of
decomposition, abstraction, and encapsulation that are
central to the O-O development task. Granular system
components exist because of the responsibilities they
assume (and presumably carry out) and not because of any
structural elements or data content present in the
component, which only exist to serve the responsibilities.
Responsibility-driven design and development (RD3) is
considered a key driver and benefit derived from the
concept of encapsulation, which is paradigmatic in OOP.
An RD3 perspective on system design and development is

a powerful tool to help manage the complexity of large,
distributed, and high-functionality systems. For these
reasons and some others that have emerged from our work,
we conjecture that a responsibility-driven approach is also
an appropriate means to design and build effective
explanation facilities for cognitive models, intelligent
agents, and other knowledge-based systems.

In addition to capturing object definitions and relationships
through RD3, it may be also be desirable to capture
broader aspects of model implementation during the
process of design and development, including model
behaviors and behavior patterns.  We suggest that aspect-
oriented programming techniques (Kiczales et al, 1997)
can be employed to supplement explanations based on
model object systems.  Much interesting model behavior is
not readily objectifiable without the aid of a strictly plan-
based modeling architecture, for example CAST (Yen et al,
2001).  Behaviors such as related actions or behavior
protocols (e.g. attentional or communication behaviors)
may cut across a model’s object system.  For such
behaviors explanations based on strict object-orientation
will be inadequate, thus we include aspect encapsulation
within our general approach to capturing knowledge for
explanations during design and development.

Problem Statement
Agent and cognitive modeling architectures often rely on
distributed, localized units of problem solving structure,
behavior, and knowledge as the basis for higher-order
functionality (Yost & Newell, 1989). This creates problems
for those interested in understanding how and why these
higher-order behaviors come to exist. For example, users of
an agent may need to understand why an agent behaves the
way that it does in order to trust its behavior. Developers
may need to understand how higher-order behavior
emerges in order to duplicate, enhance, or extend it. The
lack of transparency in complex cognitive models means
that interested parties cannot easily comprehend and act to
improve the behaviors they rely upon for their models to
operate effectively. This issue raises important and difficult
questions about how, when emergent, higher order



behavior supervenes on the functionality of lower-level
components, these behaviors can be explained. This issue
raises important and difficult questions about how these
behaviors can be explained when they are emergent and the
higher order behavior supervenes on the functionality of
lower-level components.

Planned-based approaches to explanation (e.g., Cawsey,
1993) suffer a particular brittleness in implementation
because they require identifying the range of explanation
requests that might be posed in model use including
predicting how atomic model elements might interact in
response to novel situations — often we may want
intelligent systems to make use of underlying model
components in new ways unforeseen at development time.
Such dynamic, adaptive behavior is after all emblematic of
intelligent entities. Learning and self-modification of these
structures pose serious problems for this approach.
Explanatory approaches that rely on the existence of
explanation plans are also challenged by the complexity of
keeping an evolving model synchronized with its
explanation plans throughout the development and
maintenance lifecycle.

Responsibility-Driven Design and
Development

The essence of good object-oriented design lies in its
commitment to late binding of implementation details to
requirements, and an early and intermediate focus on the
behaviors needed to realize the capabilities that will meet
stated requirements (Wirfs-Brock & Wilkerson, 1989). One
of the tenets of the object-oriented approach is its ability to
help manage the complexity of large system development.
Explaining the purpose, structure, and behavior of
intelligent systems is correspondingly complex and
requires analogous methods and tools to help expose the
rationale underlying how and why they work the way that
they do.

According to Wirfs-Brock and Wilkerson (1989)
responsibilities of objects consist of either the actions they
carry out or the information they provide. An important
point is that a responsibility is not necessarily realized or
implemented entirely within the object tagged with the
responsibility. The object may carry out its responsibilities
by delegating all or part of the realization to other objects,
systems, data sources, or even humans. This suggests an
approach to explanation based on functional decomposition
and assignment of behaviors to atomic model elements so
that dispersed explanation responsibilities can be handled
locally to the greatest extent possible.

RD3 for Explanation for Explanation
Capabilities

We are taking a responsibility-driven perspective on the
design and development of explanation facilities for
cognitive models and other intelligent systems. In the case
of Soar, this means we are identifying the explanation
responsibilities assigned to each of the elements a
developer might define in the course of creating a useful
model. Because explanation is a user and use-centric
capability (even if the user is another agent or model) it
makes sense to analyze model and architecture components
explanation responsibilities in terms of the scenarios
describing the who, what, how, where, when, and why of an
explanation request scenario (Haynes, 2001).

A decomposition approach to analysis of explanation
responsibilities requires answering a number of questions
about the model architecture including:

1. What are the architecture and model primitives?
2. What are the explanatory responsibilities and

potential of each primitive?
3. What are the benefits and costs of realizing the

explanatory potential of each primitive?

The purpose of this analysis is to assign specific, realizable
explanation responsibilities and corresponding capabilities
to the different elements of the target architecture and
model structure. The analysis results in a ranking of the
explanation benefit and cost from each primitive, which is
useful to help prioritize the development of explanation
capabilities.

A significant challenge to this decomposition-based,
responsibility-driven approach is to somehow eliminate
explanation dependencies between model elements. An
element’s explanatory capacity should be autonomous and
context sensitive, able to account for the existence of
events and other objects in its environment. The challenge,
therefore, is determining how the different architecture and
model elements can encapsulate explanatory capabilities
based only on the inputs, outputs, and internal functionality
of the object. As shown in the example that follows
however, resolving this issue is a challenge in a cognitive
architecture such as Soar. Explaining emergent, higher-
level behaviors representative of Newell’s (1990)
knowledge level requires augmenting the model with
heuristic devices that describe the intention underlying
their creation. Though in a sense these devices share the
functional rational that motivate explanation plans, which
as discussed earlier introduce brittleness to explanation
capabilities, the approach we are taking combines the use
of elemental explanation responsibilities with behavioral
aspects that help link these elements to the higher-level
behaviors that are designed to enact. The figure below
shows how behavioral aspects overlay the PSCM. The



scenario and instantiated CRC cards that follow describe
how elements and aspects interact to produce more
comprehensive and context-rich explanations of the
model’s runtime behaviors.

Figure 1 - Behavioral Aspect
Explanation Overlay
In Figure 1 above, each G corresponds to a state within a
goal stack, and each rectangle represents a unit action (an
operator) carried out by a model.  As shown, groupings of
related actions (behavioral aspects) may cut across the
object model of the system.

A Scenario for RD3 Explanation
We are using scenarios as the primary analysis approach to
help identify the elements of the architecture and model (in
this case, a Soar model) responsible for contributing to
explanations of model structure and behavior. Scenario-
based design techniques have been proposed as an effective
input to object-oriented modeling of class responsibilities
and as a technique for linking object models to user
activities (Rosson, 1999). Scenarios ground responsibility
analysis in concrete situations where an explanation is
requested and analyzing the elements the architecture of a
model that would be required to provide explanatory
content. This involves drilling down into the model and
through to the architecture to find where the model
behavior can be explained. The purpose of this exercise is
to enumerate a complete list of those elements of the
architecture and model that may be relevant to explanation
and then to develop a priori hypotheses regarding the most
important explanatory elements.

Below we provide an example scenario showing how the
approach is being applied on a Soar explanation
architecture project.

A student working with D-Tank observes what she
considers to be anomalous behavior in her model. The
model was being pursued by an enemy tank when it
suddenly executed three 90 degree turns before fleeing
along an escape path. She wants to know about the
decision cycles leading up the maneuver and why the
model performed what seems to be an inefficient set of
turns before fleeing.

Among the other explanation-seeking questions considered
reasonable in situations such as this are:

What is the structure of the Soar model?
What knowledge is in the model?
How does the model represent and deviate from the real
world?
What is in the model’s world?
What is in the model’s ‘head’?
How does the model carry out behaviors to solve
problems in the simulation?

The basic sequence on the problem-space level that caused
this observed behavior consisted of the following:

State1 � IO Link (perceive enemy tank input) � Operator
(attend) � Operator (turn) �  Operator (turn) � Operator
(turn) � Operator (flee)

Responsibility Analysis
Explaining how the model enacts behaviors to solve
problems in the simulated world first requires tracking the
flow of input-consideration-transformation-output that
takes place in response to state changes and other events.
Tracking, however, is only a prerequisite to then extracting
detailed information about the entities involved in this
flow, including how and why the entity is involved.

One of the features that would help the student understand
the model and its behavior within the simulation would be
to give them a ‘state of the world’ display. A
comprehensive display with positions of all the agents in
the game at the time the student was hit, along with a
replay that can go back in time and play forward at
different replay speeds. This display could be improved as
an explanation device by allowing the user to filter
irrelevant data, and could be further improved by providing
annotations on the different model elements appearing on
the display. VISTA (Taylor, et al., 2002), is a project
moving in this direction, as well as a tool that we are using
to support the creation of our environment. This trace
explanation, however, only provides the information
needed for the student to actively infer and construct her
own explanation of why the observed behavior actually
occurred.

Explaining how the model represents the world requires
understanding the nature of the sense data, or perceptual
input, both actual and potential and how the model



interprets this sense data. In Soar this problem is somewhat
complicated by the fact that there are as many as three
worlds to consider: the ‘real’ world, the simulated world,
and the model's representation of the world. This is a
critical aspect of responsibility modeling because it focuses
on the design decisions made by the model developer as he
or she understood the actions required from the model
element in response to input/output or other state changes.
It is further complicated by the need to account for other
minds in the simulation, in other words, perceptions by a
given model of what is inside the ‘heads’ of other models
participating in the simulation.

Explaining the structure of the model requires identifying
and describing all of the model’s problem spaces, where a
problem space consists of a set of operators and state
representations for moving an initial state to a goal state.
An impasse gives rise to a problem space where the initial
state is characterized by a lack of knowledge and the goal
state is achieved by acquiring the needed knowledge.
However, an impasse is behavioral not structural. By
definition there is no structure to provide the missing
knowledge. Showing the problem space structure may
therefore consist of enumerating the operators and
impasses characterizing the space. The structure of the
problem space is dynamic and therefore cannot be reliably
determined at load time without an orienting structure to
map the intended behaviors of the problem space to the
underlying model elements designed to realize them.

Explaining what knowledge is in the model requires
enumerating and explaining the different operators in the
model and how they are organized (e.g., grouped into
operator categories). Knowledge is represented as state
augmentations; the model rules, the conditions under which
they apply, how they are organized, and the
states/operators to which they apply.

One of the issues with trace-type explanations is that it
requires that the person requesting the explanation
understand the meaning of the model element identifiers
(names) chosen by the model developer. Also, while
iterative calls to the next state or operator in the trace stack
provides access to the context of the current model
behavior, much of this information is model control
knowledge that does not contribute to understanding
system behavior relative to the domain and/or task
(Clancey, 1983).

Model Elements and CRC Cards
We are using the CRC card technique (Beck and
Cunningham, 1989) to capture the results of explanation
responsibility scenario analysis. CRC cards are a simple
tool for responsibility-driven, object-oriented design used
for identifying classes (C), their responsibilities (CR), and
their collaborating classes (CRC). In our case we substitute
identified Soar architecture and model elements for classes,
responsibilities are focused on the different types of

explanatory content we might expect an element to
provide, and identified collaborators remind us of the
model elements that interact with the element under
analysis to produce higher level model behaviors.

The Soar architecture and its models have a fairly large
number of unique elements that potentially contribute to
explanation of higher-order behaviors. Because of the
potential cost of considering all of the elements in a given
Soar model, it is important to be pragmatic at this stage
focusing on those model elements considered prima facie
as playing and important role in providing explanations.
Using an explanation request scenario as the basis for
analysis, we consider for each of these model elements the
explanation responsibilities and collaborators. An initial
list of these elements appears in Table 1 below. It is similar
to, but larger than, the ontology included in the VISTA
toolkit (Taylor, Jones, Goldstein, & Frederiksen, 2002).

Table 1 - Soar Model Elements

PSCM Level Symbol Level
Problem Space Rule
Decision Cycle Elaboration Rule
Goal Stack Operator Proposal Rule
State Operator Application

Rule
Operator Operator Selection Rule
Operator Preference Attribute
Impasse Value

Identifier
Events Memory Structure
Operator proposal Working Memory

Element
Operator selection IO Elements
Elaboration Soar Commands
Operator application Preferences
Impasse File

Other (PSCM) Other (Symbol)
IO Link (input) Goal
IO Link (output) Production

Match Set

In our case we substitute identified Soar architecture and
model elements for classes. Responsibilities are focused on
the different types of explanatory content we might expect
an element to provide. Identified collaborators remind us of
the model elements that interact with the element under
analysis to produce higher level model behaviors.

General concepts that have emerged from the responsibility
analysis include the following responsibilities for all
higher-level (i.e., PSCM) Soar components except where



variability is noted in the CRC cards below. Each
component should have the ability to:

1. Identify itself
2. Enumerate its components
3. Provide a definition of itself
4. Provide its purpose as the developer understood it
5. Identify its relations and dependencies within an

aspect
6. Describe how it is designed to work
7. Describe how it is designed to be used
8. Identify and describe key design constraints that

impacted the component’s final form

A specific example of CRC card analysis for the Soar
model elements participating in the D_Tank understanding
scenario is provided below (summarized somewhat for
simplicity).

Table 2 - Example CRC Cards

Class State1

Explanation
Responsibilities

Provide a layout of the current model’s
decision environment and representation of
the world and problem-solving context
Identify itself (top state)
List its knowledge of the world at the time
the event occurred (the working memory
elements in the top state)
List its behavioral aspects as the set of
possible behaviors that were anticipated in
the problem space (possible operators)

Explanation
Collaborators

All operators that can exist within the state
(e.g. turn, attend)
All elaborations that can occur within the
state
All real and potential impasses (from
superstates and to substates)
Behavioral Aspects (e.g. attention, flee
behavior)

Notes & Issues States may be used to group related
operators and elaborations, but this is not
required.  Behavior aspects may encapsulate
or cut across states to provide additional
grouping.  Impasses provide partial
information regarding the purpose of each
state other than the top state.

Class IO Link (input)
Explanation
Responsibilities

Identifies all percepts available to the model
(an enemy tank, for instance)

Explanation
Collaborators

Attend operator (or Attention behavior)

Notes & Issues An operator is required to explicitly perceive
information on the input link.  If an
important object is not attended the

oversight may be a useful component of an
explanation.

Class Operator (attend)
Explanation
Responsibilities

Identifies the percepts from the input link
that are recognized and remembered by the
model, and identifies it’s behavioral aspect
context if applicable

Explanation
Collaborators

IO Link (input)
Attention behavior
State1

Notes & Issues If an attend operator is not selected while
there is information on the input link, the
information is not perceived by the model.

Class Operator (turn)
Explanation
Responsibilities

Identifies the direction of the turn as well as
it’s behavioral aspect context if applicable

Explanation
Collaborators

Preference (helps choose the Operator)
Selection Rule (chooses the operator among
set of acceptable ops)
Elaboration (augments the Operator or the
context)
State (may provide some behavior context
for the operator)

Notes & Issues The Turn operator can operate within many
behavioral contexts including wandering,
attacking, fleeing, etc.  Multi-purpose
operators such as this particularly benefit
from aspect encapsulation.

Class IO Link (output)
Explanation
Responsibilities

What actions the model performs or
attempts to perform on the simulation
environment

Explanation
Collaborators

Action operators (e.g. turn)

Notes & Issues An operator is required to create an action
on the output link

The elements in the table suggest that it is possible for an
explanation of a Soar model to be created from the
components, using their explanation responsibilities and
how they work with their collaborators.

Discussion
Explanations are service responsibilities in a model or
other intelligent systems. In other words, providing an
explanation is not central to the functionality desired of the
agent, unless the desired functionality explicitly includes
tutoring or advice giving. Service responsibilities present
difficulties to cost benefit analysis because they are not
easily linked to the critical development path; a model can
be delivered to meet functionality requirements without



including unstated service responsibilities such as
explanation or model maintainability.

Certain desirable attributes of well-engineered systems, for
example, encapsulation, are only facilitated by the use of
better tools, not ensured by them (Wirfs-Brock &
Wilkerson, 1989). Ensuring that a design exhibits
encapsulation or ensuring that a design is explainable
requires a commitment to this goal on the part of model
developers and their sponsors. This commitment generally
obtains from recognition of the benefits accrued from
achieving identified objectives. Providing intelligent
systems with explanation facilities entails additional
development overhead (time and costs) and so must be
justified by reference to the benefits gained. These benefits
potentially include longer-term time and cost savings;
model quality, comprehensibility, maintainability,
extendibility, and re-targetability; and enhanced model
usability, broadly defined. Further research and
development is required however to show that these
benefits are actualized in model development and use.

Encapsulated explanation functionality is derived from the
knowledge of model object inputs, outputs, and
transformations, which are most clear at the time the model
is being created or maintained. This suggests that
populating the model element explanation content ‘slots’
should be encouraged or mandated as part of the model
development task. Important questions remain regarding
the cost-benefit ratio of efforts to include explanation
facilities as a standard component in cognitive models. In
particular, the costs of additional explanation knowledge
engineering must be justified with respect to the usability
benefits derived from their implementation. One way to
help leverage these efforts for additional benefit may be to
use explanation knowledge engineering to support core
knowledge base analysis and development efforts. Using
explanation analysis to reflect on the evolving form of the
core knowledge base may play a role in helping to extend,
refine, and evaluate the knowledge driving the model’s
behavior. After all, a model that is difficult or impossible to
explain may be so because of some repairable lack of
coherence rather than simply its innate complexity.

One of the objectives of this research is to identify the
analytic “sweet spot” that minimizes the role of
explanation plans, in form of behavioral aspects, while
maximizing the contribution of atomic model elements to
explanation functionality. Behavioral aspects play an
important context-setting role in explaining the different
runtime scenarios considered by a model developer.
However, over-reliance on these plans introduces an
inflexible and burdensome task into the model
development and maintenance lifecycle – that of
synchronizing programmed model behaviors with potential
explanation capabilities.

Conclusion
Developing explanation facilities for cognitive models,
intelligent agents, and other knowledge-based systems is a
hard problem requiring techniques and tools to act as
focusing principles for the design process. Our experiences
developing explanation facilities for Soar suggest that the
responsibility-driven approach using scenarios as the
fundamental unit of analysis with CRC cards as the
analysis product may be an effective means of meeting
these challenges.
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