
Toward an Abstract Machine Architecture for Intelligence

Randolph M. Jones and Robert E. Wray

Soar Technology, Inc.

3600 Green Court, Suite 600

Ann Arbor, MI 48105

rjones@soartech.com, wray@soartech.com

Abstract

Our research defines a uniform framework for analyzing a
representative sampling of existing architectures and
frameworks for knowledge-intensive intelligent agents. We
use this framework to build abstract definitions of
representational and functional components that are common
across architectures. Defining these abstract components
essentially allows us to describe a target abstract machine
architecture for knowledge-intensive intelligent systems. This
abstract layer should provide a useful tool for comparing and
evaluating architectures, as well as for building higher-level
languages and tools that reduce the expense of developing
knowledge-intensive agents.

Architectures for Intelligent Systems

Our current work follows a strong analogy between
intelligent agent architectures and the system engineering
of “standard” architectures (e.g., von Neumann machines)
for computation. The basic insight is that cognitive
architectures today provide various instantiations of
“virtual machines” for intelligent systems. Like standard
computing architectures, they provide fundamental
computational pieces that are generally fine-grained,
comprehensive, and (in most cases) efficient. Additionally,
cognitive architectures, like their von Neumann
counterparts, generally provide a low-level programming
language that allows direct access to architectural
components. These programming languages are akin to
assembly languages for other computing platforms,
although the computational models they support are
generally quite distinct from their more standard and
procedural counterparts, which we outline in this paper.
 These low-level programming languages have sufficed
for intelligent agent research programs, as well as deployed
models of “light” agents that do not contain copious
amount of code. However, there has been increasing
interest in building very large, knowledge-intensive
intelligent agent systems (eg., Jones et al. 1999). The
difficulty in attempting to build and maintain such systems
in “assembly language” should be painfully obvious. If we

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

are to continue building such systems with even a
modicum of frugality, efficiency, and robustness, we must
engineer higher-level languages for intelligent agent
systems, as our colleagues in software engineering have
done for non-agent programming.
 However, in the design of such high-level languages, we
should also pay attention to the lessons of software
engineering. Although the high-level languages should be
powerful and programmer-friendly, they also need to map
well to the underlying architecture. Standard computing
architectures share a number of similarities, and the
development of the Java framework has demonstrated the
utility of abstracting across the implementation differences
in various computers to define a virtual machine, or an
abstract machine layer that provides a uniform interface to
various particular computing platforms.
 This paper outlines initial work on a similar abstract
machine layer for intelligent agent architectures, and
ultimately their high-level languages and development
tools. We have approached this task by first analyzing a
sampling of agent architectures to identify the particular
architectural components that define them and to find
abstractions across the various particular implementations
of functional components. We have also undertaken this
analysis by developing a uniform view of how intelligent
agent architectures bring various types of knowledge to
bear on decision making and behavior. Our goal is to
formalize a set of abstract components that can be used to
define an abstract machine layer for intelligent systems.

Focus on cognitive architectures

For the purposes of this research, we are interested in the
development of knowledge-intensive agents. We use this
term primarily in order to distinguish this type of agent
from the popular notion of light agents (which are often
developed and used in the multi-agent systems
community). One defining (and desirable) characteristic of
light agents is that each individual agent is fairly simple,
having very specific, narrow goals and constrained
interactive abilities. Examples of light agents include
brokers and matchmakers for E-commerce applications.
Light agents solve complex problems through the emergent
interactions of large groups of the simple agents (the

formation of a market via the interaction of a group of light
agents).
 However, in many cases individual computer programs
must address complex reasoning tasks on their own,
requiring agents that encode a lot of knowledge about a
problem, and have a broad range of capabilities for solving
them. Problems most appropriate for knowledge-intensive
agents are characterized by a complex variety of interacting
goals and a comparatively large number of modes of
interaction with the environment. In response to this level
of complexity, knowledge-intensive agents generally
require explicit representations of beliefs, goals, and
intentions, but these must further be structured into
sophisticated relational (and often hierarchical), structured
representations of situational awareness. In addition, such
agents generally must be capable of mixed levels of
commitment and interaction, generating appropriate
combinations of purposeful and reactive behaviors.
 The performance and reasoning requirements of these
problems drive the types of primitive computational
elements that are best suited for the development of such
agents. Cognitive architectures reflect explicit attempts to
support the required primitive computational elements for
knowledge-intensive agents. For example, human behavior
models that perform in complex and dynamic environments
require autonomy and flexibility in execution. Existing
cognitive architectures directly provide and support non-
linear control constructs that aim to address such
capabilities. Such control constructs include productions
(Newell 1973) and other efficient, relational pattern
matchers; rapid context switching for interruptibility and
pursuit of simultaneous goals; and varying amounts of
parallelism in pattern matching, reasoning, and behavior.
Other important computational elements supported by
cognitive architectures include structured relational
representations of situational awareness; automated belief
maintenance; least-commitment planning and execution
(Weld 1994), and architectural support for learning.
 Least commitment is a fundamental requirement for
autonomous, flexible, adaptable behavior, but results in
sharp contrasts with traditional software engineering. Least
commitment refers to the postponement of a decision until
the decision actually needs to be acted upon. Least
commitment allows agents to make context-sensitive
decisions about behavior and resource allocations, and also
to be flexible about adapting those decisions in the face of
a changing environment or assumptions. Weld contrasts
least commitment mechanisms, in which control decisions
are made at every decision opportunity, with traditional
control logic, in which control decisions are hard-coded
when the program is designed and compiled. These
differences are illustrated in Figure 1.
 For an agent to be autonomous and robust, it must be
able to make decisions based on the context in which it
finds itself. Therefore, unlike traditional software
engineering, the role of the knowledge engineer is not to
program “good” decisions, but to give the agent the ability
to make decisions in its context. Design-time and compile-
time decisions that limit run-time flexibility must be

minimized. Least-commitment requires conflict-resolution
solutions that are mediated in the context, rather than a
fixed procedure, such as the rule selection techniques used
in typical rule-based systems (Forgy 1981). Less
obviously, least commitment also requires weak
encapsulation. Strong typing and encapsulation result
from design-time decisions about the appropriate objects
for an agent to consider when making decisions. In the
long run, the agent must have the flexibility to decide for
itself which of its knowledge is applicable to a local
decision.

Figure 1: Least commitment in comparison to

traditional control logic.

 Cognitive architectures also generally provide explicit
mechanisms for relating parallel processing (for example, at
the level of memory retrieval, pattern matching, or analysis
of courses of action) to serial processing (where behavior
systems must ultimately generate a serial set of
commitments to action). In essence, cognitive
architectures define processes to support knowledge-driven
commitments to courses of action, mixed with appropriate
reactive context switching when necessary.
 Knowledge in cognitive architectures normally is
encoded associatively, as opposed to sequentially or
functionally, as is standard practice in procedural
computing architectures. Each cognitive architecture
includes some mechanism for associative retrieval of
potential courses of action, and then a conflict resolution
mechanism for choosing between the candidates. We argue
(and research into cognitive architectures seems to
confirm) that associatively represented knowledge is a
fundamental key to capturing the types of mixed-initiative
commitment to action that are expected of artifacts with
human-like intelligence.
 A final reason to focus on cognitive architectures is that
they generally attempt to provide at least some account of
all aspects of intelligent behavior, and provide explicit
structures and processes for modeling them. This breadth
particularly includes learning and long-term adaptation to
new environments. Learning will be a key part of future
development of sophisticated human behavior models.
Much additional research is needed before learning is used
in robustly engineered, knowledge-intensive agents.
However, learning is likely a requirement for autonomous,
flexible systems, and successful efforts to design abstract
frameworks for intelligent agents must address the
challenges of learning early in design.

 Traditional

Control Logic

Least

Commitment

Take best
action for

context

Decisions
local and

static

Decision
Process

Fixed
Start

Building high-level abstractions

We are investigating existing cognitive architectures in
order to identify properties, representations, and
mechanisms that they share and to create abstractions of
these shared computational features. The abstraction
process will help rationalize and unify work by researchers
active in intelligent agents, cognitive architectures, and
human behavior representation. By focusing on general
categories of functions and representations within the
scope of knowledge intensive, situated agents, we can
explicitly identify and study much of what has been learned
about computational intelligence.
 Abstraction will also enable us to specify abstract
architectural components that are independent of the
details of any particular cognitive architecture. This in turn
should support improved levels of abstraction in the
languages and tools used to build intelligent agent models.
Currently, model implementation must be performed by a
knowledge engineer who is intimately familiar with the
finest details of the implementation architecture, similar to
a software engineer using assembly language to interface
directly to a hardware architecture. Additionally, once a
model has been implemented, it will necessarily include
many design features that closely tie it to the
implementation architecture, which makes transfer of the
model to other applications, architectures, or environments
more difficult.
 This problem is familiar; it has been the subject of
research in software engineering. One software-
engineering solution to this problem has been to define a
virtual machine layer that allows computer languages (such
as Java) to support high-level program design that
functions across low-level architectures. We hope to apply
this notion of a virtual machine to cognitive architectures,
so that programs developed in a high-level cognitive
architecture language can be applied across architectures in
the development and application of knowledge-intensive
intelligent systems.
 Thus far, we have identified and enumerated a number of
functional patterns and development patterns across
existing cognitive architectures, as well as some additional
intelligent system frameworks. Our most thorough analysis
focuses on patterns within the Soar (Laird and Rosenbloom
1995; Laird, Newell, and Rosenbloom 1987; Newell 1990)
and ACT-R (Anderson and Lebiere 1998) architectures, but
our work has also been informed by patterns in other
frameworks for intelligent systems, such as belief-desire-
intention (BDI) (Bratman 1987; Wooldridge 2000)
planning systems (Erol, Hendler, and Nau 1994; Weld,
Anderson, and Smith 1998), and the GOMS psychological
modeling paradigm (Card, Moran, and Newell 1983).

Commitment and reconsideration

To perform our analysis, we have developed a general
framework for analyzing the processes of cognitive
architectures. We call the framework CCRU, for

Consideration, Commitment, Reconsideration, and
Unconsideration. Our framework generalizes the notions
of commitment (Wooldridge 2000) and reconsideration
(Schutt and Wooldridge 2001) in intelligent agents. Each
behavioral function within a model can be viewed as the
commitment to or reconsideration of a particular type of
knowledge structure. This guiding principle allows us to
create abstract processes for each type of knowledge
structure, and then further to categorize various
implementations of processing by formally defining the
commitment and reconsideration procedures provided by
each cognitive architecture. Analysis of commitment and
reconsideration procedures is important for the least-
commitment paradigm that identifies knowledge-intensive
agents. Functional or sequential formalisms violate the
notion of least commitment because they represent
decisions made outside of the performance context.
Instead we uniformly formalize the commitment and
reconsideration strategies for each representational
structure that makes up an agent’s knowledge base. In
addition, these dual levels of analysis provide exactly the
information we would need to design an abstract machine
layer for intelligent agent architectures, as well as higher-
level agent languages (Crossman et al. 2004) and various
knowledge compilers that could translate models into the
virtual machine (based around the various implementations
of commitment and reconsideration).

Figure 2: Unifying view of memory operations via

consider, commit, reconsider, unconsider, and store.

 CCRU defines four basic processes that address the ways
knowledge structures are handled within an intelligent
agent model. Most of our work to date has focused on
knowledge representations that support decision-making in
an agent’s dynamic memory. However, we believe this
analysis will extend to various types of long-term
knowledge, as well. The four basic processes correspond
to transformation between three knowledge-structure
states, as shown in Figure 2. Our labels for these three
knowledge states are latent, retrieved, and activated. The
following four processes govern the various transitions that
can change a single knowledge structure’s state.
 Consideration is a retrieval process that instantiates a
specific knowledge structure from an outside stimulus or

R A L

Reconsider

Consider Commit

Unconsider

L Latent

R Retrieved

A Activated

long-term memory. Here “knowledge structure” is defined
as any mental structure that an agent can reason about, such
as representations of real world objects, goals, and
transforms. For example, after a factual knowledge
structure has been considered (and becomes retrieved), it is
available for reasoning, but is not yet part of the agent’s
beliefs (i.e., it is not activated). The process of
consideration moves a particular knowledge structure from
the Latent state to the Retrieved state. Consideration is a
transformation process, but implies an underlying creation
process for constructing memory representations.
Architectures implement the details of the creation process
in different ways, but share the transformational concept of
retrieving a knowledge structure for further reasoning.
Examples of consideration include an agent considering a
new decision-making goal, or considering whether to
believe a new interpretation of the environment.
 Commitment is the process of committing to a
particular knowledge structure. After a knowledge
structure is committed, we say it is activated. Once
activated, it becomes a part of the current decision-making
context and can be used as a basis for making further
decisions. This process moves a particular knowledge
structure from the Retrieved state to the Activated state.
Commitment does not change the contents of memory, but
rather the state of what is in memory, as driven by a
deliberate decision-making process. For example, after
retrieving a number of potential goals to pursue, an agent
may commit to a particular goal after deliberately
determining that it is the goal most likely to direct
productive action in a particular situation. In general, an
agent will not reactively commit to a goal without
reasoning over it first. For example, an agent generally
should not commit to a goal based purely on an external
stimulus, as that can lead to a lack of coherence in
behavior.
 Reconsideration is the process of removing a
knowledge structure from the current decision-making
context. The agent can still reason about a deactivated
knowledge structure, because the structure is still retrieved,
but it cannot be used as a precondition for further decision
making. Reconsideration moves a knowledge structure
from the Activated state back to the Retrieved state.
Examples of reconsideration include an agent deactivating
a goal when it discovers the goal is currently unachievable,
or discounting a belief in a particular interpretation of the
environment after encountering some disconfirming
evidence. Reconsideration is also important for coherence
in behavior. When an agent is interrupted, it may
deactivate some previously active goal. However, once the
interruption is complete, the agent may want to commit
again to the previous goal. Because that goal remains
retrieved (it has not been unconsidered), the context
associated with the previous goal remains available and
does not require repeated instantiation or elaboration.
 In our initial formulation (as presented here), we do not
make a distinction between newly considered objects and
those that had been previously activated, but have been
“demoted” to the considered state. However, in

implementing an initial compiler for a language that
expresses CCRU, we have found that distinguishing
between newly considered and reconsidered objects is
sometimes necessary. This may lead, in the future, to some
elaboration of the CCRU states presented in Figure 2.
 Unconsideration is the process of removing a
knowledge structure entirely from the portion of memory
that is directly accessible to decision making.
Unconsideration moves a particular knowledge structure
from the Retrieved state to the Latent state.
Unconsideration, similar to consideration, is a
transformation process that implies an underlying memory
management process for removing memory representations
from the current context. Examples of unconsideration
include an agent removing an achieved or unachievable
goal, or deleting a belief that is not consistent with other,
more recently activated beliefs.

Review of Knowledge-Intensive Agent

Frameworks

The CCRU framework provides a general and uniform
capability to analyze the various knowledge components
implemented by a particular cognitive architecture or
abstract machine layer. In the context of this framework,
we have analyzed a number of knowledge components in
some existing architectures and agent frameworks. The
point of this exercise is to construct empirically a set of
abstract representations and processes that appear to be
commonly found in systems that exploit (or at least
support) knowledge-intensive reasoning. By collecting
instances of various types of components, and casting them
into the uniform CCRU framework, we will begin to define
the design of an abstract machine layer consisting of a
comprehensive set of integrated components.
 Below we review three mature frameworks for intelligent
agents that represent three different theoretical traditions
(philosophical and logical, functional, and psychological).
We introduce the primary representational constructs and
processes directly supported by each and map them to
CCRU.

Beliefs-Desires-Intentions (BDI)

The Beliefs-Desires-Intentions (BDI) framework is a logic-
based methodology for building competent agents
(Georgeff and Lansky 1987; Rao and Georgeff 1995; Schutt
and Wooldridge 2001). A basic assumption in BDI is that
intelligent agents ought to be rational in a formal sense,
meaning rationality (as well as other properties) can be
proven logically. In BDI, actions arise from internal
constructs called intentions. An intelligent agent cannot
make decisions about intentions until it has at least some
representation of its environment and situation. Given a
particular set of beliefs, there may be many different
situations that the agent might consider desirable. Given
limited resources, however, the agent can often only act on
some subset of these desires, so the agent selects a subset,

called intentions, to pursue. A BDI agent’s actions must be
logically consistent with its combination of beliefs and
goals. This property is not generally true of all frameworks
(particularly when they are used for psychological models).
We will mention examples from implemented
architectures, but our primary consideration of BDI is
based on the general framework as presented by
Wooldridge (2000).

GOMS

GOMS (Goals, Operators, Methods, and Selections) is a
methodology based in psychology and human-computer
interaction (Card, Moran, and Newell 1983). GOMS
formalizes many details of high-level human reasoning and
interaction. GOMS is particularly interesting because
knowledge-intensive agents are often used to simulate
human behavior. In addition, because implemented
cognitive architectures in general are getting faster (John,
Vera, and Newell 1994), they will increasingly compete
with AI architectures as platforms for agent development.
 GOMS systems explicitly encode hierarchical task
decompositions, starting with a top-level task goal, plus a
number of methods, or plans, for achieving various types of
goals and subgoals. Each goal’s plan specifies a series of
actions (called operators) invoking subgoals or primitive
actions to complete the goal. Selection rules provide
conditional logic for choosing between plans based on the
agent’s current set of beliefs. Like BDI, GOMS is a high-
level framework, realized in a number of individual
implementations.

Soar

Soar has roots in cognitive psychology and computer
science, but it is primarily a functional approach to
encoding intelligent behavior {Laird, 1987 #1}. A strong
focus of Soar research is to identify a minimal but sufficient
set of mechanisms for producing intelligent behavior.
These goals have resulted in uniform representations of
beliefs and knowledge, fixed mechanisms for learning and
intention selection, and methods for integrating and
interleaving all agent reasoning.
 Like BDI, Soar’s principles are based in part on assumed
high-level constraints on intelligent behavior. Foremost
among these are the problem space hypothesis (Newell
1980a) and the physical symbol systems hypothesis
(Newell 1980b). Problem spaces modularize long-term
knowledge so that it can be brought to bear in a goal-
directed series of discrete steps. The physical symbol-
systems hypothesis argues that any entity that exhibits
intelligence can be viewed as the physical realization of a
formal symbol-processing system. The problem space
hypothesis relies on an assumption of rationality, similar to
BDI. In many Soar agent systems, problem spaces
implement hierarchical task representations, where each
portion of the hierarchy represents a different problem
space, although problem spaces can also support other
types of context switching. The physical symbol systems

hypothesis led to Soar’s commitment to uniform
representations of knowledge and beliefs.
 While Soar imposes strong constraints on fundamental
aspects of intelligence, it does not impose functionally
inspired high-level constraints (in the spirit of BDI’s use of
logic, or GOMS’ use of hierarchical goal decomposition).
Thus, Soar is a lower-level framework for reasoning than
BDI and GOMS. Either BDI principles or GOMS
principles can be followed when using Soar as the
implementation architecture.

ANALYSIS OF HEAVY AGENT

FRAMEWORKS

Each of these frameworks provides a coherent view of
agency and gives explicit attention to specific
representations and processes for intelligent agents. They
also reflect different points of emphasis, arising in part
from the theoretical traditions that produced them.
However, from the point of view of an implemented agent
system developed within any of these frameworks, the
designer has to make many more decisions about agent
construction than provided by each framework’s core
principles, essentially working at an “assembly language”
level instead of a “high language” level.
 Consider this group of frameworks together. None give
first-class attention to the union of necessary
representations and processes. In any agent of sufficient
complexity and intelligence, each of these high-level
features must be addressed.
 From a software engineering perspective, an abstract
machine for intelligent agents should provide a set of
general, reusable elements that transfer from one agent
application to another. However, to maximize reuse, any
representational element or process that is useful in most
agent applications should be addressed in the framework.
This philosophy is guiding our development of the
definition of an abstract machine architecture. Certainly,
the union of BDI, GOMS, and Soar will not provide all
possible first-level design principles; however, they
provide a significant starting point, and define a
methodology we will use to incorporate elements from
additional agent frameworks.
 Table 1 lists the union of the base-level representations
from BDI, GOMS, and Soar, unified by functional roles.
The representations are ordered to suggest the basic
information flow from an external world into agent
reasoning and then back out. The “representation
language” column specifies each framework’s substrate for
the base-level representational element. Each
representation also requires a decision point in the
reasoning cycle, where an agent must choose from a set of
alternatives. We use the CCRU formalism to specify the
process an agent uses to assert some instance of the base-
level representation. In Table 1, the “commitment”
column identifies the general process used to select among
alternatives and “reconsider” to indicate the process of
determining whether a commitment should be withdrawn.

CCRU allows us to classify all of the processes that operate
on the base-level representational components and to see
relationships between different approaches. For example,
all the frameworks use an explicit deliberation process to
commit to goals, although the reconsideration process for
goals is quite different. BDI uses decision theory, Soar,
reason maintenance, and GOMS does not specify a
reconsideration process, suggesting that goals must be

reconsidered within the context of the basic reasoning
machinery. These points of similarity and difference
illustrate how an abstract machine architecture could be
developed, and also some of the challenges in
implementing agent programs developed in the virtual
machine language on the architectural platforms.

Table 1. Agent framework comparisons. Black items are specific solutions provided by the framework.

Grey items are general support provided by the framework. No entry means the framework does not

explicitly address the element.

 BaseBaseBaseBase----levellevellevellevel

RepreRepreRepreRepresentationsentationsentationsentation
Representation Representation Representation Representation

LanguageLanguageLanguageLanguage CommitmentCommitmentCommitmentCommitment ReconsiderationReconsiderationReconsiderationReconsideration

 BDI Input language

InputsInputsInputsInputs GOMS Input language

 Soar Working memory

 BDI Beliefs Logical inference Belief revision

Justified Beliefs Justified Beliefs Justified Beliefs Justified Beliefs GOMS Working memory

Match-based

assertion

 Soar Working memory

Matched-based

assertion Reason maintenance

 BDI Beliefs Plan language Plan language

 Assumptions Assumptions Assumptions Assumptions GOMS Working memory Operators Operators

 Soar Working memory

Deliberation/Operato

rs Operators

 BDI Desires Logic Logic

DesiresDesiresDesiresDesires GOMS

 Soar

Proposed

operators Preferences Preferences

 BDI Intentions Deliberation

Soundness/Decision

Theory

Active GoalsActive GoalsActive GoalsActive Goals GOMS Goals Operators

 Soar Beliefs & Impasses Deliberation Reason maintenance

 BDI Plans Plan selection Soundness

PlansPlansPlansPlans GOMS Methods Selection

 Soar Interleaving

 BDI Plan language Atomic actions

ActionsActionsActionsActions GOMS Operators Operators

 Soar

Primitive

Operators Deliberation Reason maintenance

 BDI

OutputsOutputsOutputsOutputs GOMS Plan language Plan language

 Soar Working memory Conditional operators

Conclusion

We have described our initial efforts to define a set of
abstract functional components that describe the
representations and processes common across a variety of
architectures and frameworks for knowledge-intensive
intelligent agents. We have collected and analyzed these
components by defining a uniform framework, which we
call CCRU, for characterizing how intelligent agent
systems bring each of their various types of knowledge to
bear on decision-making processes.
 By defining these abstract components, we hope to
provide a middle abstract machine layer between particular
cognitive architectures and agent frameworks (which
already exist) and new high-level languages and tools for
the development of knowledge-intensive agents (which are
in demand). Such an abstract machine definition should
guide the construction of new languages, allowing them to
provide generality, power, and expressiveness, while
maintaining a connection to the underlying functional
components required by knowledge-intensive agents.
 This research can also be of benefit to the study of
cognitive architectures in their own right. Even if our
abstract machine definition is not used for the development
of high-level languages, it makes clear that there is well
defined level of abstraction from which intelligent agent
architectures can be viewed to be quite similar to each
other. This level of abstraction can provide use with a
common reference point and language for comparing
architectures, evaluating them, and developing new
architectures.

References

Anderson, J. R. and Lebiere, C. 1998. Atomic Components
of Thought. Hillsdale, NJ: Lawrence Erlbaum.
Bratman, M. E. 1987. Intentions, plans, and practical
reason. Cambridge, MA: Harvard University Press.
Card, S., Moran, T., and Newell, A. 1983. The psychology
of human-computer interaction. Hillsdale, NJ: Lawrence
Erlbaum.
Crossman, J., Wray, R. E, Jones, R. M., and Lebiere, C.
2004. A high level symbolic representation for behavior
modeling. In K. Gluck (Ed.) Proceedings of the 2004
Conference on Behavioral Representation in Modeling and
Simulation. Arlington, VA.
Erol, K., J. Hendler, N, et al. (1994). HTN planning:
Complexity and expressivity. 12th National Conference on
Artificial Intelligence.
Forgy, C. L. 1981. OPS4 user’s manual. Technical report
no. CMU-CS-81-135. Carnegie Mellon University
Computer Science Department.
Georgeff, M. P., and Lansky, A. L. 1987. Reactive
reasoning and planning. Proceedings of the Sixth National
Conference on Artificial Intelligence, 677-682. Menlo
Park, CA: AAAI Press.

John, B. E., Vera, A. H., and Newell, A. 1994. Toward
real-time GOMS: A model of expert behavior in a highly
interactive task. Behavior and Information Technology
13(4): 255-267.
Jones, R. M., Laird, J. E., Nielsen, P. E. at al. 1999.
Automated Intelligent Pilots for Combat Flight Simulation.
AI Magazine. 20(1): 27-42.
Laird, J. E., Newell, A., and Rosenbloom, P. S. 1987. Soar:
An architecture for general intelligence. Artificial
Intelligence 33(1): 1-64.
Laird, J. E., and Rosenbloom, P. S. 1995. The evolution of
the Soar cognitive architecture. In T. Mitchell (Ed.) Mind
Matters. Hillsdale, NJ: Lawrence Erlbaum.
Newell, A. (1973). Production Systems: Models of Control
Structures. Visual Information Processing. W. Chase. New
York, Academic Press.
Newell, A. 1980a. Reasoning, problem solving, and
decision processes: The problem space as a fundamental
category. In R. Nickerson (Ed.) Attention and Performance
VIII. Hillsdael, NJ: Lawrence Erlbaum.
Newell, A. 1980b. Physical symbol systems. Cognitive
Science 4:135-183.
Newell, A. 1990. Unified theories of cognition. Cambridge,
MA: Harvard University Press.
Rao, A., and Georgeff, M. 1995, BDI agents: From theory
to practice. Proceedings of the First Intl. Conference on
Multiagent Systems. San Francisco.
Schutt, M. C., and Wooldridge, M. 2001. Principles of
intention reconsideration. Proceedings of the Fifth
International Conference on Autonomous Agents, 209-216.
New York: ACM Press
Weld, D. (1994). An Introduction to Least Commitment
Planning. AI Magazine 15(4): 27-61.
Weld, D. S., C. R. Anderson, et al. 1998. Extending
Graphplan to Handle Uncertainty & Sensing Actions.
Fifteenth National Conference on Artificial Intelligence,
Madison, Wisconsin.
Wooldridge, M. (2000). Reasoning about Rational Agents.
Cambridge, MA: MIT Press..

