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Abstract 

Our research defines a uniform framework for analyzing a 
representative sampling of existing architectures and 
frameworks for knowledge-intensive intelligent agents.  We 
use this framework to build abstract definitions of 
representational and functional components that are common 
across architectures.  Defining these abstract components 
essentially allows us to describe a target abstract machine 
architecture for knowledge-intensive intelligent systems.  This 
abstract layer should provide a useful tool for comparing and 
evaluating architectures, as well as for building higher-level 
languages and tools that reduce the expense of developing 
knowledge-intensive agents. 

Architectures for Intelligent Systems   

Our current work follows a strong analogy between 
intelligent agent architectures and the system engineering 
of “standard” architectures (e.g., von Neumann machines) 
for computation.  The basic insight is that cognitive 
architectures today provide various instantiations of 
“virtual machines” for intelligent systems.  Like standard 
computing architectures, they provide fundamental 
computational pieces that are generally fine-grained, 
comprehensive, and (in most cases) efficient.  Additionally, 
cognitive architectures, like their von Neumann 
counterparts, generally provide a low-level programming 
language that allows direct access to architectural 
components.  These programming languages are akin to 
assembly languages for other computing platforms, 
although the computational models they support are 
generally quite distinct from their more standard and 
procedural counterparts, which we outline in this paper. 
 These low-level programming languages have sufficed 
for intelligent agent research programs, as well as deployed 
models of “light” agents that do not contain copious 
amount of code.  However, there has been increasing 
interest in building very large, knowledge-intensive 
intelligent agent systems (eg., Jones et al. 1999).  The 
difficulty in attempting to build and maintain such systems 
in “assembly language” should be painfully obvious.  If we 
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are to continue building such systems with even a 
modicum of frugality, efficiency, and robustness, we must 
engineer higher-level languages for intelligent agent 
systems, as our colleagues in software engineering have 
done for non-agent programming. 
 However, in the design of such high-level languages, we 
should also pay attention to the lessons of software 
engineering.  Although the high-level languages should be 
powerful and programmer-friendly, they also need to map 
well to the underlying architecture.  Standard computing 
architectures share a number of similarities, and the 
development of the Java framework has demonstrated the 
utility of abstracting across the implementation differences 
in various computers to define a virtual machine, or an 
abstract machine layer that provides a uniform interface to 
various particular computing platforms. 
 This paper outlines initial work on a similar abstract 
machine layer for intelligent agent architectures, and 
ultimately their high-level languages and development 
tools.  We have approached this task by first analyzing a 
sampling of agent architectures to identify the particular 
architectural components that define them and to find 
abstractions across the various particular implementations 
of functional components.  We have also undertaken this 
analysis by developing a uniform view of how intelligent 
agent architectures bring various types of knowledge to 
bear on decision making and behavior.  Our goal is to 
formalize a set of abstract components that can be used to 
define an abstract machine layer for intelligent systems.  

Focus on cognitive architectures 

For the purposes of this research, we are interested in the 
development of knowledge-intensive agents.  We use this 
term primarily in order to distinguish this type of agent 
from the popular notion of light agents (which are often 
developed and used in the multi-agent systems 
community).  One defining (and desirable) characteristic of 
light agents is that each individual agent is fairly simple, 
having very specific, narrow goals and constrained 
interactive abilities.  Examples of light agents include 
brokers and matchmakers for E-commerce applications. 
Light agents solve complex problems through the emergent 
interactions of large groups of the simple agents (the 



formation of a market via the interaction of a group of light 
agents).   
 However, in many cases individual computer programs 
must address complex reasoning tasks on their own, 
requiring agents that encode a lot of knowledge about a 
problem, and have a broad range of capabilities for solving 
them.  Problems most appropriate for knowledge-intensive 
agents are characterized by a complex variety of interacting 
goals and a comparatively large number of modes of 
interaction with the environment.  In response to this level 
of complexity, knowledge-intensive agents generally 
require explicit representations of beliefs, goals, and 
intentions, but these must further be structured into 
sophisticated relational (and often hierarchical), structured 
representations of situational awareness.  In addition, such 
agents generally must be capable of mixed levels of 
commitment and interaction, generating appropriate 
combinations of purposeful and reactive behaviors.   
 The performance and reasoning requirements of these 
problems drive the types of primitive computational 
elements that are best suited for the development of such 
agents.  Cognitive architectures reflect explicit attempts to 
support the required primitive computational elements for 
knowledge-intensive agents.  For example, human behavior 
models that perform in complex and dynamic environments 
require autonomy and flexibility in execution.  Existing 
cognitive architectures directly provide and support non-
linear control constructs that aim to address such 
capabilities.  Such control constructs include productions 
(Newell 1973) and other efficient, relational pattern 
matchers; rapid context switching for interruptibility and 
pursuit of simultaneous goals; and varying amounts of 
parallelism in pattern matching, reasoning, and behavior.  
Other important computational elements supported by 
cognitive architectures include structured relational 
representations of situational awareness; automated belief 
maintenance; least-commitment planning and execution 
(Weld 1994), and architectural support for learning. 
  Least commitment is a fundamental requirement for 
autonomous, flexible, adaptable behavior, but results in 
sharp contrasts with traditional software engineering.  Least 
commitment refers to the postponement of a decision until 
the decision actually needs to be acted upon.  Least 
commitment allows agents to make context-sensitive 
decisions about behavior and resource allocations, and also 
to be flexible about adapting those decisions in the face of 
a changing environment or assumptions.  Weld contrasts 
least commitment mechanisms, in which control decisions 
are made at every decision opportunity, with traditional 
control logic, in which control decisions are hard-coded 
when the program is designed and compiled.  These 
differences are illustrated in Figure 1. 
 For an agent to be autonomous and robust, it must be 
able to make decisions based on the context in which it 
finds itself.  Therefore, unlike traditional software 
engineering, the role of the knowledge engineer is not to 
program “good” decisions, but to give the agent the ability 
to make decisions in its context.  Design-time and compile-
time decisions that limit run-time flexibility must be 

minimized.  Least-commitment requires conflict-resolution 
solutions that are mediated in the context, rather than a 
fixed procedure, such as the rule selection techniques used 
in typical rule-based systems (Forgy 1981).  Less 
obviously, least commitment also requires weak 
encapsulation.  Strong typing and encapsulation result 
from design-time decisions about the appropriate objects 
for an agent to consider when making decisions.  In the 
long run, the agent must have the flexibility to decide for 
itself which of its knowledge is applicable to a local 
decision. 

 

 

Figure 1:  Least commitment in comparison to 

traditional control logic. 

 Cognitive architectures also generally provide explicit 
mechanisms for relating parallel processing (for example, at 
the level of memory retrieval, pattern matching, or analysis 
of courses of action) to serial processing (where behavior 
systems must ultimately generate a serial set of 
commitments to action).  In essence, cognitive 
architectures define processes to support knowledge-driven 
commitments to courses of action, mixed with appropriate 
reactive context switching when necessary. 
 Knowledge in cognitive architectures normally is 
encoded associatively, as opposed to sequentially or 
functionally, as is standard practice in procedural 
computing architectures.  Each cognitive architecture 
includes some mechanism for associative retrieval of 
potential courses of action, and then a conflict resolution 
mechanism for choosing between the candidates. We argue 
(and research into cognitive architectures seems to 
confirm) that associatively represented knowledge is a 
fundamental key to capturing the types of mixed-initiative 
commitment to action that are expected of artifacts with 
human-like intelligence. 
 A final reason to focus on cognitive architectures is that 
they generally attempt to provide at least some account of 
all aspects of intelligent behavior, and provide explicit 
structures and processes for modeling them.  This breadth 
particularly includes learning and long-term adaptation to 
new environments.   Learning will be a key part of future 
development of sophisticated human behavior models.  
Much additional research is needed before learning is used 
in robustly engineered, knowledge-intensive agents.  
However, learning is likely a requirement for autonomous, 
flexible systems, and successful efforts to design abstract 
frameworks for intelligent agents must address the 
challenges of learning early in design.    
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Building high-level abstractions 

We are investigating existing cognitive architectures in 
order to identify properties, representations, and 
mechanisms that they share and to create abstractions of 
these shared computational features. The abstraction 
process will help rationalize and unify work by researchers 
active in intelligent agents, cognitive architectures, and 
human behavior representation.  By focusing on general 
categories of functions and representations within the 
scope of knowledge intensive, situated agents, we can 
explicitly identify and study much of what has been learned 
about computational intelligence. 
 Abstraction will also enable us to specify abstract 
architectural components that are independent of the 
details of any particular cognitive architecture.  This in turn 
should support improved levels of abstraction in the 
languages and tools used to build intelligent agent models.  
Currently, model implementation must be performed by a 
knowledge engineer who is intimately familiar with the 
finest details of the implementation architecture, similar to 
a software engineer using assembly language to interface 
directly to a hardware architecture. Additionally, once a 
model has been implemented, it will necessarily include 
many design features that closely tie it to the 
implementation architecture, which makes transfer of the 
model to other applications, architectures, or environments 
more difficult.   
 This problem is familiar; it has been the subject of 
research in software engineering.  One software-
engineering solution to this problem has been to define a 
virtual machine layer that allows computer languages (such 
as Java) to support high-level program design that 
functions across low-level architectures.  We hope to apply 
this notion of a virtual machine to cognitive architectures, 
so that programs developed in a high-level cognitive 
architecture language can be applied across architectures in 
the development and application of knowledge-intensive 
intelligent systems. 
 Thus far, we have identified and enumerated a number of 
functional patterns and development patterns across 
existing cognitive architectures, as well as some additional 
intelligent system frameworks.  Our most thorough analysis 
focuses on patterns within the Soar (Laird and Rosenbloom 
1995; Laird, Newell, and Rosenbloom 1987; Newell 1990) 
and ACT-R (Anderson and Lebiere 1998) architectures, but 
our work has also been informed by patterns in other 
frameworks for intelligent systems, such as belief-desire-
intention (BDI) (Bratman 1987; Wooldridge 2000) 
planning systems (Erol, Hendler, and Nau 1994; Weld, 
Anderson, and Smith 1998), and the GOMS psychological 
modeling paradigm (Card, Moran, and Newell 1983).   

Commitment and reconsideration 

To perform our analysis, we have developed a general 
framework for analyzing the processes of cognitive 
architectures.  We call the framework CCRU, for 

Consideration, Commitment, Reconsideration, and 
Unconsideration.  Our framework generalizes the notions 
of commitment (Wooldridge 2000) and reconsideration 
(Schutt and Wooldridge 2001) in intelligent agents.  Each 
behavioral function within a model can be viewed as the 
commitment to or reconsideration of a particular type of 
knowledge structure.  This guiding principle allows us to 
create abstract processes for each type of knowledge 
structure, and then further to categorize various 
implementations of processing by formally defining the 
commitment and reconsideration procedures provided by 
each cognitive architecture.  Analysis of commitment and 
reconsideration procedures is important for the least-
commitment paradigm that identifies knowledge-intensive 
agents.  Functional or sequential formalisms violate the 
notion of least commitment because they represent 
decisions made outside of the performance context.  
Instead we uniformly formalize the commitment and 
reconsideration strategies for each representational 
structure that makes up an agent’s knowledge base.  In 
addition, these dual levels of analysis provide exactly the 
information we would need to design an abstract machine 
layer for intelligent agent architectures, as well as higher-
level agent languages (Crossman et al. 2004) and various 
knowledge compilers that could translate models into the 
virtual machine (based around the various implementations 
of commitment and reconsideration). 

 

 

Figure 2: Unifying view of memory operations via 

consider, commit, reconsider, unconsider, and store. 

 CCRU defines four basic processes that address the ways 
knowledge structures are handled within an intelligent 
agent model.  Most of our work to date has focused on 
knowledge representations that support decision-making in 
an agent’s dynamic memory.  However, we believe this 
analysis will extend to various types of long-term 
knowledge, as well.  The four basic processes correspond 
to transformation between three knowledge-structure 
states, as shown in Figure 2.  Our labels for these three 
knowledge states are latent, retrieved, and activated.  The 
following four processes govern the various transitions that 
can change a single knowledge structure’s state. 
 Consideration is a retrieval process that instantiates a 
specific knowledge structure from an outside stimulus or 
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long-term memory.  Here “knowledge structure” is defined 
as any mental structure that an agent can reason about, such 
as representations of real world objects, goals, and 
transforms. For example, after a factual knowledge 
structure has been considered (and becomes retrieved), it is 
available for reasoning, but is not yet part of the agent’s 
beliefs (i.e., it is not activated).  The process of 
consideration moves a particular knowledge structure from 
the Latent state to the Retrieved state.  Consideration is a 
transformation process, but implies an underlying creation 
process for constructing memory representations.  
Architectures implement the details of the creation process 
in different ways, but share the transformational concept of 
retrieving a knowledge structure for further reasoning.  
Examples of consideration include an agent considering a 
new decision-making goal, or considering whether to 
believe a new interpretation of the environment. 
 Commitment is the process of committing to a 
particular knowledge structure.  After a knowledge 
structure is committed, we say it is activated.  Once 
activated, it becomes a part of the current decision-making 
context and can be used as a basis for making further 
decisions.  This process moves a particular knowledge 
structure from the Retrieved state to the Activated state.  
Commitment does not change the contents of memory, but 
rather the state of what is in memory, as driven by a 
deliberate decision-making process.  For example, after 
retrieving a number of potential goals to pursue, an agent 
may commit to a particular goal after deliberately 
determining that it is the goal most likely to direct 
productive action in a particular situation.  In general, an 
agent will not reactively commit to a goal without 
reasoning over it first. For example, an agent generally 
should not commit to a goal based purely on an external 
stimulus, as that can lead to a lack of coherence in 
behavior. 
 Reconsideration is the process of removing a 
knowledge structure from the current decision-making 
context.  The agent can still reason about a deactivated 
knowledge structure, because the structure is still retrieved, 
but it cannot be used as a precondition for further decision 
making.  Reconsideration moves a knowledge structure 
from the Activated state back to the Retrieved state. 
Examples of reconsideration include an agent deactivating 
a goal when it discovers the goal is currently unachievable, 
or discounting a belief in a particular interpretation of the 
environment after encountering some disconfirming 
evidence.  Reconsideration is also important for coherence 
in behavior.  When an agent is interrupted, it may 
deactivate some previously active goal.  However, once the 
interruption is complete, the agent may want to commit 
again to the previous goal.  Because that goal remains 
retrieved (it has not been unconsidered), the context 
associated with the previous goal remains available and 
does not require repeated instantiation or elaboration. 
 In our initial formulation (as presented here), we do not 
make a distinction between newly considered objects and 
those that had been previously activated, but have been 
“demoted” to the considered state.  However, in 

implementing an initial compiler for a language that 
expresses CCRU, we have found that distinguishing 
between newly considered and reconsidered objects is 
sometimes necessary.  This may lead, in the future, to some 
elaboration of the CCRU states presented in Figure 2. 
 Unconsideration is the process of removing a 
knowledge structure entirely from the portion of memory 
that is directly accessible to decision making. 
Unconsideration moves a particular knowledge structure 
from the Retrieved state to the Latent state.  
Unconsideration, similar to consideration, is a 
transformation process that implies an underlying memory 
management process for removing memory representations 
from the current context.   Examples of unconsideration 
include an agent removing an achieved or unachievable 
goal, or deleting a belief that is not consistent with other, 
more recently activated beliefs. 

Review of Knowledge-Intensive Agent 

Frameworks 

The CCRU framework provides a general and uniform 
capability to analyze the various knowledge components 
implemented by a particular cognitive architecture or 
abstract machine layer.  In the context of this framework, 
we have analyzed a number of knowledge components in 
some existing architectures and agent frameworks.  The 
point of this exercise is to construct empirically a set of 
abstract representations and processes that appear to be 
commonly found in systems that exploit (or at least 
support) knowledge-intensive reasoning.  By collecting 
instances of various types of components, and casting them 
into the uniform CCRU framework, we will begin to define 
the design of an abstract machine layer consisting of a 
comprehensive set of integrated components. 
 Below we review three mature frameworks for intelligent 
agents that represent three different theoretical traditions 
(philosophical and logical, functional, and psychological).  
We introduce the primary representational constructs and 
processes directly supported by each and map them to 
CCRU. 

Beliefs-Desires-Intentions (BDI) 

The Beliefs-Desires-Intentions (BDI) framework is a logic-
based methodology for building competent agents 
(Georgeff and Lansky 1987; Rao and Georgeff 1995; Schutt 
and Wooldridge 2001).  A basic assumption in BDI is that 
intelligent agents ought to be rational in a formal sense, 
meaning rationality (as well as other properties) can be 
proven logically.   In BDI, actions arise from internal 
constructs called intentions.  An intelligent agent cannot 
make decisions about intentions until it has at least some 
representation of its environment and situation.  Given a 
particular set of beliefs, there may be many different 
situations that the agent might consider desirable.  Given 
limited resources, however, the agent can often only act on 
some subset of these desires, so the agent selects a subset, 



called intentions, to pursue. A BDI agent’s actions must be 
logically consistent with its combination of beliefs and 
goals.  This property is not generally true of all frameworks 
(particularly when they are used for psychological models).  
We will mention examples from implemented 
architectures, but our primary consideration of BDI is 
based on the general framework as presented by 
Wooldridge (2000). 

GOMS 

GOMS (Goals, Operators, Methods, and Selections) is a 
methodology based in psychology and human-computer 
interaction (Card, Moran, and Newell 1983).  GOMS 
formalizes many details of high-level human reasoning and 
interaction.  GOMS is particularly interesting because 
knowledge-intensive agents are often used to simulate 
human behavior. In addition, because implemented 
cognitive architectures in general are getting faster (John, 
Vera, and Newell 1994), they will increasingly compete 
with AI architectures as platforms for agent development.   
 GOMS systems explicitly encode hierarchical task 
decompositions, starting with a top-level task goal, plus a 
number of methods, or plans, for achieving various types of 
goals and subgoals.  Each goal’s plan specifies a series of 
actions (called operators) invoking subgoals or primitive 
actions to complete the goal.  Selection rules provide 
conditional logic for choosing between plans based on the 
agent’s current set of beliefs.  Like BDI, GOMS is a high-
level framework, realized in a number of individual 
implementations.  

Soar 

Soar has roots in cognitive psychology and computer 
science, but it is primarily a functional approach to 
encoding intelligent behavior {Laird, 1987 #1}.  A strong 
focus of Soar research is to identify a minimal but sufficient 
set of mechanisms for producing intelligent behavior.  
These goals have resulted in uniform representations of 
beliefs and knowledge, fixed mechanisms for learning and 
intention selection, and methods for integrating and 
interleaving all agent reasoning. 
 Like BDI, Soar’s principles are based in part on assumed 
high-level constraints on intelligent behavior.  Foremost 
among these are the problem space hypothesis (Newell 
1980a) and the physical symbol systems hypothesis 
(Newell 1980b).  Problem spaces modularize long-term 
knowledge so that it can be brought to bear in a goal-
directed series of discrete steps.  The physical symbol-
systems hypothesis argues that any entity that exhibits 
intelligence can be viewed as the physical realization of a 
formal symbol-processing system.  The problem space 
hypothesis relies on an assumption of rationality, similar to 
BDI.  In many Soar agent systems, problem spaces 
implement hierarchical task representations, where each 
portion of the hierarchy represents a different problem 
space, although problem spaces can also support other 
types of context switching.  The physical symbol systems 

hypothesis led to Soar’s commitment to uniform 
representations of knowledge and beliefs. 
 While Soar imposes strong constraints on fundamental 
aspects of intelligence, it does not impose functionally 
inspired high-level constraints (in the spirit of BDI’s use of 
logic, or GOMS’ use of hierarchical goal decomposition).  
Thus, Soar is a lower-level framework for reasoning than 
BDI and GOMS.  Either BDI principles or GOMS 
principles can be followed when using Soar as the 
implementation architecture. 

ANALYSIS OF HEAVY AGENT 

FRAMEWORKS 

Each of these frameworks provides a coherent view of 
agency and gives explicit attention to specific 
representations and processes for intelligent agents.  They 
also reflect different points of emphasis, arising in part 
from the theoretical traditions that produced them.  
However, from the point of view of an implemented agent 
system developed within any of these frameworks, the 
designer has to make many more decisions about agent 
construction than provided by each framework’s core 
principles, essentially working at an “assembly language” 
level instead of a “high language” level.   
 Consider this group of frameworks together.  None give 
first-class attention to the union of necessary 
representations and processes.  In any agent of sufficient 
complexity and intelligence, each of these high-level 
features must be addressed.   
 From a software engineering perspective, an abstract 
machine for intelligent agents should provide a set of 
general, reusable elements that transfer from one agent 
application to another.  However, to maximize reuse, any 
representational element or process that is useful in most 
agent applications should be addressed in the framework.  
This philosophy is guiding our development of the 
definition of an abstract machine architecture.  Certainly, 
the union of BDI, GOMS, and Soar will not provide all 
possible first-level design principles; however, they 
provide a significant starting point, and define a 
methodology we will use to incorporate elements from 
additional agent frameworks. 
 Table 1 lists the union of the base-level representations 
from BDI, GOMS, and Soar, unified by functional roles. 
The representations are ordered to suggest the basic 
information flow from an external world into agent 
reasoning and then back out.  The “representation 
language” column specifies each framework’s substrate for 
the base-level representational element.  Each 
representation also requires a decision point in the 
reasoning cycle, where an agent must choose from a set of 
alternatives.  We use the CCRU formalism to specify the 
process an agent uses to assert some instance of the base-
level representation.    In Table 1, the “commitment” 
column identifies the general process used to select among 
alternatives and “reconsider” to indicate the process of 
determining whether a commitment should be withdrawn.  



CCRU allows us to classify all of the processes that operate 
on the base-level representational components and to see 
relationships between different approaches.  For example, 
all the frameworks use an explicit deliberation process to 
commit to goals, although the reconsideration process for 
goals is quite different.  BDI uses decision theory, Soar, 
reason maintenance, and GOMS does not specify a 
reconsideration process, suggesting that goals must be 

reconsidered within the context of the basic reasoning 
machinery.  These points of similarity and difference 
illustrate how an abstract machine architecture could be 
developed, and also some of the challenges in 
implementing agent programs developed in the virtual 
machine language on the architectural platforms. 
 

Table 1.  Agent framework comparisons.  Black items are specific solutions provided by the framework.  

Grey items are general support provided by the framework.  No entry means the framework does not 

explicitly address the element. 

 BaseBaseBaseBase----levellevellevellevel    

RepreRepreRepreRepresentationsentationsentationsentation      
Representation Representation Representation Representation 

LanguageLanguageLanguageLanguage    CommitmentCommitmentCommitmentCommitment    ReconsiderationReconsiderationReconsiderationReconsideration    

 BDI Input language   

InputsInputsInputsInputs    GOMS Input language   

  Soar Working memory   

 BDI Beliefs Logical inference Belief revision 

Justified Beliefs Justified Beliefs Justified Beliefs Justified Beliefs GOMS Working memory 

Match-based 

assertion  

  Soar Working memory 

Matched-based 

assertion Reason maintenance 

 BDI Beliefs Plan language Plan language 

 Assumptions Assumptions Assumptions Assumptions    GOMS Working memory Operators Operators 

  Soar Working memory 

Deliberation/Operato

rs Operators 

 BDI Desires Logic Logic 

DesiresDesiresDesiresDesires    GOMS    

  Soar 

Proposed 

operators Preferences Preferences 

 BDI Intentions Deliberation 

Soundness/Decision 

Theory 

Active GoalsActive GoalsActive GoalsActive Goals    GOMS Goals Operators  

  Soar Beliefs & Impasses Deliberation Reason maintenance 

 BDI Plans Plan selection Soundness 

PlansPlansPlansPlans    GOMS Methods Selection   

  Soar     Interleaving 

 BDI Plan language Atomic actions  

ActionsActionsActionsActions    GOMS Operators Operators  

  Soar 

Primitive 

Operators Deliberation Reason maintenance 

 BDI    

OutputsOutputsOutputsOutputs    GOMS Plan language Plan language  

    Soar Working memory Conditional operators   

     



Conclusion 

We have described our initial efforts to define a set of 
abstract functional components that describe the 
representations and processes common across a variety of 
architectures and frameworks for knowledge-intensive 
intelligent agents.  We have collected and analyzed these 
components by defining a uniform framework, which we 
call CCRU, for characterizing how intelligent agent 
systems bring each of their various types of knowledge to 
bear on decision-making processes. 
 By defining these abstract components, we hope to 
provide a middle abstract machine layer between particular 
cognitive architectures and agent frameworks (which 
already exist) and new high-level languages and tools for 
the development of knowledge-intensive agents (which are 
in demand).  Such an abstract machine definition should 
guide the construction of new languages, allowing them to 
provide generality, power, and expressiveness, while 
maintaining a connection to the underlying functional 
components required by knowledge-intensive agents. 
 This research can also be of benefit to the study of 
cognitive architectures in their own right.  Even if our 
abstract machine definition is not used for the development 
of high-level languages, it makes clear that there is well 
defined level of abstraction from which intelligent agent 
architectures can be viewed to be quite similar to each 
other.  This level of abstraction can provide use with a 
common reference point and language for comparing 
architectures, evaluating them, and developing new 
architectures. 
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