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Abstract

Most agent frameworks can be readily characterized into one
of two groups. On the one hand, there are frameworks de-
signed to have well-defined formal semantics, enabling for-
mal reasoning about agents and their behavior. On the other
hand, there are frameworks targeted at developing agent sys-
tems that can be deployed as practical applications interacting
in highly dynamic real-world environments. These frame-
works have tended to sacrifice formal grounding for the abil-
ity to tackle real-world problems.

An ideal agent system should combine the sophisticated rep-
resentations and control of the more practical systems with
principled semantics that enable reasoning about system be-
havior. In this paper, we discuss a number of both formal
and practical requirements that must be met to satisfy the de-
mands of large-scale applications. We also briefly describe
work on a new BDI agent framework that aims to bridge the
gap between formal and practical agent frameworks. This
system, called SPARK (the SRI Procedural Agent Realiza-
tion Kit), is currently being used as the agent infrastructure
for a personal assistant system for a manager in an office en-
vironment.

Introduction

Numerous agent frameworks have been published in the lit-
erature in recent years. These frameworks fall into two
groups with distinctive characteristics.

The first group consists of formal agent frameworks that
provide elegant, semantically grounded models of agent be-
havior (e.g., AgentSpeak(L) (Rao 1996), Golog/ConGolog
(Giacomo, Lesperance, & Levesque 2000), and 3APL (Hin-
driks et al. 1998)). The semantic underpinnings and ele-
gance of these models enable formal reasoning about current
and potential agent activity to ensure that the agent meets
appropriate criteria for correctness and well-behavedness.
These frameworks were designed primarily to have well-
defined formal properties and do not scale well for large ap-
plications that need to integrate with and control other sys-
tems. Applications of these frameworks have generally been
to test problems that illustrate features of the design, rather
than to real-world problems.

The second group consists of agent frameworks that have
been designed to support demanding applications, such as

PRS (Ingrand, Georgeff, & Rao 1992), PRS-Lite (Myers
1996), JAM (Huber 1999), RAPS (Firby 1989), dMARS
(d’Inverno et al. 1997), and JACK (Busetta er al. 1999).
These frameworks are necessarily more practical in nature,
generally providing much more expressiveness in encoding
and controlling agent behavior to meet the requirements of
their motivating applications. This increased sophistication,
however, has generally come at the cost of formal ground-
ing, with the systems taking on the character of general-
purpose programming environments that are not amenable
to formal analysis. For example, the JACK Agent Language
is an extension of Java that incorporates agent-oriented con-
cepts, and it comes with a suite of tools for developing and
deploying “commercial-grade” multiagent systems. How-
ever, since JACK is an extension of Java, if you want to
reason about and synthesize JACK agents’ plans, you would
need to be able to reason about and construct Java programs.

Our background lies primarily with agent frameworks
in the second category. However, our efforts to deploy
such frameworks in challenging applications (e.g., real-time
tracking (Garvey & Myers 1993), mobile robots (Konolige
et al. 1997; Myers 1996), crisis action planning (Wilkins et
al. 1995), intelligence gathering (Myers & Morley 2001),
air operations (Myers 1999)) has made clear to us the need
to be able to support formal reasoning about both the agent’s
knowledge and its execution state. These capabilities are es-
sential for system validation, effective awareness of the cur-
rent situation, and the ability to project into the future. Thus,
an ideal agent system should combine the sophisticated rep-
resentations and control of the more practical systems with
principled semantics that enable reasoning about system be-
havior.

In this paper, we describe key formal and practical ca-
pabilities that we feel are essential for building successful,
large-scale agent systems. While balancing formal and prac-
tical requirements can be a challenge, we believe that it is
possible to build improved agent frameworks that address
both concerns. To that end, we describe a new agent frame-
work called SPARK (Morley & Myers 2004) that tries to
address pragmatic issues related to scalability while building
on a strong semantic foundation that can facilitate a variety
of advanced reasoning capabilities.



Formal Capabilities

Our work on large-scale applications has made clear the
need for a well-defined semantics for an agent’s knowledge
and execution model to enable various forms of reasoning
about the agent and its capabilities. Two key challenges that
motivate the need for such reasoning are knowledge model-
ing and self-awareness.

Knowledge Modeling

The success of an agent is linked closely to the ade-
quacy of its knowledge for responding to stimuli (events,
tasks) within its operating environment. Although numer-
ous paradigms for representing such activity knowledge
have been proposed, most of the practical agent frameworks
have adopted a procedural representation of knowledge (In-
grand, Georgeff, & Rao 1992; Myers 1996; Huber 1999;
Firby 1989; d’Inverno et al. 1997).

Formulating procedural representations of activity knowl-
edge presents a significant modeling challenge. Current
practice relies almost exclusively on handcrafting procedu-
ral knowledge — a practice that is both time-consuming and
error-prone. The use of a formally grounded representa-
tion framework can help to address the knowledge modeling
problem by enabling three types of reasoning: verification
and validation, automated procedure synthesis, and learn-
ing and adaptation.

Verification and Validation Verification and validation
methods can be applied to help identify shortcomings
in handcrafted knowledge, including problems of cor-
rectness (e.g., Does the agent have the ability to attain a
designated goal?) and well-behavedness (e.g., Will the
agent avoid nonrecoverable failure states? Will it avoid
undesirable behaviors such as thrashing and deadlock?).

There is a rich body of work on verification and validation
methods that can be applied to these problems. However,
much of that work has assumed simpler control constructs
than are found in current agent representations of knowl-
edge. Additionally, more research is needed to address
issues such as world-state dynamics and complex tempo-
ral interactions.

Automated Procedure Synthesis The rich body of work
on generative planning provides a starting point for au-
tomating aspects of the procedure modeling problem. In
particular, recent work has started to address more prac-
tical models that incorporate concepts such as metric re-
sources and time, which occur commonly in many appli-
cations (Smith, Frank, & Jonsson 2000). While there is
hope that procedural knowledge could be synthesized au-
tomatically from declarative models of primitive activi-
ties using plan synthesis technologies, we note that the
complexity of typical agent procedures is well beyond the
state of the art in planning. Still, automated plan synthesis
methods could play a role in helping to formulate limited
forms of procedural knowledge.

Learning and Adaptation Automated learning methods

cannot in isolation solve the knowledge modeling prob-
lem for large-scale applications for two reasons. First,
the temporal extent and complexity of the procedures lie
well beyond what is possible or even envisioned with cur-
rent methods. Second, the most successful learning meth-
ods to date are grounded in statistical techniques that re-
quire large numbers of training cases to support appropri-
ate generalization. In contrast, many of the nuances in
agent knowledge relate to special cases that occur infre-
quently.
Learning can, however, play an important role in address-
ing the knowledge modeling problem, especially when fo-
cused on adapting existing procedural knowledge to han-
dle unexpected situations that arise at runtime.

Self-awareness

Self-awareness refers to an agent’s ability to introspect on
its own knowledge and activities to understand its operation.
As agent systems grow in complexity, self-awareness is es-
sential to ensuring appropriate agent execution. Here, we
consider three capabilities related to self-awareness: tempo-
ral projection, explanation, and knowledge limits.

Temporal Projection Much of the focus in agent design

today is on reactive methods that respond to situation
changes by deciding what to do next based on local cri-
teria. Such approaches are not suitable for temporally
extended problems, however, where good short-term de-
cisions may be poor long-term decisions. A self-aware
agent should be cognizant of its longer-term objectives
and ensure that local decisions are consistent with achiev-
ing those objectives.
Temporal projection will be an important technique in
providing such a long-term outlook. Given a formal rep-
resentation of an agent’s objectives, commitments, and
knowledge, temporal projection supports the ability to
reason into the future to ensure that objectives can be met
and undesirable consequences avoided.

Explanation Agents will operate on behalf of a human and
so must be able to justify their actions to him or her.
Explanation of activity requires a clean formal model of
agent activity and knowledge, to enable clear communi-
cation to a human.

Knowledge Limits Robust operation requires that agents
be able to recognize when they are in situations that lie
outside of their capabilities. Otherwise, agents may un-
dertake activities that are ill-advised and possibly even
dangerous. Such recognition requires that agents be
able to reflect on the limitations of their problem-solving
knowledge and execution abilities relative to the current
operational context.

Practical Capabilities

The development of large agent systems that operate in real-
world environments requires certain practical capabilities



not found in many current agent frameworks. We consider
several such capabilities here.

Failure Handling Failure is an inevitable part of real-world
interactions, especially when agents operate in dynamic
and unpredictable environments. Virtually any action that
an agent performs may be subject to unexpected failure.
Thus, failure handling is something that the agent frame-
work should support at a fundamental level in a principled
way, as opposed to current ad hoc practices, that rely on
hand-compiled responses.

Modularity Modularity is extremely important when con-
structing large knowledge bases, just as is the case when
developing large programs. In particular, there may be
multiple individuals defining knowledge, or knowledge
could be imported from multiple preexisting sources. Ide-
ally, knowledge bases should employ some mechanism
for defining multiple namespaces to reduce the potential
for naming conflict.

Scalability When dealing with a knowledge base that con-
tains large numbers of facts, the efficiency of access to the
knowledge base can become a limiting factor. It may not
be feasible for the agent to keep its entire knowledge base
in an internal knowledge store at runtime, in which case
the framework must be able to integrate knowledge kept
in external sources.

Integration Real-world agent systems will be embedded in
rich environments and will need to interact with multiple
external components. In many large agent systems the
role of the agents is to connect together and manage the
external systems. For this reason, agents should be able
to directly execute external code with a minimum of in-
terfacing overhead and effort.

Multiple Timescales Different agents need to operate on
different timescales. At one extreme lie task-level con-
trol systems for managing the low-level actions of robots,
where fast real-time responses are essential. At the other
extreme lie agents that manage workflow processes, some
of which can span months. Ideally, an agent frame-
work should be capable of covering these extremes, pos-
sibly using different implementations for the different
timescales but relying on a common representation and
semantics.

Persistence When an agent is responsible for managing
processes that endure for extended periods of time, it must
handle not only the failure of the actions that it initiates,
but also the unexpected termination of agent processes.
Thus, the agent should be capable of persisting beyond
the extent of an individual process and even over time pe-
riods during which the host machine may need to reboot.
This requires the ability for the agent to save and restore
its state.

Programmer Support As agent systems grow in complex-
ity, the effort involved in managing their development
increases. To construct large agent systems, an agent

framework should provide tools to support the develop-
ment process, including an interactive development envi-
ronment, static analysis tools, refactoring tools, and run-
time debugging tools.

SPARK

The need to jointly address the above theoretical and prac-
tical requirements has led us to develop a new agent frame-
work called SPARK (the SRI Procedural Agent Realization
Kit). SPARK is an open-source agent framework, built on
Python, that aims to bridge the gap between the formal agent
frameworks and the practical agent frameworks.

SPARK builds on a Belief-Desire-Intention (BDI) model
of rationality that has been heavily influenced by the PRS
family of agent systems (Ingrand, Georgeff, & Rao 1992).
It provides a flexible plan execution mechanism that inter-
leaves goal-directed activity and reactivity to changes in its
execution environment. However, in contrast to the repre-
sentations typically found in most practical agent systems,
SPARK'’s procedural language has a clear, well-defined for-
mal semantics that is intended to support reasoning tech-
niques for procedure validation, synthesis, learning, and re-
pair.

Here we provide a brief overview of SPARK. Additional
details can be found in (Morley & Myers 2004).

SPARK Overview

Figure 1 depicts the overall architecture for a SPARK agent.
Each agent maintains a knowledge base (KB) of beliefs
about the world and itself that is updated both by sensory
input from the external world and by internal events. The
agent has a library of procedures that describe ways of re-
sponding to changes and ways of hierarchically decompos-
ing goals. The agent has a set of advice, provided by a user,
that helps guide the agent when making decisions. At any
given time the agent has a set of intentions, which are proce-
dure instances that it is currently executing. The hierarchical
decomposition of goals bottoms out in primitive actions that
instruct effectors to interact with the outside world in which
the SPARK agent is embedded.

Each procedure has a cue that specifies the goal or event
that the procedure responds to, a precondition that spec-
ifies conditions under which that procedure can be used,
and a body that specifies the response. The body is in
the form of a task expression constructed from basic tasks
such as performing primitive actions, posting goals, and
making explicit changes to the KB. The basic tasks are
combined using task operators, such as parallel composi-
tion, iteration, and so on. Logical variables (of the form
$varname) link the components. For example, Figure 2
shows a procedure that can be triggered by a fact of the form
(Order $id $user $item) becoming true.

At SPARK’s core is the executor, whose role is to man-
age the execution of intentions. It does this by repeatedly
selecting a procedure instance that is ready to progress from
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Figure 1: SPARK agent architecture

{defprocedure "Monitor Orders"
cue:
[newfact: (Order $id Suser $item)]
precondition:
(and (Expensive S$item)
(Supervisor S$user $boss))
body:
[parallel:
[do: (inform S$boss $id)]
[conclude: (UnderReview $id)]1}

Figure 2: Example SPARK procedure

the current intentions, performing a single step of that pro-
cedure instance, and updating the set of intentions to reflect
the changes caused by step execution and sensory input.

In (Morley & Myers 2004), we define the semantics of
a SPARK agent’s behavior in terms of finite state machines
(FSMs). An agent’s KB is interpreted as a set of ground
atomic literals where KB changes are simple additions and
deletions of ground atomic literals. The intention structure
is interpreted as a set of FSMs, one per intended procedure
instance together with the current state of each FSM. The
FSM corresponding to each procedure instance is derived
from the body task expression of the procedure. The exe-
cution of an agent can be modeled quite directly as the in-
terleaved execution of a set of FSMs where that set changes
as a consequence of the execution of the FSMs and sensory
input KB changes.

Motivating Application: CALO

The need to address the formal and practical issues raised in
the previous sections is well highlighted by the current driv-
ing domain for SPARK, which involves the development of
an intelligent personal assistant for a high-level knowledge
worker. This assistant, called CALO (Cognitive Assistant
that Learns and Observes), will be able to perform routine

tasks on behalf of its user (e.g., arrange meetings, complete
online forms, file email), as well as undertake open-ended
processes (e.g., purchasing a computer online), and antici-
pate future needs of its user.

At the heart of CALO is a task manager that initiates,
tracks, and executes activities and commitments on behalf
of its user, while remaining responsive to external events.
The task manager is capable of fully autonomous operation
(i.e., for tasks that are delegated completely by the user), but
can also operate in a mixed-initiative fashion when the user
prefers to be more involved in task execution. The desired
level of autonomy can be specified by the user through guid-
ance mechanisms (Myers & Morley 2003).

To date, task manager development has focused on man-
aging the user’s calendar, performing certain routine tasks
(e.g., email management), and supporting the computer pur-
chase capability.

Being part of a large-scale system deployed in the real
world, the task manager benefits from the practical aspects
of SPARK; however, CALO also requires that it be possi-
ble to reason about the procedures being used. For example,
currently in one scenario the task manager is executing a
procedure for purchasing a computer, but it becomes appar-
ent that an authorization step in the procedure is not suc-
ceeding quickly enough for the purchase to go through in
time. This triggers a request to another component to reason
about the current procedure to see if there are any changes
to the procedure that can be made to get around the problem.
Future scenarios will involve reasoning about how well ex-
isting procedures are working to try to learn new procedures.
Without a well-defined formal model of the procedures, such
reasoning is extremely difficult.

Balancing Practical and Formal Concerns in
SPARK

With SPARK, we are attempting to provide a formally
grounded framework that can support the development of
practical agent systems.

On the formal side, our efforts to date have focused on
foundations for knowledge modeling and self-awareness, in-
cluding a formal model of execution, introspective capabili-
ties, and the ability to construct new procedures on-the-fly
at runtime. We have not yet started work on techniques
related to verification and validation, procedure synthesis,
procedure learning, and explanation, but plan to do so in the
future.

On the practical side, where our main emphasis has been,
we have been taking care to implement the desired capabili-
ties in a way that is consistent with the requirements for the
formal grounding.

For example, SPARK has predicates and logical variables
that allow a logic-based interpretation of many of the rep-
resentation constructs. However, SPARK does not use full
unification in the style of logical programming languages
such as Prolog. Instead it uses a restricted form of pat-
tern matching. As a result, SPARK data values are always



fully instantiated and there is no need for variable deref-
erencing or explicit unbinding of variables. The benefits
of this approach include a simpler implementation and eas-
ier integration of SPARK with other procedural, functional,
and object-oriented programming languages. The fact that
SPARK is unable to pass around partially instantiated data
structures means that some logic programming idioms are
not possible in SPARK, but it does not affect the logical se-
mantics of the language.

SPARK provides much finer control over failure handling
than its predecessor, PRS, and does this in a way that is
well-grounded formally. The concept of failure is funda-
mental within the finite state machine model of SPARK exe-
cution. SPARK provides specific task operators to deal with
task failure and meta-level events that can trigger procedures
that implement customized failure responses. More research
is required into different ways of specifying failure recov-
ery, but the existing SPARK language constructs and formal
model provide a good starting point.

SPARK also provides better control over race conditions
The semantic model places strict limits on changes in the
knowledge base that can occur between conditions being
tested (e.g., in conditional task operators or procedure pre-
conditions) and subsequent actions.

For modularity, SPARK uses a hierarchical namespace
for functions, predicates, actions, and constants. Similar
to the Java and Python programming languages, SPARK
uses a correspondence between the module hierarchy and
the hierarchical file system to locate definitions of imported
symbols. For example, when a module imports a predi-
cate a.b.SomePred from module a.b, SPARK knows
to look for the definition of symbols in that module in a file
a/b.spark relative to a given search path.

SPARK’s treatment of variables and the finite state ma-
chine model of execution facilitate integration of SPARK
with external components and allow for simple and efficient
implementations. At the same time, this execution model
is more amenable to formal analysis than, for example, the
extended Java programs of JACK. The language and execu-
tion model were designed to allow a wide range of diverse
implementations:

e The current implementation of SPARK is an interpreter
written in Python. Python was chosen because it is an
excellent rapid prototyping language that is widely used,
with an open-source implementation available on a large
number of platforms. The Jython implementation of
Python compiles to the Java Virtual Machine and makes
the integration of Python code and Java code seamless.
This ability has facilitated the integration of SPARK with
other systems such as OAA (Cheyer & Martin 2001) and
SHAKEN (Barker, Porter, & Clark 2001).

e By taking out the meta-level capabilities and restricting
the use of recursive predicates, it is feasible for SPARK
code to be compiled into very tight, efficient code in tar-
get languages such as C and C++ that could be used for

applications in which fast response time is critical (e.g.,
robot control).

e When dealing with very large knowledge bases or the
need for persistent agents, it is feasible for SPARK to
store its entire knowledge base in an external database and
still be compatible with the execution model.

For programmer support, SPARK includes an Integrated
Development Environment (IDE) built on top of IBM’s
open-source Eclipse Platform (Object Technology Interna-
tional, Inc. 2003). The IDE provides editing and debugging
capabilities, with access to the internal state of execution
of the SPARK agents. We plan to extend SPARK’s current
static analysis of source code to include support for an op-
tional type system.

Conclusion

Current agent frameworks will need to evolve to meet the re-
quirements inherent to large-scale applications. While many
of those requirements relate to practical concerns, it is clear
that advanced reasoning techniques grounded in strong for-
mal models will also play an essential role. Our work on
SPARK constitutes an attempt to develop an agent frame-
work that combines the best of both worlds. While still a
work in progress, our vision for SPARK is to combine the
strengths of a principled formal model with associated rea-
soning capabilities and a practical design that will scale to
the demands of real applications.
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