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Abstract

An application of the Cyc system is described, in which the 
system contributes to the software engineering effort 
involved in its own construction.  Using its Semantic 
Knowledge Source Integration (SKSI) facility, Cyc 
interacts with bug reports tracked using the standard 
Bugzilla defect management system, performing actions 
such as post-bug-fix tests, and creating and reopening bugs 
reports as needed.  This is part of a simultaneous effort in 
the Cyc project to apply software engineering principles (in 
particular, the use of exhaustive unit testing) to the task of 
building an intelligent system, and to apply that intelligent 
system to the automated application of software engineering 
techniques.

Introduction

For nearly 20 years, researchers at MCC’s Cyc Project and 
at its successor, Cycorp, have been developing a 
knowledge-based reasoning system called Cyc.  Cyc’s 
knowledge base (KB) is huge, containing almost 2 million 
assertions (facts and rules) that interrelate more than 
135,000 concepts.  Operations on the KB (additions, 
modifications, deletions, and queries) are stated using 
Cyc's formal, declarative representation language, CycL, 
which is based on second order predicate calculus.  Cyc’s 
ability to reason is provided by an inference engine that 
employs hundreds of pattern-specific heuristic modules, as 
well as general, resolution-based theorem proving, to 
derive new conclusions (deduction) or introduce new 
hypotheses (abduction) from the assertions in the KB.  
Most of the assertions in the KB are intended to capture 
“commonsense” knowledge pertaining to the objects and 
events of everyday human life, such as buying and selling, 
kinship relations, household appliances, eating, office 
buildings, vehicles, time, and space.  The KB also contains 
highly specialized, “expert” knowledge in domains such as 
chemistry, biology, military organizations, diseases, and 
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weapon systems, as well as the grammatical and lexical 
knowledge that enables Cyc’s extensive natural language 
processing (parsing and generation) capabilities.  Among 
the relatively specialized bodies of knowledge in the KB is 
a steadily growing ontology of tests called KB Content 
Tests (KBCTs).  These tests are designed to check for 
regression or improvement in Cyc’s ability to reason 
correctly, and since they are fully described by assertions 
in the KB, they are themselves entities about which Cyc 
can reason.  Cyc also knows about all of the people who 
have ever added assertions to the KB, and for every current 
Cycorp employee, Cyc knows the projects on which the 
employee has worked, the employee’s supervisors and 
supervisees, and (in many cases) particular job-related 
skills the employee possesses. 
 Cyc also includes specialized CycL vocabulary, 
inference modules and supporting connection management 
code (proxy server, database drivers) that together 
constitute a facility called Semantic Knowledge Source 
Integration (SKSI).  SKSI’s CycL vocabulary supports 
detailed semantic descriptions of external information 
sources, such as databases and web sites.  These semantic 
descriptions render explicit the entities, concepts, and 
relations that often are only implicit in a source’s 
implementation data model (e.g., in DBMS metadata), and 
which link these explicitly represented items into the vast 
amount of knowledge already in the KB.  The inference 
engine can use this explicitly represented knowledge about 
external data sources, along with SKSI’s specialized 
inference modules, to access the sources and reason with 
their data as if they were part of the KB.  When presented 
with a CycL query, Cyc’s inference engine is able to 
dispatch SQL SELECT statements to one or several 
relevant databases, send form submissions to relevant web 
sites, search the information contained in the Cyc 
knowledge base, and combine results obtained from all of 
these types of sources to provide an answer (a set of 
bindings).1  One of the external data sources accessible to 

1
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Cyc via SKSI is the Cyc Test Repository (CTR), a database 
that contains the archived results of weekly KB Content 
Test runs. 
 Cycorp currently uses Bugzilla2 to track software 
defects.  Cycorp’s Bugzilla installation (which is fairly 
standard, with a few customizations unrelated to the 
capabilities described in this paper) includes the Bugzilla 
database, in which data about software defects is stored, 
and a Perl CGI script that generates a web interface via 
which users can view and modify the defect data.  Since 
both the web interface and the database’s data model have 
been described in the Cyc KB using the required SKSI 
vocabulary, Cyc can query or modify existing bug reports, 
and can open new bug reports.  Furthermore, since the 
CycL vocabulary for defining KB Content Tests includes a 
predicate for associating one or more specific tests with 
one or more specific bug reports 
(#$testQueryForBugzillaBug), Cyc can track and reason 
about this association.   
 The integration of Cyc’s declarative, semantically rich 
representation of KB Content Tests with the ability to 
access, via SKSI, both the archived test results in the Cyc 
Test Repository, and the defect reports in Bugzilla, has 
been the near-term development goal of a broader Cycorp 
effort called Knowledge-Based Data Monitoring (KBDM).  
The next section of this paper describes our KBDM effort 
in more detail, focusing specifically on the pieces that 
contribute to the defect tracking framework currently 
under development, and describing scenarios for its use. 

Knowledge-Based Data Monitoring 

The primary goal of Cycorp’s KBDM effort has been to 
use Cyc’s knowledge base and inference engine to develop 
software applications (a) that can integrate multiple, 
structured data sources; and (b) that can monitor, and act 
upon, user-specified changes (triggering conditions) in the 
information those sources contain.  Over the past two 
years, our KBDM work has focused mainly on laying the 
foundation for SKSI, and on developing the CycL 
vocabulary, schema mapping tools, and conventions 
(abstraction layers, both in code and in the knowledge 
base) required to allow Cyc to access external data sources 
and use their information in inference.  We have only 
recently turned to the task of implementing a prototype 
monitor application that can check for, and respond to, 
user-specified changes in the various information sources 
accessible to Cyc (including both Cyc’s own knowledge 
base, and the external sources described in it).  Building a 
prototype that enables Cyc to monitor its own test results, 
and to create or modify bug reports associated with 

and its capabilities, see the white papers and other material available at 
Cycorp’s web site, http://www.cyc.com.
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An overview of Bugzilla’s data model is available at 
http://www.ravenbrook.com/project/p4dti/master/design/bugzilla-
schema/.

specific tests, seemed a worthwhile first step.  It exercises 
SKSI, since it requires Cyc to access an external web site 
and two external databases as well as the test definitions 
currently stored in the KB.  It also imparts to Cyc a degree 
of agency, an ability to participate in its own maintenance 
and improvement, that we intend to extend much further. 
 In the Introduction, we indicated some of the conceptual 
and programmatic pieces that make up the KBDM 
prototype in its current state of primitive nascence.  In the 
next subsection, Architecture, we provide a more complete 
list of these components, describing the nature and 
function of each.  Then, in the Scenarios subsection, we 
explain how the components figure in a few specific data 
monitoring (test and defect management) situations. 

Architecture

KB Content Tests. At the time of writing, the Cyc 
knowledge base contained 2606 KBCTs, with new tests 
being added at a rate of dozens per week.  Each test is a 
fully reified, declaratively represented instance of the 
collection (type, class) denoted by the CycL term 
#$KBContentTestSpecification.  Each test definition 
includes the specification of a CycL query and the results 
(bindings) that would constitute a successful test run.  The 
current vocabulary makes it possible to state and capture 
dozens of metrics for each test, such as the total number of 
bindings returned, the number of bindings returned in 30 
seconds, the total time required to retrieve the results that 
constitute “success”, and a token indicating the reason 
inference halted.  Each test definition also includes an 
assertion identifying the person (or agent) responsible for 
the test, and (as mentioned in the Introduction) assertions 
identifying any associated bug reports.  Tests are organized 
(grouped) in a hierarchy of collections, with the primary 
structuring principle being the Cycorp project 
(administrative category or research effort) to which a test 
pertains.  Individual tests may be linked to a Cyc project 
via the CycL predicate #$testResponsibleProject.  Entire 
collections of tests may be linked to a project via the 
predicate #$testCollectionProjectResponsible.  Tests may 
be run individually, or by collection (i.e., in batch mode).  
See Figure 1 for an example of a KB Content Test as it 
appears in Cyc’s Query Library interface. 

Projects. At Cycorp, the word “project” generally means a 
distinct administrative category or research effort.  Projects 
are denoted by terms in the Cyc KB, such as 
#$SKSIProject.  Each such project is a member of the 
collection denoted by the term #$Project.  KB Content 
Tests are typically created for specific projects, and are 
typically organized in the KB according to the project they 
serve.  Also, projects are associated with Bugzilla products 
via the CycL predicate #$bugzillaProductForProject. 

Cyc Test Repository. The Cyc Test Repository (CTR) is 
the database in which the results of KB Content Test runs 
are stored.  Each test result is time-stamped, and includes a 
record indicating the specific test version (tests may be run 
with varying inference parameter settings, resulting in 



different test versions), KB version, Cyc System version 
and (when relevant) UI version in which the test was run.  
Cyc understands the contents of the CTR and is able to 
query it via SKSI. 

Cyc Test Repository Schemata. In order for Cyc to 
access and use (reason about) an external data source, the 
source’s data model (table schemata and other metadata) 
must be represented in the Cyc KB with the specialized 
vocabulary created for the SKSI framework.  This has 
been done for the CTR’s data model. 

Task Scheduler. The Cyc Task Scheduler is a 
subcomponent of the Cyc System that enables users to 
declaratively define and schedule system actions.  The 
CycL predicates 

 #$taskSchedulerCondition,  
 #$taskSchedulerAction, and 
 #$taskSchedulerTaskExpression  

make it possible to define task initiation conditions, 
specify primary task actions, and (if necessary) cause 
named, parameterized blocks of executable code to be run, 
by adding assertions to the KB.  Other predicates allow the 
user to fully specify the task’s temporal characteristics.  
One application of the Task Scheduler is the scheduled 
running of suites of KB Content Tests. In future, the task 
scheduler will be extended to integrate Cyc’s existing 
process description and planning mechanisms to increase 

the sophistication with which tasks may be planned and 
executed.

Cyc Browser, Fact Entry Tool, and Query Library 
Interfaces. Cyc currently supports several user interfaces.  
The Cyc Browser consists of dynamic (CGI-generated) 
HTML pages that allow experienced users to query, 
browse, edit, and add to the contents of the knowledge 
base.  The Fact Entry Tool is a template-based Java 
interface that allows even relatively inexpert users to add 
new facts (ground assertions) to the knowledge base, and 
edit exsiting facts.  The Query Library is a Java interface 
that allows users to pose pre-formulated queries (such as 
the libraries of queries already defined for KB Content 
Tests), or to compose new, arbitrarily complex queries by 
assembling and editing pre-existing query fragments.  All 
of these interfaces employ Cyc’s natural language 
generation capabilities to render assertions, queries, and 
query answers in English, shielding users from the 
underlying, and sometimes dauntingly complex, CycL 
formalisms.  Currently, some KBDM configuration tasks 
(e.g., Task Scheduler configuration, KB Content Test 
creation) require use of the Cyc Browser, but the 
capabilities of the Fact Entry Tool and Query Library are 
being extended so that they will become the primary 
interface components for interacting with the KBDM 
framework. 

Bugzilla. As noted in the Introduction, Cycorp’s Bugzilla 
installation includes a web interface (implemented by a 

Figure 1: An example of a KB Content Test as it appears in the Query Library interface. 



Perl CGI script) and a relational database in which bug 
report information is stored.  The database may be installed 
on any RDBMS.  Cycorp’s version currently runs on 
MySQL.  

Bugzilla Schemata.  To enable Cyc to access Bugzilla, we 
take advantage of two different interfaces to the underlying 
Bugzilla database.  To query Bugzilla, we use SKSI to 
translate CycL query expressions into SQL SELECT 
statements, which are then dispatched to the database 
directly through its hosting DBMS (MySQL).  However, 
for the creation or modification of bug reports, we use 
SKSI to convert declarative “action statements” -- actions 
defined by special CycL vocabulary items -- into valid 
HTTP POST requests, which are sent to Bugzilla's Perl 
CGI interface.  The two CycL action predicates supported 
thus far are #$createABugzillaBugReport and 
#$updateABugzillaBugReport.  CycL terms that denote 
supported Bugzilla action types include the following: 

 #$CreatingABugzillaBugReport 
 #$UpdatingABugzillaBugReport 

#$PostingACommentToABugReport 
 #$MarkingABugzillaBugReportAsADuplicate 
 #$ClosingABugzillaBugReport 
 #$VerifyingABugzillaBugReport 
 #$ReassigningABugzillaBugReport 
 #$ResolvingABugzillaBugReport 
 #$AcceptingABugzillaBugReport 
 #$ReopeningABugzillaBugReport 
 #$ConfirmingABugzillaBugReport 

We use the web interface rather than SQL for DB 
modifications, because this allows us to take advantage of 
the Bugzilla application’s data integrity enforcement and   
its mechanism for sending email notifications to relevant 
parties.  

Scenarios

In its current implementation, the KBDM can perform a 
limited number of actions based on the results of KB 
Content Tests.  It will be easy to increase this number once 
control of the Task Scheduler is made more fully 
declarative.  What follows is a brief description of the 
logic and actions currently supported by the KBDM. 
 At the beginning of a scheduled regression test task, Cyc 
runs a series of KB Content Tests that are all members of a 
common collection.  Each test, or collection of tests, is 
associated with some Cycorp project, and possibly with 
one or more Bugzilla bug reports.  Depending on the 
outcome of each test (success or failure), and on the 
existence and status of associated Bugzilla bug reports, 
Cyc may perform a variety of actions to modify a report’s 
regression status.  We will consider four of the many 
possible cases. 
 (1) If Cyc runs a test that fails and has not yet been 
associated with a bug report, Cyc creates a new Bugzilla 
bug report under the appropriate product and component, 
and posts the test results as the bug's initial description.  

After the new bug report has been created, Cyc updates the 
knowledge base to associate the report with the failing test.  
Note that Cyc currently leaves unspecified several Bugzilla 
parameters, such as the person to whom the new bug is 
assigned.  Since each component in Bugzilla has a default 
owner, this information is not required.  Future work will 
permit Cyc to override this and other defaults when it 
determines such action is appropriate (see Significance and 
Future Work, below). 
 (2) If Cyc runs a test that fails, and the test is already 
associated with a Bugzilla bug report marked as being 
resolved (by virtue of its having been fixed), Cyc reopens 
the bug report and posts the test results as a new entry in 
the report’s comment field.  Again, in this case (and in 
those below), Cyc leaves the other optional parameters at 
their default values. 
 (3) If Cyc runs a test that succeeds, and the test is 
already associated with a Bugzilla bug report marked as 
being resolved (fixed), but which has not yet been marked 
as verified, then Cyc updates the bug report to mark it as 
verified.
 (4) Finally, if Cyc runs a test that succeeds, and the test 
is already associated with a Bugzilla bug report marked as 
being both resolved (fixed) and verified, then Cyc 
performs no action. 
 In each of the cases considered above, Cyc needs some 
background information in order to perform the proper 
action.  In order to create a new Bugzilla bug report for a 
given test, Cyc needs to know, at minimum, the product 
and component under which it should create the bug. This 
information is recorded in the knowledge base in the 
following way: Each test (or collection of tests) is 
associated with some Cyc project, and each Cyc project is 
associated with some Bugzilla product (which is also 
reified in the knowledge base).  Finally, each reified 
product in the knowledge base has an associated default 
component. With this data, Cyc can determine the product 
and component to which a new bug report should belong. 

Significance and Future Work 

The work on KBDM described above, while tentative and 
immature, nonetheless suggests new possibilities for both 
software engineering and the development of intelligent 
agents.

Limitations of Current Systems 

Bugzilla has a number of significant limitations3, which are 
shared by other bug tracking systems to varying degrees: 
meager vocabulary for relating bugs; poor handling of sets 
of bugs by project or component, especially when 
components are shared between projects; limited 

3
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2.14.1; these comments are offered primarily with respect to that release.
More recent versions are available, and may offer many improvements.  
Cycorp also uses CVS heavily, and has explored the use of Microsoft 
Project.



extensibility for gathering and analyzing information; 
inflexibility of workflow and assignment; and inadequate 
prioritization and scheduling. 
 Bugzilla supports only a simple “blocks” relationship 
between bugs.  Other bug tracking systems support only 
“related”.  Experience indicates that a much richer 
ontology of inter-task relationships would offer significant 
benefit. These relationships might include: alternative 
solutions (e.g. the “quick hack”, and the long term 
solution); tasks that should share work or co-ordinate on 
design; tasks to follow-on from or monitor others.  
Bugzilla also supports a “duplicate” relationship, but this 
does not satisfy some of the more obvious requirements. 
 It is sound software engineering practice to reuse 
components and maximize the code in common between 
products and projects.  The disadvantage is that it is 
necessary to track the effects of modifications and to 
identify synergies.  Unfortunately, few bug tracking 
systems provide useful support for this, preferring to 
model each product as entirely separate, leading users to 
create  “internal” products and deliberately duplicate 
bugs4.  In most bug tracking systems, the life cycle 
overhead of each bug report is non-trivial, and there is 
therefore a tendency to aggregate multiple tasks in one 
bug.
 Bugzilla does not provide extensive support for the 
addition and analysis of extra fields, such as: estimated, 
budgeted or actual effort; customer impact; links to source 
control or resolution along multiple code branches; 
detection method; and defect type and cause analysis.  The 
recording and analysis of such information is a crucial part 
of software process improvement. 
 Bugzilla does support a four-stage workflow: 
confirmation, acceptance, resolution and verification.  As 
with any feature of Bugzilla, this workflow can be 
modified, but not in a convenient or flexible way.  It is 
often necessary to have more complex workflows for 
specific tasks; the Bugzilla solution is to hand-create 
multiple bugs and link them together with dependencies.  
Bugzilla only supports assignment of a bug to one 
developer and one tester.  Software engineering practices 
like pair programming (which is extensively used at 
Cycorp) require more flexibility. 
 Bugzilla provides little support for scheduling work – it 
does provide target milestones, but there is no direct 
support for associating work completion with specific 
dates.  In particular, milestones cannot be inherited via 
dependencies, so the assignee of a blocking task is missing 
information about its urgency.  Bugzilla also does not 
assist in assigning people to tasks, either by matching skills 
to suspected defect locations, or by comparing estimated 
work load to time available. 

4
This is analogous to the problem caused by file systems whose directory 

structures do not support multiple inheritance, resulting in file duplication 
or, at best, imperfect solutions such as links or symbolic links. 

Using AI to Integrate Process Management Tools 

The conventional wisdom is to recommend that such 
problems be resolved by purchasing a more expensive bug 
tracking system, or to regard project management and 
defect tracking as independent corporate functions.  
Neither of these provides a comprehensive solution.  
Cycorp’s approach is to take Bugzilla as a basic system, 
and to build additional intelligence on top of it using Cyc, 
as well as other development support tools managed by 
Cyc.  Another example of our ongoing development is the 
integration, via SKSI, of our internal “WebCal” calendar 
system with Cyc.  A motivating use case for this is to 
provide a means to notify developers of milestones against 
which they have assigned bugs.  In time this integration 
process will evolve a software configuration management 
system that is powerful in its own right, and that can be 
integrated into a variety of defect tracking systems.  Cyc’s 
rich and extensible ontology can be used to represent 
arbitrary relationships.  Rules can be used to spawn 
additional tasks as required for any workflow while 
working to keep down their administrative overhead. 

Anticipated Benefits 

Current best practice enjoins developers, on resolving a 
bug, to reflect on several questions: What test would have 
detected this bug?  How can we avoid this type of bug in 
future?  Where might we find similar bugs?  (For a slightly 
different list, see [Van Vleck 1989]).  One of the most 
powerful software-engineering related extensions we 
believe will be possible with Cyc is the provision of 
extensive metrics on the development process.  We expect 
that ability to access these metrics using Cyc’s existing, 
general, query mechanisms will provide developers and 
managers with a straightforward means to answer 
questions like: What types of bug occur most often?  
Which code is generating many defects and may require 
re-factoring?  What are the main causes of bugs?  How do 
estimates compare with actual effort?  Which developers 
work together most effectively?  What circumstances lead 
to failure? 
 In a normal programming development context, actually 
tracking this information would be difficult and 
prohibitively expensive.  With the introduction of an 
adequately detailed ontology of potential software defects, 
and knowledge about the development team, it may 
become possible to represent and use this information for 
process improvement, planning future development, 
training, and self-improvement.  The ability to represent 
and reason about arbitrary meta-knowledge will also 
support other software engineering practices such as 
formal inspection and process improvement.  
 By modeling defect characteristics, the varying levels of 
expertise among the members of a development team, and 
the progress each team member is making, an intelligent 
workflow system could arrange for a developer who 
repeatedly makes a certain type of error to be paired with a 



more highly skilled person who never makes that error.  
The defects understood to be most urgent, or to have the 
most dependents, could be matched with the programmers 
having the most appropriate skills and requiring the 
shortest preparation time. 
 Early in the development of Cyc, we realized that it 
would be necessary to forgo both complete reasoning and 
global formal consistency.  The size and complexity of the 
knowledge base (especially when external knowledge 
sources are available) precludes complete reasoning in 
most cases, and in particular, precludes an exhaustive 
determination of consistency.  The Cyc ontology permits a 
modeling of general common sense rules, which are 
overridden for special-case exceptions; this argumentation 
process provides some robustness against inconsistencies.  
Moreover, the assertions in the knowledge base are 
distributed among hundred of formal contexts, or 
microtheories, each of which is internally consistent.  Cyc 
reasons for itself about whether each new assertion is 
consistent with the facts that are visible (accessible) within 
a given microtheory, and many common types of error or 
inconsistency can readily be detected and sometimes 
automatically repaired. 
 There are clearly inherent weaknesses in using a system 
to test its own behavior.  It is harder to ensure that tests are 
not subject to the same flaws as are being tested.  At the 
same time, this significant in-house use of Cyc for testing 
and other purposes is a vital day-to-day driver for the 
quality of the system.  Cyc’s rich representation and 
powerful deductive capabilities support a sophistication of 
testing approach that would be impossible with any less 
powerful external mechanism.  It should also be noted that, 
because the tests and related information are represented 
purely in CycL, it is not necessary for knowledge 
engineers using Cyc to become familiar with any new 
system or language, but instead it is possible for them to 
use the same techniques as are used directly for AI 
research.

Conclusion

A powerful knowledge-based system, such as Cyc, can 
contribute to software engineering at two distinct levels: it 
can support and extend tools that implement software 
development processes, and it can model and reason about 
the process itself and its motivation – at a level essentially 
absent from current systems – to assess the effectiveness of 
its implementation and identify shortfalls.  By automating 
the integration of existing corporate tools, and providing 
additional representational and computational facilities 
outside the scope of those tools, we believe that AI 
techniques can substantially improve both the efficacy and 
flexibility of software engineering practice.  Not 
insignificantly, this improvement can contribute to 
speeding the development of AI systems. 
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