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Abstract

Planning in belief space with a Labelled Uncertainty Graph,
LUG, is an approach that uses a very compact planning graph
to guide search in the space of belief states to construct con-
formant and contingent plans. A conformant plan is a plan
that transitions (without sensing) all possible initial states
through possibly non-deterministic actions to a goal state. A
contingent plan adds the ability to observe state variables and
branch execution.
The LUG provides heuristics to guide a regression belief
space planner, CAltAlt, and a progression belief space plan-
ner, PBSP . The key innovation of the LUG is to compactly
represent the optimistic projection of several states (those in
a belief state) within a single planning graph. Labels on the
actions and literals denote the state projections that include
them. We show the improvements of using a LUG by com-
paring it with a multiple planning graphs (one for each pos-
sible world) approach within CAltAlt. We also compare the
approach to other conformant planners. Lastly, we outline an
algorithm that can adapt the approach to stochastic planning.

Introduction
Planning with incomplete states is a well studied problem.
It can be cast either as the computation of a policy for
(PO)MDPs [Boutilier et al., 1999] or as a directed search in
the space of belief states [Bonet and Geffner, 2000]. The
two views are coming closer in recent years [Bonet and
Geffner, 2003]. One issue in the belief space search view
is the need for effective heuristics to guide the search. We
recently [Bryce and Kambhampati, 2004] showed that plan-
ning graph based heuristics, adapted from classical planning
[Nguyen et al., 2002], can be used to guide conformant plan-
ners. The heuristics were extracted from multiple planning
graphs (MG) and proved to be useful in guiding CAltAlt,
a conformant (non-observational) regression planner. How-
ever, the number of planning graphs needed was exponential
in the number of uncertain initial state literals. Hence, the
approach did not scale well as the number of possible initial
states grew. The impediments involved either running out of
space to build planning graphs or spending too much time
computing heuristics across the multiple planning graphs.

In this paper, we describe a significant improvement that
addresses these limitations. The idea is to condense the
previously used multiple planning graphs to a single plan-
ning graph, a Labelled Uncertainty Graph (LUG). Loosely
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speaking, this single graph unions the causal support infor-
mation present in the multiple graphs and pushes the dis-
junction, describing sets of possible worlds, into “labels”.
The graph elements are the same as those present in multi-
ple graphs, but represented only once. For instance an action
that was present in all of the multiple planning graphs would
be present only once in theLUG and labelled to indicate that
it is applicable in a projection from each possible world.

We have evaluated the LUG’s effectiveness in both con-
formant and contingent planning. In conformant planning,
we did regression and progression search. In contingent
planning, we only evaluated progression search. For the
evaluation we implemented two planners: CAltAlt, a con-
formant regression planner, and PBSP a conformant and
contingent progression planner.1 Our results show that
the LUG significantly improves CAltAlt’s performance in
terms of heuristic computation time and scalability. More-
over, CAltAlt using the LUG is competitive with other state
of the art conformant planners in CPU time, and provides
high quality plans.

Although our focus to date has been on non-deterministic
planning, we believe that these techniques will help in
stochastic planning too. In particular, we will outline an ap-
proach that uses our techniques to solve non-deterministic
relaxations of stochastic problems and uses the solution as a
basis for stochastic plans.

The rest of the paper is organized as follows. First we
briefly describe the search formulations for actions with con-
ditional and non-deterministic effects. Then we describe
how to build the LUG, how to use it for heuristic guidance,
and show the LUG’s improvement in CAltAlt overMG and
compare with MBP [Bertoli et al., 2001a], HSCP [Bertoli
et al., 2001b], KACMBP [Bertoli and Cimatti, 2002], GPT
[Bonet and Geffner, 2000], CGP [Smith and Weld, 1998],
and SGP [Weld et al., 1998] on several domains for con-
formant planning. Finally, we discuss how this approach to
non-deterministic planning could be extended to stochastic
planning.

1For lack of space, we only describe the CAltAlt
conformant planner here, and refer the reader to
(http://verde.eas.asu.edu/belief-search/) for an extended ver-
sion of the paper [Bryce et al., 2004] that describes the PBSP
contingent planner in more detail.



Search
Our planning formulation uses regression search to find con-
formant plans. Search is in the space of belief states using
actions with conditional and non-deterministic effects. The
planning problem is P = (D,BSI , BSG) and the domain
is D = (L, S,A), where L is the set of all literals l, S is the
set of all states, and A is the set of actions. BSI and BSG

are the respective initial and goal belief states.

Belief State Representation: As discussed in [Bonet and
Geffner, 2000], conformant and contingent planning can be
seen as a search in the space of belief states. Given a world
state represented in terms of a set of boolean state variables,
a belief state BSi is an arbitrary propositional formula, rep-
resenting a set of states (also referred to as possible worlds).
Belief states can be seen as a uniform probability distribu-
tion over states. We consider two special canonical repre-
sentations of BSi – clausal representation κ(BSi), which is
in CNF (clauses C over literals L), and constituent repre-
sentation, ξ(BSi), which is in DNF (possible worlds S over
literals L).

Using the bomb and toilet with clogging problem,BTC, 2

[McDermott, 1987] as a running example for this paper,
the belief state representation of BTC’s initial condition,
in clausal representation, is: κ(BSI) = arm ∧ ¬clog ∧
(inP1 ∨ inP2) ∧ (¬inP1 ∨ ¬inP2), or in constituent rep-
resentation: ξ(BSI) = (arm ∧ ¬clog ∧ inP1 ∧ ¬inP2) ∨
(arm ∧ ¬clog ∧ ¬inP1 ∧ inP2). BTC’s goal state is par-
tial, its clausal representation is: κ(BSG) = ¬arm, and its
constituent representation is: ξ(BSG) = ¬arm.

Action Representation: A causative action a, of the action
set A, is described in terms of (i) an executability precondi-
tion ρe, and (ii) several conditional effects ϕi of the form
(ρi =⇒ εi ), where the antecedent ρi and the consequent
εi are, in general, formulas. The executability precondition
ρe, also a formula, of the action must hold for the action to
be executable. We define ϕ0 as the unconditional effect of
an action where by convention ρ0 = � and ε0 is given.

As an example, the actions for BTC are:
DunkP1 : {ρe : ¬clog, ρ0 : � =⇒ ε0 : clog,

ρ1 : inP1 =⇒ ε1 : ¬arm}
DunkP2 : {ρe : ¬clog, ρ0 : � =⇒ ε0 : clog,

ρ1 : inP2 =⇒ ε1 : ¬arm}
Flush : {ρe : �, ρ0 : � =⇒ ε0 : ¬clog}

Regression: We start weighted A* regression search in the
CAltAlt planner with the goal belief state and regress it non-
deterministically over all relevant actions. An action is rele-
vant for regressing a belief state if (i) its unconditional effect
is consistent with the belief state and (ii) at least one effect
consequent entails a literal that is present in the belief state.

Following Pednault [1987], regressing a belief state BS i

over an action a, with conditional effects, involves finding
the executability, causation, and preservation formulas of

2Bomb in the Toilet with Clogging.For the uninitiated, here are
the arcana of the Bomb in the Toilet family of problems: Bomb in
the Toilet (BT )–the problem includes two packages, one of which
contains a bomb, and a toilet. The goal is to disarm the bomb and
the only allowable actions are dunking a package in the toilet. The
variation “bomb in the toilet with clogging” or BTC says that the
toilet will clog unless it is “flushed” after each “dunking” action.

BSi w.r.t. a. We define regression in terms of clausal rep-
resentation, but it can be generalized for arbitrary formulas.
The regression of a belief state is a conjunction of the re-
gression of clauses in κ(BSi). Formally, the result BSi′ of
regressing the belief state BSi over the action a is defined
as:3

BSi′ = Regress(BSi, a) = Πa ∧

 ∧

C∈κ(BSi)

∨
l∈C

(
Σ

l
a ∧ IP

l
a

) (1)

Executability formula (Πa) is the executability precondi-
tion ρe of a. This is what must hold in BSi′ for a to have
been applicable.
Causation formula (Σl

a) for a literal l w.r.t all effects ϕj of
an action a is defined as the weakest formula that must hold
before a such that l holds in BSi. Formally Σl

a is defined
as:

Σl
a = l ∨

∨
j:εj |=l,j �=0

ρj (2)

Preservation formula (IP l
a) of a literal l w.r.t. all effects

ϕj of action a is defined as the weakest formula that must
be true before a such that l is not violated by the effect ε j .
Formally IP l

a is defined as:

IP l
a =

∧
j:εj |=¬l,j �=0

¬ρj (3)

For example, in the BTC problem we have BS1 =
Regress(BSG, DunkP1) = ¬clog ∧ (¬arm ∨ inP1).
The first clause is the executability formula and the sec-
ond clause is the causation formula for DunkP1’s condi-
tional effect and ¬arm. Regressing BS1 with Flush gives
BS2 = (¬arm∨ inP1) because the executability precondi-
tion of Flush is�, the causation formula is�∨¬clog = �
and (¬arm ∨ inP1) comes through persistence. Finally,
BS3 = Regress(BS5, DunkP2) = ¬clog ∧ (¬arm ∨
inP1 ∨ inP2).

Termination: Regression terminates when search node ex-
pansion generates a belief state BSi which is entailed by the
initial belief state BSI . The plan is the sequence of actions
regressed from BSG to obtain BSi.

From our example, we terminate at BS3 because BSI |=
BS3. The plan is DunkP2, F lush,DunkP1.

LUG Heuristic Guidance
Before search starts, we construct a data-structure (previ-
ously MG, now a LUG) to provide heuristics for search
guidance. The data-structure approximates a progression
tree, starting at BSI . During search, each new belief state
is evaluated with respect to the data-structure to give it a
heuristic value – indicating its “goodness” or (i.e. rela-
tive number of actions to reach the initial belief state BSI ).
Planner performance relies both on the time it takes to con-
struct this data-structure and the structure’s ability to give
good heuristics (i.e. guide search through less of the search
space).

The LUG is a generalization of the MG structure used
in CAltAlt [Bryce and Kambhampati, 2004] to estimate the

3Note that BSi′ may not be in clausal form after regression
(especially when an action has multiple conditional effects).
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Figure 1: LUG for BTC. The labels are the superscripts.

reachability of belief states. MG has the advantage of in-
formative heuristics, but the disadvantages of computing re-
dundant support information and looking at every graph to
compute heuristics. A better approach condenses the mul-
tiple planning graphs to a single planning graph that retains
the multiple possible world causal structure. Loosely speak-
ing, this single graph unions the causal support information
present in the multiple graphs and pushes the disjunction,
describing sets of possible worlds, into “labels” (#). The
graph elements are the same as those present in multiple
graphs, but represented only once. For instance an action
that was present in all of the multiple planning graphs would
be present only once in theLUG and labelled to indicate that
it is applicable in a projection from each possible world of
BSI .

The LUG adds labels to graph elements to symboli-
cally represent which projections through the graph relate to
which constituents of BSI . The labelled elements are each
action a, each conditional and unconditional effect relation
ϕ of an action, each literal l, and each mutex relation of the
graph. In general, a label is an arbitrary propositional for-
mula describing a set of possible worlds for which a graph
element is reachable. The way the LUG is constructed is to
label the single set of initial literals with the possible worlds
where they hold and propagate these labels through actions
as the graph is built. Construction ends when the goal belief
state can be satisfied by literals present in a graph level and
the literals are labelled to indicate that the goal belief state
is supported by all possible worlds, i.e. the goal is fully-
supported. Note, we are constructing the LUG in terms of
literals, whereas the search is in terms of formulas. By using
literals rather than formulas in the graph, we need labels to
preserve the disjunction. Later, we describe how to deter-
mine if formulas are possibly supported by examining the
labels of the formula’s literals at levels in the LUG.

The LUG is based on IPP ’s [Koehler, 1999] planning
graph, where there are three layers in a planning graph step:
the action layer, effect layer, and literal layer. The extensions
are to (1) keep sets of labelled action A, effect relation E ,
and literal L layers, and (2) keep sets of labelled binary mu-

texes for actions Â, effect relations Ê , and literals L̂.4 In the
following subsections, we define the terms fully-supported
and supported to aid in the discussion of the label propaga-
tion.

Label Propagation Recall that a label is a formula de-
scribing a set of possible worlds from which a labelled ele-
ment is reachable. Labels are represented as arbitrary propo-
sitional formulas and efficient propagation of labels is han-
dled using BDDs. The propagation of labels is based on
the intuition that (i) actions and effects are applicable in the
possible worlds specified by the conjunction of the precon-
dition formula’s labels and (ii) a literal is supported in pos-
sible worlds specified by the disjunction of labels of effect
relations that support the literal.

We do not propagate labels to account for the non-
deterministic outcomes of actions because there is no guar-
antee that the non-deterministic actions will be used to reach
the goals, but it a requirement that each possible world needs
to reach the goals. All effects, including non-deterministic
effects, get labels to signify the possible worlds where
they are supported, but possible worlds created by non-
deterministic effects are not given labels. Within the LUG
(and not in search), non-deterministic effects are treated as
a conjunctive set of literals, where each literal is a literal
appearing in some outcome of the non-deterministic effect.
When an action with a non-deterministic effect is added to
a level of the LUG, the set of literals is added to the subse-
quent literal layer.

During the LUG construction, a common operation is to
determine if a formula is fully-supported (i.e. all possible
world projections can reach a belief state that entails the for-
mula), or supported (i.e. there exists a possible world whose
projection can reach a belief state that entails the formula). 5

A formula f is fully-supported (FSp(f, k)) at level k
when for all possible worlds S entailingBSI , f is supported
by S.6

A formula f is supported (Sp(f,k,S)) at level k by a pos-
sible world S entailing BSI when the labels of the literals
in f indicate support by S. The labels of literals indicate
support by S when the formula’s literals are substituted with
their labels and S entails the substituted formula. To ease
the definition, we consider a canonical form for f , namely a
CNF, C, that is supported when:

S |=

 ∧

C∈C

∨
l∈C

�k(l)


 (4)

Here #k(l) is the label of the literal l at level k . Note that
full-support is checked for all possible worlds at once by
replacing S with BSI .

4For a discussion of mutexes within the LUG, we refer the
reader to (http://verde.eas.asu.edu/belief-search/) for an extended
version of the paper [Bryce et al., 2004] that describes them in
more detail. The mutexes used in the evaluation of the LUG are
equivalent to those used in the MG structures (i.e. the mutexes are
computed for only same possible worlds).

5Note that the LUG is an approximation to the belief space pro-
jection from the belief state BSI , so when we refer to something
as supported we mean possibly supported.

6The notion of fully-supported is a generalization of the level
heuristic for classical planning [Nguyen et al., 2002]. It is also sim-
ilar to the max heuristic used in GPT [Bonet and Geffner, 2000].



We now describe label propagation, first by showing how
to construct the initial literal layer L0 of the graph, and then
showing how a graph level {Lk,Ak, Ek} is built.

L0 ← insertInitialLiterals(BSI): The initial literal layer
L0 contains all literals l in the possible worlds of the belief
state BSI . Each literal l is labelled #0(l) to indicate the set
of possible worlds where it holds. The label of literal l is
found by the conjunction of l with the formula for BS I .
BTC has the initial layer shown in Figure 1. The known

literals (arm and ¬clog) are labelled �7, and the unknown
literals (inP1 and inP2) are labelled to indicate the pos-
sible worlds that contain them. The labels in Figure 1 are
the most general formulas to express the possible worlds (to
conserve space), but in practice the labels involve all literals
of the problem. For instance, the label for inP1 is denoted
in Figure 1 as inP1 ∧ ¬inP2, but represents the possible
world inP1∧¬inP2∧arm∧¬clog. The label for inP1 is
found by taking the conjunction of inP1 with BS I , which is
inP1∧arm∧¬clog∧ (inP1∨ inP2)∧ (¬inP1∨¬inP2)
that reduces to inP1∧¬inP2∧arm∧¬clog. The label for
arm is found similarly by taking its conjunction with BSI ,
which reduces to BSI .

Ak ← insertActions(Lk): Once the literal layer Lk is com-
puted, we compute the labelled action layer Ak . Ak is de-
fined as all applicable actions from the action set A, plus all
literal persistence ♦l.8 An action’s executability precondi-
tion must be supported for some possible world at level k for
the action to be applicable. If applicable, the action’s label
at level k, using a CNF for the formula of ρe, is:

�k(a) =
∧

C∈ρe

∨
l∈C

�k(l) (5)

The labels of all the actions in BTC, Figure 1, are � since
the enabling preconditions for all actions are either empty or
labelled �.

Ek ← insertEffects(Lk,Ak) : The labelled effect relations
Ek depend both on the literal layer Lk and action layer Ak.
An effect relation is applicable when the associated action
is applicable and the antecedent of the effect is supported.
The label of the effect is the conjunction of the label of the
associated action with the label of the formula of the effect’s
antecedent. The label of an effect ϕi at level k, using a CNF
for the formula of ρi, is:

�k(ϕi) = �k(a) ∧

 ∧

C∈ρi

∨
l∈C

�k(l)


 (6)

The conditional effects of the Dunk actions inBTC, Figure
1, have labels to indicate the possible worlds for which they
will give ¬arm because their antecedents do not hold in all
possible worlds. The other effects of actions have labels �
because they are unconditional and the associated action has
label �.

Lk ← insertLiterals(Ek−1), k > 0: The literal layer at k
is the set of labelled literals that are added by consequents
of effects in Ek−1. A literal is added to the literal layer if

7As an efficiency measure, without loss of generality, we re-
place the label of every element x with � if BSI |= �k(x).

8Persistence for a literal l, denoted by ♦l, is represented as an
action where ρe = ε0 = l.

it is present in the formula of a consequent of an effect in
the previous layer. The label of a literal, #k(l), is the dis-
junction of the labels of each effect that has the literal in its
consequent’s formula, using a CNF for the formula of ε i, it
is:

�k(l) =
∨

l∈C
C∈εi

ϕi∈Ek−1

�k−1(ϕi) (7)

The labels of the literals for level 1 of BTC, Figure 1, in-
dicate that ¬arm is fully-supported because its label is en-
tailed by BSI . Construction can stop here.

We change the usual notion of when planning graph ex-
pansion can cease. LUG construction stops when the for-
mula for the goal belief state BSG is fully-supported.

Heuristic Computation
The relaxed plan heuristic we extract from the LUG is sim-
ilar to the hMG

RPU heuristic [Bryce et al., 2004]. The hMG
RPU

heuristic extracts a relaxed plan from each of the multiple
planning graphs (one for each possible world) and unions
the set of actions chosen at each level of each of the plan-
ning graphs, then takes the number of unioned actions as the
heuristic value. The LUG relaxed plan heuristic hLUG

RP is
similar in that it counts actions that are applicable in multi-
ple worlds only once and accounts for actions that are used
in subsets of the possible worlds. The advantage is that we
find these actions by looking at only one planning graph.

The relaxed plan is representative of a belief space plan
because at each level of the planning graph we ensure that
the chosen actions will support the subgoals from all possi-
ble worlds. In many cases the relaxed plan can use one ac-
tion to support subgoals from several possible worlds. This
is useful in guiding the search towards plans with lower
overall plan length and higher world overlap in achieving the
goal from all possible worlds. The relaxed plans extracted
from the LUG assume independence between actions be-
cause mutex relations are ignored.

We extract the relaxed plan for a belief state BSi by start-
ing at level k, where FSp(BSi, k) first holds, by supporting
the formula for BSi with sets of actions at k − 1 (form-
ing stepk−1), then support the conjunction of those actions’
preconditions at the next lower level of the LUG, and so
on. When supporting a formula, it is treated as a CNF. This
means that for each clause we find a set of effect relations
where (i) each effect gives at least one of the literals in the
clause and (ii) the disjunction of labels of literals at k in
the clause entails the disjunction of chosen effect relation
labels at level k − 1. This means the possible worlds that
can reach the clause are covered by the set of chosen effects.
For example, {ϕ1, ..., ϕi, ...} support a clause with literals
{l1, ..., lj , ...} if:


∨

j

�k(lj)


 |=

(∨
i

�k−1(ϕi)

)
(8)

This is similar to how we find relaxed plans on normal
planning graphs, but the differences are in how we deter-
mine that a formula is supported by a set of actions and that
we prefer supporting with literal persistence before actions.
Formally, the value of the relaxed plan heuristic for theLUG
is:

hLUG
RP (BSi) =

k−1∑
j=0

| stepj | (9)



Problem CAltAlt CAltAlt MBP KACMBP HSCP GPT CGP SGP
hMG
RPU hLUG

RP
Rovers1 185/5 16070/5 230/5 9293/5 - 3139/5 70/5 70/5

2 29285/9 10457/8 141/8 9289/15 - 4365/8 180/8 30/8
3 2244/11 10828/10 484/10 9293/16 - 5842/10 460/10 1750/10
4 3285/15 15279/13 3252/13 9371/18 - 7393/13 1860/13 -
5 - 64870/29 - 39773/40 - 399525/20 - -
6 - 221051/25 727/32 - - - - -

Logistics1 1109/9 907/9 37/9 127/12 352/9 916/9 60/6 70/6
2 69818/19 2862/15 486/24 451/19 - 1297/15 290/6 510/6
3 70882/14 10810/15 408/14 1578/18 - 1711/11 400/8 4620/8
4 - 24862/19 2881/27 8865/22 - 9828/18 1170/8 447470/8
5 - 54726/34 - 226986/42 - 543865/28 - -

BT2 21/2 16/2 6/2 10/2 8/2 487/2 20/1 0/1
20 2299/20 552/20 - 84/20 23/20 472174/20 3200/1 290/1
40 44741/40 7543/40 - 533/40 80/40 - 24630/1 3320/1
60 - 35983/60 - 2123/60 340/60 - 87970/1 83494/1
80 - 157655/80 - - - - - -

BTC2 23/3 16/3 8/3 18/3 2/3 465/3 0/3 0/3
20 2652/39 651/39 98/39 211/39 98/39 - - -
40 51859/79 8009/79 615/79 1498/79 674/79 - - -
60 - 38393/119 2223/119 5506/119 5100/119 - - -

Figure 2: Results for CAltAlt using hMG
RPU and h

LUG(D−S)
RP , MBP, KACMBP, HSCP, GPT, CGP, and SGP for conformant

Rovers, Logistics, BT, and BTC. The data is Total Time / # Plan Steps, “-” indicates no solution.

From our example, BSI |= #1(¬arm), so FSp(BSG,
1) holds and k = 1. A relaxed plan to support BSG

is DunkP1, DunkP2, F lush. The first clause, ¬arm, is
fully-supported through DunkP1 and DunkP2 because
the disjunction of the labels of their conditional effects at
level 0 entails the label of ¬arm at level 1. Similarly,
¬clog is fully-supported through Flush because the label
of Flush’s effect at level 0 entails the label of ¬clog at level
1. Thus hLUG

RP (BSG) = 3.

Empirical Evaluation
The LUG’s implementation takes advantage of several tech-
nologies, BDDs [Brace et al., 1990] for labels, a model
checker [Cimatti et al., 2002] for checking entailment, and
a planning graph [Koehler, 1999]. CAltAlt is based on the
HSP-r [Bonet and Geffner, 1999] regression search engine.

We ran several test problems within CAltAlt using the
LUG to compare it with the previously used MG. We
also ran the same problems for MBP [Bertoli et al., 2001a],
KACMBP [Bertoli and Cimatti, 2002], HSCP [Bertoli et al.,
2001b], GPT [Bonet and Geffner, 2000], CGP [Smith and
Weld, 1998], and SGP [Weld et al., 1998]. All tests were
run on a 2.66GHz Pentium 4 Linux machine with a memory
limit of 1GB.

In addition to the standard bomb in toilet (BT ), and bomb
in the toilet with clogging (BTC), we also look at confor-
mant versions of Logistics and Rovers. The Logistics and
Rovers domains are similar to domains used in the Inter-
national Planning Competition [IPC, 2003], and dissimilar
to domains previously considered in conformant planning
research. They present new challenges in reasoning about
reachability for conformant planning because there are many
possible plans of different lengths. Logistics has uncertainty
over initial package locations and scales by adding pack-
ages, cities, and possible initial locations. Rovers has uncer-
tainty over availability of collectable scientific data at vari-
ous locations and scales by adding possible locations to get
images, rocks, and soil. 9

Figure 2 shows the results for running several domains
with CAltAlt using hMG

RPU and hLUG
RP , MBP, KACMBP,

9The problem and domain files can be found at
http://verde.eas.asu.edu/belief-search/.

HSCP, GPT, CGP, and SGP. The LUG does much better
than MG in terms of scalability in all cases because of re-
duced graph memory requirements and heuristic computa-
tion time. Plan length is mostly better with the hLUG

RP com-
pared to hMG

RPU . CAltAlt with hLUG
RP tends to scale better

than the optimal approaches of GPT, CGP, and SGP, with-
out over sacrificing plan quality, and is comparable to the
heuristic approaches of MBP, KACMBP, and HSCP (usu-
ally providing better plans and out-scaling).

Related Work
Of the many approaches to conformant and contingent plan-
ning this approach is most similar to the work of CGP and
SGP ([Smith and Weld, 1998], [Weld et al., 1998]), GPT
[Bonet and Geffner, 1999], and the MBP-related planners
([Bertoli et al., 2001b], [Bertoli and Cimatti, 2002], [Bertoli
et al., 2001a]).

CGP and SGP, like CAltAlt, use several planning graphs
to represent a projection from each initial state. The differ-
ence is that CGP and SGP generalize GraphPlan [Blum and
Furst, 1995] to perform a search on the multiple planning
graphs, whereas we are using the planning graphs to provide
heuristics for belief space search.

GPT, one of the first heuristic conformant and contingent
planners, uses dynamic programming to compute reachabil-
ity heuristics for progression search in belief space. The
largest differences between this approach and GPT is that
GPT uses an admissible max-type heuristic, whereas ours is
inadmissible, and GPT explicitly represents the belief space
where we use formulas.

The MBP-family of planners performs search in belief
space through regression or progression guided by ad-hoc
combinations of cardinality and reachability heuristics, as in
KACMBP. The biggest difference between their approach
and ours are the use of structured heuristics to improve plan
quality.

Extension to Stochastic Planning
Given the positive results presented in this paper, we foresee
use of the LUG in stochastic planning. There are two pos-
sible avenues: (i) extend planning graph heuristics to direct
stochastic planning search, and (ii) solve a non-deterministic



relaxation of a stochastic planning problem and use it as a
seed stochastic plan. In the following discussion we describe
the second approach.10

The basic approach is to (1) relax a stochastic planning
problem to non-deterministic planning problem, (2) solve
the non-deterministic planning problem with techniques pre-
sented herein, and (3) convert the non-deterministic plan to
a stochastic plan and perform a local search on its structure
to increase probability of goal satisfaction. The first step in-
volves relaxing a stochastic plan to a non-deterministic plan
entails ignoring probabilities and assuming uniform distri-
butions. Some stochastic problems may not have any plan
that will succeed in the non-deterministic relaxation; in such
cases we may have to ignore some outcomes of actions or
some of the initial states. The second step of solving the re-
laxed non-deterministic problem follows from the content of
this paper and [Bryce et al., 2004]. The quality of the non-
deterministic plan, viewed as a stochastic plan may improve
if some greediness is incorporated into the heuristics for the
non-deterministic plan synthesis. One idea is to maintain
probabilities for the effects of actions and the labels of pos-
sible worlds within the LUG (similar to PGraphPlan), and
have relaxed plans prefer actions that have higher probabil-
ity outcomes and support higher probability possible worlds.
In the third step, with the plan, we can see with what proba-
bility certain actions support the conditions of other actions
or goals. It may be possible to perform local search to add
more actions to increase the probability of supporting con-
ditions and goals.

The approach we outline is similar to that of Buridan
[Kushmerick et al., 1994] in that a seed stochastic plan is
generated, and then actions to increase support for low prob-
ability conditions are added to the plan. The advantages of
our version are in using planning graph heuristics and mod-
elling non-determinism. Using planning graph heuristics al-
lows us to tackle somewhat larger problems than Buridan,
which uses no search heuristics. Relaxing the planning prob-
lem to a non-deterministic planning problem will provide
a seed solution that is more faithful to the eventual solu-
tion than Buridan (which uses a relaxation to a deterministic
planning problem).

Conclusion
In investigating the LUG’s utility we have learned that the
LUG is an effective data-structure to guide search in a con-

10Heuristics help in generating large non-deterministic plans;
however, these heuristics may not be directly suitable for gener-
ating stochastic plans. Stochastic planning with planning graph
heuristics is troublesome because planning graphs mainly provide
lower bound estimates on the number of actions needed to reach
states, but do not help in finding lower bound estimates for the
probabilities of states. One approach that uses planning graphs
for stochastic planning is PGraphPlan [Blum and Langford, 1999]
where a planning graph is searched using forward dynamic pro-
gramming, effectively propagating probabilities on the planning
graph – a costly endeavor. In classical (deterministic) planning,
GraphPlan [Blum and Furst, 1995] has been outperformed by many
state-based search techniques that use planning graphs for heuris-
tics [Hoffmann and Nebel, 2001], [Nguyen et al., 2002]; the same
may be true for stochastic planning, yet effective heuristics for
state-based stochastic planning do not exist.

formant planner with competitive performance. The advan-
tage of theLUG and the relaxed plan heuristic is that it helps
generate high quality plans for difficult problems.
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