
An Approach to State Aggregation for POMDPs

Zhengzhu Feng
Computer Science Department
University of Massachusetts

Amherst, MA 01003
fengzz@cs.umass.edu

Eric A. Hansen
Dept. of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu

Abstract

A partially observable Markov decision process (POMDP)
provides an elegant model for problems of planning under
uncertainty. Solving POMDPs is very computationally chal-
lenging, however, and improving the scalability of POMDP
algorithms is an important research problem. One way
to reduce the computational complexity of planning using
POMDPs is by using state aggregation to reduce the (effec-
tive) size of the state space. State aggregation techniques that
rely on a factored representation of a POMDP have been de-
veloped in previous work. In this paper, we describe simi-
lar techniques that do not rely on a factored representation.
These techniques are simpler to implement and make this ap-
proach to reducing the complexity of POMDPs more gen-
eral. We describe state aggregation techniques that allow both
exact and approximate solution of non-factored POMDPs
and demonstrate their effectiveness on a range of benchmark
problems.

Introduction

The problem of planning in domains in which actions have
uncertain effects and sensors provide imperfect state infor-
mation can be formalized as the problem of solving a par-
tially observable Markov decision process (POMDP). Dy-
namic programming (DP) is a standard approach to solv-
ing POMDPs. However, it is very computationally-intensive
and limited to solving small problems exactly. Because the
complexity of DP depends in part on the size of the state
space, one way to improve its efficiency is by using state
aggregation to reduce the (effective) size of the state space.

In previous work, state aggregation techniques have been
developed that significantly improve the efficiency of DP for
POMDPs (Boutilier & Poole 1996; Hansen & Feng 2000;
Guestrin, Koller, & Parr 2001; Feng & Hansen 2001). How-
ever, they rely on a factored representation of the POMDP
in which the state space is modeled by a set of state vari-
ables. (Often, the state variables are assumed to be Boolean,
although this is not necessary.) In this paper, we show that
most (though not all) of the benefit of this approach can be
achieved by a much simpler and more direct approach to
state aggregation that does not assume a factored represen-
tation.

Background
We consider a discrete-time POMDP with a finite set of
states,S, a finite set of actions,A, and a finite set of ob-
servations,O. Each time period, the environment is in some
states ∈ S, the agent takes an actiona ∈ A, the envi-
ronment makes a transition to states′ ∈ S with probability
Pr(s′|s, a) ∈ [0, 1], and the agent observeso ∈ O with
probability Pr(o|s′, a) ∈ [0, 1]. In addition, the agent re-
ceives an immediate reward with expected valuer(s, a) ∈
<. We assume the objective is to maximize expected total
discounted reward over an infinite horizon, whereβ ∈ [0, 1)
is the discount factor.

Although the state of the environment cannot be directly
observed, the probability that it is in a given state can be cal-
culated. Letb denote a vector of state probabilities, called a
belief state, whereb(s) denotes the probability that the sys-
tem is in states. If actiona is taken and followed by obser-
vationo, the successor belief state, denotedba

o , is determined
by revising each state probability using Bayes’ theorem, as
follows,

ba
o(s′) =

∑
s∈S Pr(s′, o|s, a)b(s)∑

s,s′∈S Pr(s′, o|s, a)b(s)
(1)

where Pr(s′, o|s, a) = Pr(s′|s, a)Pr(o|s′, a). From
now on, we adopt the simplified notation,Pr(o|b, a) =∑

s,s′∈S Pr(s′, o|s, a)b(s), to refer to the normalizing fac-
tor in the denominator. It is well-known that a belief state
updated by Bayesian conditioning is a sufficient statistic
that summarizes all information necessary for optimal ac-
tion selection. This gives rise to the standard approach
to solving POMDPs. The problem is transformed into an
equivalent, completely observable MDP with a continuous,
|S|-dimensional state space consisting of all possible belief
states, denotedB. In this form, a POMDP can be solved
by iteration of adynamic programming operatorT that im-
proves a value functionV : B → < by performing the fol-
lowing “one-step backup” for all belief statesb ∈ B.

V ′(b)=T (V)=max
a∈A

{
r(b, a)+ β

∑
o∈O

Pr(o|b, a)V(ba
o)

}
, (2)

wherer(b, a) =
∑

s b(s)r(s, a) is the immediate reward for
taking actiona in belief stateb.

The dynamic-programming operator is the core step of
value iteration, a standard algorithm for solving infinite-
horizon POMDPs. Value iteration solves a POMDP by
repeatedly applying the dynamic-programming operator to
improve the value function. By the theory of dynamic pro-
gramming, the optimal value functionV ∗ is the unique
solution of the equation systemV = TV , and V ∗ =
limn→∞ TnV0, whereTn denotesn applications of opera-
tor T to any initial value functionV0. A value functionV
is said to beε-optimal if ||V ∗ − V || ≤ ε. For anyε > 0,
value iteration converges to anε-optimal value function af-
ter a finite number of iterations. A policyπ : B → A can be
extracted from the value function as follows:

π(b) = arg max
a∈A

{
r(b, a) + β

∑
o∈O

Pr(o|b, a)V (ba
o)

}
.

(3)
Because the dynamic-programming operator is performed

on a continuous space of belief states, it is not obvious
that it can be computed exactly. However, Smallwood and
Sondik (1973) proved that the dynamic-programming oper-
ator preserves the piecewise linearity and convexity of the
value function. A piecewise linear and convex value func-
tion V can be represented by a finite set of|S|-dimensional
vectors of real numbers,V = {v0, v1, . . . , vk}, such that the
value of each belief stateb is defined as follows:

V (b) = max
vi∈V

∑
s∈S

b(s)vi(s). (4)

Moreover, a piecewise-linear and convex value function has
a unique and minimal-size set of vectors that represents
it. This representation of the value function allows the dy-
namic programming operator to be computed exactly. We
develop our state aggregation algorithm based on thein-
cremental pruning(IP) algorithm (Cassandra, Littman, &
Zhang 1997). However our technique can be applied di-
rectly to more advanced algorithms such as region-based in-
cremental pruning (Feng & Zilberstein 2004).

Like most other algorithms for computing the DP opera-
tor, IP essentially perform two tasks. The first is to gener-
ate sets of vectors that may be included in the updated value
function. The second is to prune these sets of vectors to their
minimal size, by removing dominated or extraneous vectors.
Of the two tasks, pruning takes by far the most computation
time. Cassandra et al. (1997) report that it takes95% of the
computation time needed to solve a benchmark set of exam-
ples, and our experimental results are consistent with this.
Both tasks – generating and pruning vectors – can benefit
from state aggregation. However, the effect of state aggre-
gation on improving the overall efficiency of the DP operator
is much greater in the pruning step because it takes most of
the computation time. In the rest of this paper, we describe
a method of state aggregation that can be performed in the
pruning step for non-factored POMDPs. This method pro-
vides most of the same benefit as methods that rely on a fac-
tored representation. Besides not requiring a factored rep-
resentation, it is much simpler to implement and has lower
overhead.

Incremental pruning In their description of incremental
pruning, Cassandraet al. (1997) note that the updated value
functionV ′ of Equation (2) can be defined as a combination
of simpler value functions, as follows:

V ′(b) = max
a∈A

V a(b)

V a(b) =
∑
o∈O

V a,o(b)

V a,o(b) =
r(b, a)
|O|

+ βPr(o|b, a)V (ba
o)

Each of these value functions is piecewise linear and con-
vex, and can be represented by a unique minimum-size set
of state-value functions. We use the symbolsV ′, Va, and
Va,o to refer to these minimum-size sets.

Using the script lettersU andW to denote sets of state-
value functions, we adopt the following notation to refer to
operations on sets of state-value functions. Thecross sum
of two sets of state-value functions,U andW, is denoted
U ⊕W = {u + w|u ∈ U , w ∈ W}. An operator that takes
a set of state-value functionsU and reduces it to its unique
minimum form is denoted PRUNE(U). Using this notation,
the minimum-size sets of state-value functions defined ear-
lier can be computed as follows:

V ′ = PRUNE (∪a∈AVa)
Va = PRUNE (⊕o∈OVa,o)

Va,o = PRUNE
(
{va,o,i|vi ∈ V}

)
,

whereva,o,i is the state-value function defined by

va,o,i(s) =
r(s, a)
|O|

+ β
∑
s′∈S

Pr(o, s′|s, a)vi(s′), (5)

Incremental pruning gains its efficiency (and its name) from
the way it interleaves pruning and cross-sum to computeV a,
as follows:

Va = PRUNE(...PRUNE(Va,o1 ⊕ Va,o2) . . .⊕ Va,ok).

Table 1 summarizes an algorithm, due to White and
Lark (White 1991), that reduces a set of vectors to a unique,
minimal-size set by removing “dominated” vectors, that is,
vectors that can be removed without affecting the value of
any belief state. There are two tests for dominated vectors.

The simplest method of removing dominated vectors is to
remove any vector that is pointwise dominated by another
vector. A vector,u, is pointwise dominated by another,w,
if u(s) ≤ w(s) for all s ∈ S. The procedure POINTWISE-
DOMINATE in Table 1 performs this operation. Although
this method of detecting dominated state-value functions is
fast, it cannot detect all dominated state-value functions.

There is a linear programming method that can detect all
dominated vectors. Given a vectorv and a set of vectorsU
that doesn’t includev, the linear program in procedure LP-
DOMINATE of Table 1 determines whether addingv to U
improves the value function represented byU for any belief
stateb. If it does, the variabled optimized by the linear pro-
gram is the maximum amount by which the value function

procedure POINTWISE-DOMINATE(w,U)
for eachu ∈ U

if w(s) ≤ u(s), ∀s ∈ S then return true
return false

procedure LP-DOMINATE(w,U)
solve the following linear program

variables:d, b(s) ∀s ∈ S
maximized
subject to the constraints

b · (w − u) ≥ d, ∀u ∈ UP
s∈S b(s) = 1

if d ≥ 0 then returnb
else return nil

procedure BEST(b,U)
max← −∞
for eachu ∈ U

if (b · u > max) or ((b · u = max) and (u <lex w)) then
w ← u
max← b · u

returnw

procedure PRUNE(U)
W ← ∅
while U 6= ∅

u← any element inU
if POINTWISE-DOMINATE(u,W) = true
U ← U − {u}

else
b← LP-DOMINATE(u,W)
if b = nil then
U ← U − {u}

else
w ← BEST(b,U)
W ←W ∪ {w}
U ← U − {w}

returnW ‘

Table 1: AlgorithmPRUNE for pruning set of state-value
functionsU .

is improved, andb is the belief state that optimizesd. If it
does not, that is, ifd ≤ 0, thenv is dominated byU .

The PRUNE algorithm summarized in Table 1 uses
these two tests for dominated vectors to prune a set of
vectors to its minimum size. (The symbol<lex in the
pseudocode denotes lexicographic ordering. Its signifi-
cance in implementing this algorithm was elucidated by
Littman (1994)).

State Aggregation

The linear program used to prune vectors has a number of
variables equal to the size of the state space of the POMDP.
The key idea of the state aggregation method is this. By
aggregating states with the same or similar values, the size
of the linear programs (i.e., the number of variables) can be
decreased. As a result, the efficiency of pruning – and so, of
DP – can be significantly improved.

procedure DP-UPDATE(V)
for each actiona ∈ A

V a ← ∅
for each observationo ∈ O

V a,o ← PRUNE({va,o,i|vi ∈ V })
V a ← PRUNE(V a ∪ V a,o)

V ′ ← PRUNE(∪a∈AV a)
returnV ′

Table 2: Incremental pruning algorithm.

Algorithm State aggregation is performed by apartition
algorithm that takes as input a set of state-value functions
and creates an aggregate state space for it that only makes
the state distinctions relevant for predicting expected value.
Because an aggregate state corresponds to a set of underly-
ing states, the cardinality of the aggregate state space can be
much less than the cardinality of the original state space. By
reducing the effective size of the state space, state aggrega-
tion can significantly improve the efficiency of pruning.

Table 3 describes the CREATE-PARTITION algorithm.
The algorithm starts with a single aggregate state that in-
cludes all states of the POMDP. Gradually, the aggregation
is refined by making relevant state distinctions. Each new
state distinction splits some aggregate state into smaller ag-
gregate states. An aggregate state needs to be split when the
values of its states in a vector are not all the same. We split
the aggregate state by first sorting the states in it according
to their values, and then inserting elements in theL array
to indicate the new splitting point. The algorithm does not
backtrack; every state distinction it introduces is necessary
and relevant.

The following example will help to explain the algorithm.
We introduce a simple representation for a partition of the
state space, using two arraysI andL. I is a permutation of
the states, andL specifies the grouping of states inI.

Example Let S = {0, 1, 2, 3, 4, 5, 6, 7} be the set of
states. A partition that contains three aggregate statesS0 =
{2, 0, 7}, S1 = {4, 5, 3, 1}, andS2 = {6} can be repre-
sented byI andL as follow:

I = [2, 0, 7, 4, 5, 3, 1, 6]
L = [−1, 2, 6, 7]

The setI is a permutation of the states. The setL specifies
the grouping of states inI. The number of aggregate states is
equal to|L| − 1. Each element except the last inL specifies
the index range inI that forms a group of states, so that:

Si = {I[L[i] + j] : 1 ≤ j < L[i + 1]− L[i]}

Note that index starts at 0. We use(I, L)i to denote thei-th
aggregate state in the partition defined byI andL.

Now suppose a new vector

s 0 1 2 3 4 5 6 7
v 1.0 3.0 1.0 3.1 3.0 3.1 2.0 1.0

is processed. This introduces inconsistencies in the partition
S1, because states 1 and 4 have value 3.0, and states 3 and

procedure CREATE-PARTITION(V, α)
I ← [s0, s1, . . . , sn]
L← [−1, n− 1]
for each vectorv ∈ V

L′ ← L
for i = 0 to |L| − 2

Sort the portion ofI in (I, L)i according tov
b← 1
for j = 2 to L[i + 1]− L[i]− 1

if |v(I[L[i] + j])− v(I[L[i] + b])| > α
insert(L[i] + j − 1) in L′ afterL[i]

b← j
L← L′

return(I, L)

Table 3: Algorithm for partitioning a state set,S, into a set
of aggregate states, represented by(I, L), that only makes
relevant state distinctions found in a set of state-value func-
tions,V.

5 have value 3.1. So the algorithm sorts states inS1 and
adds a split point at position 4, so that the new partition is
represented as follow:

I = [2, 0, 7, 1, 4, 3, 5, 6]
L = [−1, 2, 4, 6, 7]

The CREATE-PARTITION algorithm is called just before
any set of vectors is pruned. The pruning step is then per-
formed on the abstract (or aggregate) state space produced
by the algorithm.

Complexity The most expensive operation in the algo-
rithm is sorting, which takes timeO(|Si| log |Si|) where|Si|
is the size of a partition being sorted. Note that the size of the
partition is the reciprocal of the number of partitions, so the
sorting time needed to process each vector can be bounded
by O(|S| log |S|). Thus the worst-case running time of the
partition algorithm isO(|V||S| log |S|). As we can see in
the experimental results, this running time is negligible com-
pared to the running time of the DP algorithm.

Approximation
The partition algorithm also takes a second parameter,α,
that allows approximation in the state aggregation process.
Whenα = 0, an aggregation that preserves exact values is
created. Whenα > 0, states with similar but not necessarily
the same values are grouped together, and assigned a similar
value. In the above example, ifα is set to 0.1, then partition
S1 does not need to be split.

We note that approximation error can be bounded in the
same way described by Feng and Hansen (2001), who as-
sume a factored representation of the POMDP. Their anal-
ysis extends directly to our algorithm. We list below two
important theorems regarding the approximation:

Theorem 1 (Error bound) The error between the current
and optimal value function is bounded as follows,

‖T̂nV − V ∗‖ ≤ β

1− β
‖T̂nV − T̂n−1V ‖+

δ

1− β
,

whereδ = α · (2|O|+ 1) denotes the approximation error.

Theorem 2 (Convergence)For any value functionV and
ε > 0, there is anN such that for alln > N ,

‖T̂nV − T̂n−1V ‖ ≤
2δ

1− β
+ ε.

Computational Results
Factored problems We first tested our algorithm on prob-
lems that have a factored representation, in order to com-
pare its performance to the factored algorithm of Hansen and
Feng (2000). We used problems 3, 4 and 5 (denoted HF3,
HF4, HF5) from their paper as test problems. Problem 3 is a
widget-processing problem originally described in (Draper,
Hanks, & Weld 1994). Problem 4 is an artificial worst-case
example in the sense that there is little structure in the prob-
lem that allows state aggregation. Problem 5 is an artificial
best-case example where there are many similar state values,
allowing significant state aggregation.

Table 4 shows some timing results. For the three HF ex-
amples, it compares one step of value iteration using three
different algorithms: our state aggregation algorithm, the
state aggregation algorithm that relies on a factored algo-
rithm, and no state aggregation at all. For each problem, the
result without state aggregation is shown at the top. Below it
is the result of the factored algorithm, and below that is the
result of our new state aggregation algorithm. All programs
take the same input and compute identical results. They per-
form the same number of backups and the same number of
pruning operations, and they solve the same number of lin-
ear programs. The difference between our algorithm and the
factored algorithm is that our algorithm uses a much simpler
and more general approach to state aggregation that does not
rely on a factored representation.

From the timing results for the pruning operation, which
is the most expensive step in DP, we can see that our state
aggregation algorithm provides the same level of speed-up
as the factored algorithm, when state aggregation is possi-
ble. Note that the pruning time in the table includes the time
used to create an aggregate state space using the CREATE-
PARTITION procedure. As we can see, state aggregation
usually take less than 1% of the pruning time, and never
takes more than 3% in any case. Compared to the factored
algorithm, our state aggregation technique is faster in creat-
ing a partition, because we use a simpler data structure that
requires less overhead.

For the worst-case example, where state aggregation is not
possible, our algorithm spends slightly more time on prun-
ing than the other algorithms. The reason for this slight dif-
ference is that our aggregation algorithm re-arranges the or-
der of the states in the vectors, and the actual setup of the
linear programs (the order of variables and constraints) can
affect the solving time.

For the backup step, we see that our algorithm takes about
the same amount of time as the algorithm that does not per-
form state aggregation, and is usually slower than the fac-
tored algorithm. This is because our algorithm does not ex-
ploit state abstraction in the backup step, whereas the fac-
tored algorithm does. However, as we can see from the ta-

Timing Results
Prune

Ex. |S| Abs Back Part Prune Total
- 1.1 - 5.5 6.7

HF3 26 7.5 0.7 0.6 3.4 4.0
1.2 0.0 2.7 4.0

- 53.5 - 8127.8 8181.9
HF4 26 64.0 404.0 1.8 8244.4 8653.2

54.0 0.6 8747.1 8801.8
- 7.7 - 146.3 154.2

HF5 27 12.8 5.7 3.8 35.3 41.4
8.3 1.0 29.0 37.6

- 4.5 - 139.7 144.5
cit 284 44.0 4.6 1.5 67.3 73.7

penta- - 114.7 - 681.6 796.3
gon 212 44.8 124.4 6.1 293.8 418.3

Table 4: Timing results (in CPU seconds) for one iteration of
DP. The column with the heading “Abs” represents the mean num-
ber of abstract states created by the aggregate and factored algo-
rithms, which is averaged over all calls to the procedure PRUNE.
“Back” represents the time for computing new vectors. “Part”
represents the time for partitioning the state space into aggregate
states. “Prune” represents the time for pruning vectors using linear
program pruning.

ble, 95% or more of the running time of DP is devoted to
the pruning step (except for problem HF3, which is about
82%). Therefore, the advantage enjoyed by the factored
algorithm in the backup step is not significant in the over-
all performance of the algorithm. It is interesting to note
that for the worst-case example, the factored algorithm spent
about 5 timesmoretime in the backup step. This is due to
the overhead of manipulating the complex decision diagram
data structure, which can be significant when there is little
or no structure in the problem.

Non-factored problems Next we tested our algorithm on
two robot navigation problems,cit andpentagon, described
in (Cassandra, Kaelbling, & Kurien 1996). These two exam-
ples cannot be naturally represented in factored form. We
can compare the performance of our algorithm only to the
basic algorithm that does not use state aggregation, because
the factored algorithm cannot be applied to these problems.
In the corresponding entries in Table 4, the top line shows
the timing results for the basic algorithm and the bottom
line shows the results for the new state aggregation algo-
rithm. It shows that the pruning step can benefit from state
aggregation, even for problem that do not have a factored
representation.

Approximation We point out again that these timing re-
sults are for one iteration of the DP algorithm only. Over
successive iterations of the algorithm, the degree of abstrac-
tion can decrease as the value function is refined. To coun-
teract this, approximation can be introduced to maintain a
similar degree of state abstraction. It is also possible to use

 460

 480

 500

 520

 540

 560

 580

 600

 620

 640

 660

 680

 0 100 200 300 400 500 600

E
rr

or
 b

ou
nd

CPU time (seconds)

exact
approximate

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

A

gg
re

ga
te

 s
ta

te
s

CPU time (seconds)

exact
approximate

Figure 1:Performance of value iteration using state aggregation,
with and without approximation. Each point represents data at the
end of an iteration. The top graph shows the error bound at each
iteration, and the bottom graph shows the average number of aggre-
gated states at each iteration. Note that value iteration with exact
state aggregation did not finish the last iteration after 600 seconds.

approximation in early iterations of value iteration, as of way
of speeding convergence.

For example, we implemented a scheme that gradually re-
duces the approximation error in the state aggregation pro-
cess, similar to the scheme described in (Feng & Hansen
2001). Figure 1 shows the effect of approximation on the
cit problem. In the bottom graph, we see that approximation
allows more state aggregation than the exact algorithm. This
makes it possible to perform more iterations of the DP algo-
rithm, and to reduce the error bound of the value function
further than is possible in the same amount of time, using
the exact algorithm.

Conclusion
We have presented a simple approach to state aggregation
for POMDPs that does not depend on a factored represen-
tation, yet retains most of the benefits of the factored algo-
rithms developed before. These benefits include the ability
to exploit problem structure in order to reduce the effective
size of the state space, and the ability to use approximation

to reduce state space size further, in order to improve the
scalability of POMDP algorithms.

Acknowledgments We thank the anonymous reviewers
for helpful comments. This work was supported in part
by NSF grant IIS-9984952 and IIS-0219606, NASA grant
NAG-2-1463, and AFOSR grant F49620-03-1-0090. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
reflect the views of the NSF, NASA, or AFOSR.

References
Boutilier, C., and Poole, D. 1996. Computing optimal
policies for partially observable Markov decision processes
using compact representations. InProceedings of the 13th
National Conference on Artificial Intelligence (AAAI-96),
1168–1175.
Cassandra, A. R.; Kaelbling, L. P.; and Kurien, J. A. 1996.
Acting under uncertainty: Discrete bayesian models for
mobile robot navigation. InProceedings of IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems.
Cassandra, A.; Littman, M.; and Zhang, N. 1997. Incre-
mental pruning: A simple, fast, exact method for partially
observable markov decision processes. InProceedings of
the 13th International Conference on Uncertainty in Artifi-
cial Intelligence.
Draper, D.; Hanks, S.; and Weld, D. 1994. Probabilistic
planning with information gathering and contingent execu-
tion. In Proceedings of the Second International Confer-
ence on Artificial Intelligence Planning Systems.
Feng, Z., and Hansen, E. 2001. Approximate planning
for factored POMDPs. InProceedings of the 6th European
Conference on Planning.
Feng, Z., and Zilberstein, S. 2004. Region-based incre-
mental pruning for POMDPs. InProceedings of the 20th
Conference on Uncertainty in Artificial Intelligence (UAI-
2004).
Guestrin, C.; Koller, D.; and Parr, R. 2001. Solving fac-
tored POMDPs with linear value functions. InProceed-
ings of the IJCAI-2001 workshop on Planning under un-
certainty and incomplete information.
Hansen, E., and Feng, Z. 2000. Dynamic programming
for POMDPs using a factored state representation. InPro-
ceedings of the 5th International Conference on Artificial
Intelligence Planning and Scheduling.
Littman, M. 1994. The witness algorithm: Solving par-
tially observable markov decision processes. Brown uni-
versity department of computer science technical report cs-
94-40.
Smallwood, R., and Sondik, E. 1973. The optimal con-
trol of partially observable markov processes over a finite
horizon.Operations Research21:1071–1088.
White, C. 1991. A survey of solution techniques for the
partially observed markov decision process.Annals of Op-
erations Research32:215–230.

