
Manifold Representations for Value-Function Approximation

Robert Glaubius and William D. Smart
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

United States
{rlg1,wds}@cse.wustl.edu

Introduction
Reinforcement learning (RL) has been shown to be an
effective paradigm for learning control policies for prob-
lems with discrete state spaces. For problems with con-
tinuous multi-dimensional state spaces, the results are
less compelling. When these state spaces can be ef-
fectively discretized, traditional techniques can be ap-
plied. However, many interesting problems must be
discretized into an infeasibly large number of states. In
these cases, other techniques must be used.

Value-function approximation (VFA) addresses some
of the problems of traditional RL algorithms, including
that of dealing with continuous state spaces. Although
it has been successful in a number of specific applica-
tions, it has been shown to fail in the general case, and
has been known to fail even on simple problems (Boyan
& Moore 1995).

We propose a novel approach to value-function ap-
proximation based on ideas from topology. We identify
a key failing of current techniques, and show how our
approach avoids this problem by constructing an ex-
plicit model of the state space topology. We begin with
a brief description of the problems of current value-
function approximation techniques. We then motivate
our proposed approach, outline its mathematical foun-
dations, and provide results from initial experiments.

The Problem with VFA
The straightforward application of VFA has been shown
to fail in the general case (Boyan & Moore 1995).
All commonly used function approximators rely on
(weighted) Euclidean distance as a measure of similarity
between states. For example, in the space shown in the
left of figure 1, this assumption is flawed. Most simple
function approximators will tend to generalize across
the “hole” in the environment; in most cases this leads
to a poor approximation.

Measures of closeness induce a topology on the state
space. In particular, distance metrics and a system’s
dynamics define measures of closeness within the state
space. If the measure used by the function approxima-
tor results in a significanly different topology than that
induced by the system dynamics, we would expect VFA
to perform poorly. To address this issue, we explicitly

B

C

A

BA

C

Figure 1: A simple world containing one obstacle (left).
The world is topologically cylindrical (right).

model the state space by constructing a manifold rep-
resentation. A more formal definition of a manifold is
given in section . First, we will provide a simple exam-
ple to illustrate one such conflict.

Consider the simple world shown on the left of fig-
ure 1, a room with a single obstacle in the center.
Assuming the normal dynamics associated with a room,
i.e. free movement in any direction except through ob-
stacles, point B is intuitively “closer” to A than C is to
A. However, the Euclidean distances between A and C
and B and C is the same.

One potential model of the state space is the subset
of R2 contained inside the outer wall. Together with the
Euclidean distance metric, this world is topologically a
disc. However, the manifold that the agent can actually
move on – the actual state space of the problem – is a
cylinder, as seen in figure 1. The inside wall about the
obstacle maps to the top of the cylinder; the outside
wall of the world maps to the cylinder’s base. Using the
Euclidean distance metric on the surface of this cylinder
will provide a more reasonable measure of locality. The
distance on the cylinder from A to C (blue line) roughly
corresponds to the blue line on the left side of the figure.

For this simple example, it is clear what the best
model of the state space is. However, in general we
only have access to the dynamics of a particular prob-
lem through observed transitions. Therefore, we focus
on constructing manifold models of the state space by
sampling the transition function.



Manifolds
A manifold is a Hausdorff space that is locally Eu-
clidean, i.e., each point in space has a neighborhood
where Euclidean distance reflects the true distance be-
tween points. A differential manifold M is a manifold
together with an atlas, which is a set of charts. Each
chart φ is a homeomorphism from a subset of M to Rn,
where n is the dimension of M . Further, every point on
M is in the domain of some chart.1 We use the term
“manifold” in place of “differential manifold” through-
out this paper.

A global function F : M → R can be embedded on
a manifold M as follows. Let Λ be an indexing set,
then for each chart φλ : Uλ → Rn on M , where Uλ is a
subset of M , we define two functions, fλ : M → R and
bλ : M → [0, 1]. We will delay discussion of fλ for a bit;
the blend function bλ must be a smooth function with
infinite derivatives, all of which are 0 at the boundary
of Uλ. bλ is defined to be 0 everywhere outside of Uλ.
The global function F is defined as

F (p) =
∑

λ∈A bλ(p)fλ(p)∑
λ∈A bλ(p)

(1)

for all points p in M . A more comprehensive description
of manifolds can be found in variety of textbooks (Lef-
schetz 1949).

Manifolds for Value-Function
Approximation
The basic strategy employed in our work is
to model the state space as a set of sim-
pler regions; these are our charts. Consider
the world shown in figure 2. There are an

Figure 2: One possible chart
allocation for a simple world
with one obstacle.

infinite number of
atlases for this ex-
ample; any set of
charts that com-
pletely covers the
reachable part of
the state space is
acceptable. One
possible atlas is
shown in figure 2.
Notice that charts
on opposite sides
of the obstacle do
not overlap. Each
chart is convex and
contains no obsta-

cles, so Euclidean distance should be a reasonable mea-
sure of locality within the chart. This means that
straightforward VFA techniques ought to work well
within each chart.

Once we have constructed a model of the state space,
we embed a global function approximator on this model.

1In this paper we sometimes refer to the domain of a
chart as a chart; the intent should be clear from context.

To achieve this, we embed a local function on each
chart; these correspond to the functions fλ in equa-
tion 1. Following Grimm and Hughes (Grimm &
Hughes 1995), we use a one-dimensional piecewise poly-
nomial spline as the blend function bλ. The value of the
function approximator at a point is computed as in 1.
The use of the blend function allows us to make some
guarantees about the resulting global function. Build-
ing a global function from this manifold, under certain
easily-satisfiable conditions (Grimm & Hughes 1995),
results in a Ck (smooth and continuous up to the kth
derivative) manifold surface. The value of the global
function will be locally bounded by the values of the
embedding functions as well, since the blend functions
are a partition of unity.

In this work we approximate the state-action value
function using one embedding function for each avail-
able action. Updating the value of a state corre-
sponds to presenting a training experience to the func-
tion approximator embedding on each chart containing
that state, using the standard Q-learning iterative up-
date (Watkins & Dayan 1992). In all other ways, we
can treat the set of embedding functions as a drop-
in replacement for the tabular representation used by
standard RL algorithms.

First, however, we show how manifold representa-
tions of the value function relate to currently successful
VFA techniques.

Connections to Other VFA Techniques
Manifold representations provide a unifying framework
for a number of other empirically successful VFA tech-
niques. In this section, we identify these techniques
and briefly describe how they can be represented by a
manifold.

A common VFA approach is to break the state space
into a set of discrete states, represent the values of
these states in a table, and apply traditional RL tech-
niques (Moore & Atkeson 1995; Uther & Veloso 1998).
Others use more advanced function approximation tech-
niques within the cells (Munos & Moore 1999). These
can be modeled by allocating one chart per aggregated
state, and embedding an appropriate function approx-
imator in it. These charts will have no overlap, which
breaks the strict definition of a manifold. However, this
can be easily overcome by growing all charts by a small
amount, so that each overlaps its neighbors by an in-
finitesimal amount.

One of the most empirically successful function ap-
proximators for VFA is Albus’ CMAC (Albus 1975). In-
terestingly, a CMAC is exactly a manifold. The CMAC
tiles the state space with overlapping tiles, each of which
has a constant value assigned to it. The prediction for
a point, p, is the sum of the values of all of the tiles
in which p falls. This sum is often weighted by the
distance of p from the center of the tile. Using the
language of manifolds, the tiles are charts, the value is
the embedding function, and the weights are the blend
functions.



+1 +1

S S

Figure 3: The WallWorld test domain.

Chart Allocation
There are many possible chart allocations for any given
domain; however, some of these will serve our purposes
better than others. Computation time scales with the
number of charts, so we prefer allocations with fewer
charts. However, we expect that larger charts will re-
quire more complex embedding functions in general, so
there is a tradeoff between chart size and approximator
complexity.

In this section, we present three chart allocation
schemes, and demonstrate their behavior on two sample
problems. We simplify matters by considering only ap-
proximations of the state-action value function, which
can be calculated using an off-policy algorithm. Fur-
thermore, we assume that we can arbitrarily sample
states and actions, rather than being constrained to tra-
jectories through the space. Finally, we consider only
problems with a single non-zero reward.

The Test Domains
We use two test domains in this work, WallWorld
and the standard mountain car domain. WallWorld is
shown in figure 3. The agent starts in the lower left of
the world, and can move a fixed step size in the four
cardinal directions. The goal is to get to the upper left
or right, depending on whether there are an odd or even
number of walls, respectively. A reward of 1 is given at
the goal, with 0 reward everywhere else.

The mountain car domain (Moore & Atkeson 1995)
simulates an under-powered car learning to drive up a
hill. The reinforcement learning agent may drive for-
ward, backward, or may choose to coast. A reward of
1 is given when at the top of the hill; 0 reward is given
everywhere else.

Random Allocation
The simplest allocation scheme we experiment with is
random allocation. Random uncovered points are cov-
ered with a fixed-size axis-aligned rectangular chart un-
til no point in the state space is uncovered. It seems
reasonable to expect that such a simple strategy would
not perform well, but as we will show in the next sec-
tion, this scheme can work quite well in some domains.

Random Walk
Our second allocation scheme uses random walks. From
a random state, several n-step random walks are per-
formed with actions chosen uniformly at random. The

Figure 4: Random walk chart allocations for WallWorld
(left) and mountain car (right). Only some of the allo-
cated charts are shown for mountain car.

smallest bounding box enclosing these walks becomes
the domain of a chart. We repeat this process until
the domain is covered. Figure 4 shows some sample
allocations for our two example domains.

Growing Charts
Our final strategy is based on the likelihood of an action
carrying the agent a relatively long distance. Let r be a
positive real number and s be a state, then Pout is the
probability that an arbitrary action will have result in
a new state with distance at least r from s in the state
space.

We apply this statistic in a general framework for
“growing” charts. Basically, we choose a point that is
not yet covered and cover it with a small initial chart.
Regions of the state space adjacent to the initial chart
are merged with it if the distribution of some random
variable across each is not significantly different. This is
repeated until no new region can be added. New points
and charts are allocated until the entirety of the state
space is covered.

We use the Pout statistic to implement this strat-
egy with axis-aligned rectangular charts. An uncovered
point is selected at random and covered with a small
chart. Sides of this chart are selected uniformly at ran-
dom and extended by an increment of δ if the distribu-
tion of sampled Pout values does not significantly differ
from the distribution within the chart itself. This pro-
cess is repeated until every side has failed to grow once.
We continue to allocate new charts until the state space
is covered

This measure is well-suited to detecting changes in
system dynamics that alter the relative magnitude of
state transitions. For instance, we would expect a sig-
nificant difference when sampling a region containing a
wall versus a region with no obstacles. figure 5

Experimental Results
Our initial experiments focus on the quality of the
policy learned by Q-learning using a manifold value-
function approximator. Three chart allocation schemes
(random, random walk, and growth-based) were used,
in combination with two simple function approximators



Figure 5: Growth-based allocations for Wallworld (left)
and mountain car (right).

Figure 6: WallWorld learned policy with a global lin-
ear function approximator. Colors correspond to move-
ments in the four cardinal directions.

(constant and linear) on WallWorld and the mountain
car worlds. The results of these experiments are pre-
sented in this section.

In all experiments, the VFA was trained with one mil-
lion state action pairs selected at random. The learning
rate α was set at 1, and a discount factor of γ = 0.99
was used. The quality of the learned policy was evalu-
ated by executing the greedy policy from 1,000 different
starting points.

We present here the learned policies, rather than
a performace metric, such as percentage of successful
runs. We have found that a poor policy close to the
goal state will cause many evaluation runs to fail, even
though the policy is correct in the majority of the state
space. Empirically, we have found that the policy is
often poor very close to the goal state, but good ev-
erywhere else. We have no concrete explanation of this
phenomenon at present.

WallWorld
Figure 6 shows the policy learned when a global linear
function approximator is used. One plane is learned for
each of the four actions. In this example, only three of
the planes intersect, while the fourth (corresponding to
the down action) consistently has lower value than the
other three. This policy performs poorly, and general-
izes across the obstacle in the domain.

Figure 7 shows the policies learned with random chart
allocation and constant function approximation. These
policies are quite poor in most parts of the state space.
Failure to account for system dynamics results in con-
tiguous areas of similar action across the wall obstacle.

Figure 7: WallWorld learned policies with random chart
allocation and constant function approximation. Chart
sizes are 1% (left), 10% (middle), and 20% (right) of
domain width.

Figure 8: WallWorld learned policies with random walk
chart allocation and constant function approximation.
Random walk lengths are 1 (left), 2 (middle), and 3
(right) steps.

As expected, as the chart size increases, the amount of
generalization across the wall does as well.

Figure 8 shows the results of learning with the
random walk allocation scheme using walks of lengths

of one, two, and three steps. 1-step charts result in
the best policy, which is actually optimal. This is ex-
pected, since charts allocated using this strategy can
only overlap the ends of walls. Since constant function
approximation commits to a single optimal action in a
chart (excluding overlap regions), large charts commit
to large areas of the same action in the policy. As a
result, the learned policy degrades as the walk length
increases.

Switching to linear function approximation (figure 9)
alleviates this problem. All policies shown are near
optimal. This illustrates the trade-off between chart
size and function approximator complexity. Larger
charts generally need more complex embedding func-
tions, while smaller charts can utilize simpler schemes.

Our third chart allocation scheme is shown in fig-

Figure 9: WallWorld learned policies with random walk
chart allocation and linear function approximation for
walks of length 1 (left), 2 (middle), and 3 (right) steps.



Figure 10: WallWorld learned policies with growth-
based chart allocation, with constant (left) and linear
(right) function approximation.

Figure 11: WallWorld learned policies. Top: 1-step
random walk chart allocation, and linear function ap-
proximation, with 4 (left), 6 (middle), and 8 (right)
walls. Bottom: Tabular Q-learning with 400 states.

ure 10. The scheme favors large charts, and performs
poorly in WallWorld. Linear function approximation is
somewhat better, but a more complex function approx-
imator is probably necessary.

It is reasonable to ask these approximation schemes
compare to standard techniques, such as tabular Q-
learning with a uniform state space discretization. Fig-
ure 11 compares the performance of the 1-step random
walk allocator with linear VFA to a tabular approach
for three WallWorld instances. Although they perform
similarly for four and six wall environments, the man-
ifold representation is clearly better in the 8-wall case.
This illustrates one strength of our approach, that the
system is self-tuning, rather than requiring discretiza-
tion to be tuned by hand.

Mountain Car

We also performed experiments with the well-known
mountain car domain. Three actions (left, coast, right)
are available, and a single reward is given at the top of
the hill regardless of velocity. We report the percent-
age of 1000 evaluation runs that reach the goal in less
than 500 steps when started from random positions.
A finely discretized tabular representation achieves a
performance of 84.7% successful runs after one million
training points.

Figure 12: Mountain car learned policies with random
chart allocation, and constant (left) or linear (right)
function approximation.

Figure 13: Mountain car learned policies with growth-
based chart allocation, and constant (left) or linear
(right) function approximation.

Our initial results, although preliminary, are promis-
ing. For growth-based allocations, constant function
approximation resulted in a success rate of 17.9%, while
linear approximation led to a rate of 92.4%.

Figure 12 shows the results of random chart
allocation. For constant function approximation, 21.1%
of runs were successful, while linear function approxi-
mation resulted in 94.3% success. The policy learned
with linear embedding functions gets to the goal nearly
every time. However, runs from a particular state have
a lower discounted total reward than those generated
by the tabular policy, as the linear policy is not quite
as good.

Figure 13 shows the results for growth-based chart
allocation. We do not report results for random walk
allocations, as this method generated an infeasibly large
number of charts even for relatively long walks.

Current Work

The problem of how best to allocate charts to cover teh
domain is the focus of our ongoing work on this prob-
lem. In particular, we are working on methods that
are suited to more complex domains than those pre-
sented in this paper. When the restrictions of a sparse
reward function and insistence on state-action value ap-
proximation are relaxed, we expect the chart allocation
problem to become more difficult. We are also cur-
rently investigating the effectiveness of other function
approximators for embedding on charts.

References

Albus, J. S. 1975. A new approach to manipulator
control: The cerebellar model articulation controller



(CMAC). Journal of Dynamic Systems, Measurement
and Control 220–227.
Boyan, J. A., and Moore, A. W. 1995. Generaliza-
tion in reinforcement learning: Safely approximating
the value function. In Tesauro, G.; Touretzky, D. S.;
and Leen, T., eds., Advances in Neural Information
Processing Systems, volume 7, 369–376. MIT Press.
Grimm, C. M., and Hughes, J. F. 1995. Modeling sur-
faces of arbitrary topology using manifolds. Computer
Graphics 29(2). Proceedings of SIGGRAPH ’95.
Lefschetz, S. 1949. Introduction to Topology. Princeton
University Press.
Moore, A. W., and Atkeson, C. G. 1995. The parti-
game algorithm for variable resolution reinforcement
learning in multidimensional state-spaces. Machine
Learning 21:199–234.
Munos, R., and Moore, A. W. 1999. Variable resolu-
tion discretization in optimal control. Machine Learn-
ing.
Uther, W. T. B., and Veloso, M. M. 1998. Tree based
discretization for continuous state space reinforcement
learning. In AAAI/IAAI, 769–774.
Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning.
Machine Learning 8:279–292.


