
Solving Factored MDPs with Continuous and Discrete Variables
Carlos Guestrin

Berkeley Research Center
Intel Corporation

Milos Hauskrecht
Department of Computer Science

University of Pittsburgh

Branislav Kveton
Intelligent Systems Program

University of Pittsburgh

Abstract
Although many real-world stochastic planning problems are
more naturally formulated by hybrid models with both discrete
and continuous variables, current state-of-the-art methods can-
not adequately address these problems. We present the first
framework that can exploit problem structure for modeling and
solving hybrid problems efficiently. We formulate these prob-
lems as hybrid Markov decision processes (MDPs with con-
tinuous and discrete state and action variables), which we as-
sume can be represented in a factored way using a hybrid dy-
namic Bayesian network (hybrid DBN). We present a new lin-
ear program approximation method that exploits the structure
of the hybrid MDP and lets us compute approximate value func-
tions more efficiently. In particular, we describe a new factored
discretization of continuous variables that avoids the exponen-
tial blow-up of traditional approaches. We provide theoretical
bounds on the quality of such an approximation and on its scale-
up potential. We support our theoretical arguments with exper-
iments on a set of control problems with up to 28-dimensional
continuous state space and 22-dimensional action space.

1 Introduction
Markov decision processes (MDPs) (Bellman 1957; Bertsekas
& Tsitsiklis 1996) offer an elegant mathematical framework
for representing sequential decision problems in the presence
of uncertainty. While standard solution techniques, such as
value or policy iteration, scale-up well in terms of the total
number of states and actions, these techniques are less suc-
cessful in real-world MDPs. In purely discrete settings, the
running time of these algorithms grows exponentially in the
number variables, the so called curse of dimensionality. Fur-
thermore, many real-world problems include a combination of
continuous and discrete state and action variables. The con-
tinuous components are usually discretized, which leads to an
exponential blow up in the number of variables.

We present the first framework that exploits problem struc-
ture and solves large hybrid MDPs efficiently. The MDPs are
modelled by hybrid factored MDPs, where the stochastic dy-
namics is represented compactly by a probabilistic graphical
model, a hybrid dynamic Bayesian network (DBN) (Dean &
Kanazawa 1989). The solution of the MDP is approximated
by a linear combination of basis functions (Bellman, Kalaba,
& Kotkin 1963; Bertsekas & Tsitsiklis 1996). Specifically, we
use a factored (linear) value function (Koller & Parr 1999),
where each basis function depends on a small number of state
variables. We show that the weights of this approximation
can be optimized using a convex formulation that we call hy-
brid approximate linear programming (HALP). The HALP re-
duces to the approximate linear programming (ALP) formula-
tion (Schweitzer & Seidmann 1985) in purely discrete settings
and to the formulation recently proposed by (Hauskrecht &
Kveton 2003) for the continuous-state settings.

Copyright c© 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

We present a theoretical analysis of the HALP, providing
bounds with respect to the best approximation in the space of
the basis functions. Unfortunately, the HALP formulation of
the problem may not be solved directly since it may use infi-
nite number of constraints. To address this problem, we for-
mulate a relaxed version of the HALP, an ε-HALP, that uses
a finite subset of constraints induced by the ε-grid disretiza-
tion of continuous components. We provide a bound on the
loss in the quality of the ε-HALP solution with respect to the
complete HALP formulation.

The main advantage of the ε-HALP is that it can be solved
efficiently by existing factored ALP methods (Guestrin,
Koller, & Parr 2001a; Schuurmans & Patrascu 2002). There-
fore, the complexity of our solution does not grow exponen-
tially with the number of variables, and depends only on the
structure of the problem and the choice of basis functions. We
illustrate the feasibility of our formulation and its solution al-
gorithm on a sequence of control optimization problems with
28-dimensional continuous state space and 22-dimensional
action space. These nontrivial dynamic optimization problems
are far out of reach of classic solution techniques.

2 Multiagent hybrid factored MDPs
Factored MDPs (Boutilier, Dearden, & Goldszmidt 1995) al-
low one to exploit problem structure to represent exponen-
tially large MDPs compactly. We extend this formalism to
a multiagent hybrid factored MDP that is defined by a 4-tuple
(X,A, P,R) consisting of a state space X represented by a
set of state variables X = {X1, . . . Xn}, an action space
A defined by a set of action variables A = {A1, . . . Am},
a stochastic transition model P modeling the dynamics of a
state conditioned on the previous state and action choice, and
a reward model R that quantifies the immediate payoffs asso-
ciated with a state-action configuration.
State variables: Each state variable is either discrete or con-
tinuous. We assume that every continuous variable is bounded
to a [0, 1] subspace, and each discrete variable takes on values
in some finite domain. A state is defined by a vector x of value
assignments to each state variable, which splits into discrete
and continuous components denoted by x = (xD,xC).
Actions: Action space is distributed such that every action
corresponds to one agent. As with state variables, the global
action a is defined by a vector of individual action choices
that can be divided into discrete aD and continuous aC com-
ponents.
Factored transition: State transition model is defined by a
dynamic Bayesian network (DBN) (Dean & Kanazawa 1989).
Let Xi denote a variable at the current time and let X ′

i de-
note the same variable at the successive step. The transition
graph of a DBN is a two-layer directed acyclic graph whose
nodes are {X1, . . . , Xn, A1, . . . , Am, X

′

1
, . . . , X ′

n}. The par-
ents of X ′

i in the graph are denoted by Par(X ′

i). For simplic-
ity of exposition, we assume that Par(X ′

i) ⊆ {X,A}, i.e.,



all arcs in the DBN are between variables in consecutive time
slices. Each node X ′

i is associated with a conditional proba-
bility function (CPF) p(X ′

i | Par(X ′

i)). The transition proba-
bility p(x′ | x,a) is then defined to be

∏
i p(x

′

i | ui), where
ui is the value in {x,a} of the variables in Par(X ′

i).
Parameterization of CPFs: The transition model for each
variable is local, as each CPF depends only on a small subset
of state variables and individual actions. Compact parametric
representation of the transitions is achieved by using beta or
mixture of beta densities (Hauskrecht & Kveton 2003; Kveton
& Hauskrecht 2004) for continuous variables, and by general
discriminant functions for discrete variables.
Rewards: Reward function R decomposes as a sum of partial
reward functions Rj defined on the subsets of state and action
variables.
Policy: The objective is to find a control policy π∗ : X → A

that maximizes the infinite-horizon, discounted reward crite-
rion: E[

∑
∞

i=0
γiri], where γ ∈ [0, 1) is a discount factor, and

ri is a reward obtained in step i.
Value function: The value of the optimal policy satisfies the
Bellman fixed point equation (Bellman 1957; Bertsekas &
Tsitsiklis 1996):

V ∗(x) = sup
a


R(x, a) + γ

∑

x
′

D

∫

x
′

C

p(x′ | x,a)V ∗(x′)


 , (1)

where V ∗ is the value of the optimal policy. Given the value
function V ∗, the optimal policy π∗(x) is defined by the com-
posite action a optimizing Equation 1.

3 Approximate linear programming solutions
for hybrid MDPs

A standard way of solving complex MDPs is to assume a sur-
rogate value function form with a small set of tunable param-
eters. Increasingly popular in recent years are the approxima-
tions based on linear representations of value functions, where
the value function V (x) is expressed as a linear combination
of k basis functions fi(x) (Bellman, Kalaba, & Kotkin 1963;
Roy 1998):

V (x) =

k∑

i=1

wifi(x).

Basis functions are often restricted to small subsets of state
variables (Bellman, Kalaba, & Kotkin 1963; Roy 1998), and
the goal of the optimization is to fit the set of weights w =
(w1, . . . , wk).

3.1 Formulation
We generalize approximate linear programming (ALP) for
discrete MDPs (Schweitzer & Seidmann 1985) into hybrid
settings. Weights w are optimized by solving a convex opti-
mization problem that we call hybrid approximate linear pro-
gram (HALP):

minimizew
∑

i

wiαi

subject to:
∑

i

wiFi(x,a)−R(x,a) ≥ 0 ∀ x,a; (2)

where αi denotes the basis function relevance weight given
by:

αi =
∑

xD

∫

xC

ψ(x)fi(x)dxC , (3)

where ψ(x) > 0 is a state relevance density function such that∑
xD

∫
xC

ψ(x)dxC = 1, allowing us to weight the quality of

our approximation differently for different parts of the state
space; and Fi(x,a) denotes:

Fi(x,a) = fi(x)− γ
∑

x
′

D

∫

x
′

C

p(x′ | x,a)fi(x
′)dx′C . (4)

This formulation reduces to the standard discrete-case ALP
(Schweitzer & Seidmann 1985; Guestrin, Koller, & Parr
2001b; de Farias & Van Roy 2003; Schuurmans & Patrascu
2002) if the state space x is discrete, or to the continuous ALP
(Hauskrecht & Kveton 2003) if the state space is continuous.

A number of concerns arise in context of the HALP ap-
proximation. First, the formulation of the HALP appears to
be arbitrary, and it is not immediately clear how it relates to
the original hybrid MDP problem. Second, the HALP aprox-
imation for the hybrid MDP involves complex integrals that
must be evaluated. Third, the number of constraints defining
the LP is exponential if the state and action spaces are discrete
and infinite if any of the spaces involves continuous compo-
nents. In the following text, we address and provide solutions
for each of these issues.

3.2 Theoretical analysis
Theoretical analysis of the quality of the solution obtained by
the HALP follows the ideas of de Farias and Van Roy 2003
for the discrete case. They note that the approximate formula-
tion cannot guarantee an uniformly good approximation of the
optimal value function over the whole state space. To address
this issue, they define a Lyapunov function that weighs states
appropriately: a Lyapunov function L(x) =

∑
i w

L
i fi(x)

with contraction factor κ ∈ (0, 1) for the transition model Pπ
is a strictly positive function such that:

κL(x) ≥ γ
∑

x
′

D

∫

x
′

C

Pπ(x
′ | x)L(x′)dx′

C . (5)

This definition allows to claim:

Proposition 1 Let w
∗ be an optimal solution to the HALP in

Equation 2, then, for any Lyapunov function L(x), we have
that:

‖V ∗ −Hw
∗‖

1,ψ ≤
2ψᵀL

1− κ
min
w

‖V ∗ −Hw‖
∞,1/L ,

where Hw represents the function
∑
i wifi(·), the L1 norm

weighted by ψ i given by ‖·‖
1,ψ , and ‖·‖

∞,1/L is the max-
norm weighted by 1/L.
Proof: The proof of this result for the hybrid setting fol-
lows the outline of the proof of de Farias and Van Roy’s The-
orem 4.2 (de Farias & Van Roy 2003) for the discrete case.

4 Factored HALP
Factored MDP models offer, in addition to structured param-
eterizations of the process, an opportunity to solve the prob-
lem more efficiently. The opportunity stems from the structure
of constraint definitions that decompose over state and action
subspaces. This is a direct consequence of: (1) factorizations,
(2) presence of local transitions, and (3) basis functions de-
fined over small state subspaces. This section describes how
these properties allow us to compute the factors in the HALP
efficiently.



4.1 Factored hybrid basis function representation
Koller and Parr 1999 show that basis functions with limited
scope provide the basis for efficient approximations in the
context of discrete factored MDPs. An important issue in hy-
brid settings is that the problem formulation incorporates inte-
grals, which may not be computable. Hauskrecht and Kveton
2003 propose conjugate transition model and basis function
classes that lead to closed-form solutions of all integrals in
strictly continuous cases.

In our hybrid setting, each basis function fi(xi) is defined
over discrete components xiD and continuous components
xiC , and decomposes as a product of two factors:

fi(xi) = fiD (xiD )fiC (xiC ), (6)
where fiC (xiC ) takes the form of polynomials over the vari-
ables in XiC , and fiD (xiD ) is an arbitrary function over the
discrete variables XiD . This basis function representation
gives us high flexibility and ability to efficiently solve hybrid
planning problem.

4.2 Hybrid backprojections
Computation of Fi(x,a), the difference between the basis
function fi(x) and its discounted backprojection, given by:

gi(x,a) =
∑

x
′

D

∫

x
′

C

p(x′ | x,a)fi(x
′)dx′

C

requires us to compute a sum over the exponential number of
discrete states x

′

D, and integrals over the continuous states x
′

C .
Based on the results of Koller and Parr 1999 for discrete

variables, and Hauskrecht and Kveton 2003 for continuous
variables, we can rewrite the backprojection for hybrid basis:

gi(x,a) = giD (x, a)giC (x, a),

=

(∑
x
′

iD

p(x′iD | x, a)fiD (x′iD )

)

(∫
x
′

iC

p(x′iC | x,a)fiC (x′iC )dx′iC

) (7)

and compute it efficiently. Note that giD (x,a) is the backpro-
jection of a discrete basis function and giC (x,a) is the back-
projection of a continuous basis function.

4.3 Hybrid relevance weights
Computation of basis function relevance weights αi in Equa-
tion 3 requires us to solve exponentially-large sums and com-
plex integrals.

Guestrin et al. 2001b; 2003 showed that if the state rel-
evance density ψ(x) is represented in a factorized fashion,
these weights can be computed efficiently. This result extends
to hybrid settings, and thus we can decompose the computa-
tion of αi:

αi = αiDαiC ,

=
(∑

xiD

ψ(xiD )fiD (xiD )
)

(∫
xiC

ψ(xiC )fiC (xiC )dxiC

)
,

(8)

where ψ(xiD ) is the marginal of the density ψ(x) to the dis-
crete variables XiD , and ψ(xiC ) is the marginal to the contin-
uous variables XiC .

5 Factored ε-HALP formulation
Despite the decompositions and closed-form solutions, fac-
tored HALPs remain hard to solve. Unfortunately, the for-
mulation includes constraints for each joint state x and action
a, which leads to exponentially-many constraints for discrete

components, and uncountably infinite constraint set for con-
tinuous. To address these issues, we propose to transform the
factored HALP into ε-HALP, an approximation of the factored
HALP with a finite number of constraints.

The ε-HALP relies on the ε coverage of the constraint
space. In the ε-coverage each continuous (state or action) vari-
able is discretized into 1

2ε + 1 equally spaced values. The dis-
cretization induces a multidimensional grid G, such that any
point in [0, 1]d is at most ε far from a point in G under the
max-norm.

If we directly enumerate each state and action configu-
ration of the ε-HALP we obtain an LP with exponentially-
many constraints. However, not all these constraints de-
fine the solution and need to be enumerated. This is the
same setting as the factored LP decomposition of Guestrin
et al. 2001a. We can use the same technique to decompose
our ε-HALP into an equivalent LP with exponentially-fewer
constraints. The complexity of this new problem will only
be exponentially in the tree-width of a cost network formed
by the restricted scope functions in our LP, rather than in the
complete set of variables (Guestrin, Koller, & Parr 2001a;
Guestrin et al. 2003). Alternatively we can also apply the
approach by Schuurmans and Patrascu 2002 that incremen-
tally builds the set of constraints using a constraint generation
heuristic and often performs well in practice.

The ε-HALP offers an efficient approximation of a hybrid
factored MDP; however, it is unclear how the discretization
affects the quality of the approximation. Most discretization
approaches require an exponential number of points for a fixed
approximation level. In the remainder of this section, we pro-
vide a proof that exploits factorization structure to show that
our ε-HALP provides a polynomial approximation of the con-
tinuous HALP formulation.

5.1 Bound on the quality of ε-HALP
A solution to the ε-HALP will usually violate some of the
constraints in the original HALP formulation. We show that
if these constraints are violated by a small amount, then the
ε-HALP solution is nearly optimal.

Let us first define the degree to which a relaxed HALP, that
is, a HALP defined over a finite subset constraints, violates
the complete set of constraints.
Definition 1 A set of weights w is δ-infeasible if:∑

i

wiFi(x,a)−R(x,a) ≥ −δ, ∀x,a.

Now we are ready to show that, if the solution to the relaxed
HALP is δ-infeasible, then the quality of the approximation
obtained from the relaxed HALP is close to the one in the
complete HALP.
Proposition 2 Let w∗ be any optimal solution to the complete
HALP in Equation 2, and ŵ be any optimal solution to a re-
laxed HALP, such that ŵ is δ-infeasible, then:

‖V ∗ −Hŵ‖
1,ψ ≤ ‖V

∗ −Hw
∗‖

1,ψ + 2
δ

1− γ
.

Proof: First, by monotonicity of the Bellman operator, any
feasible solution w in the complete HALP satisfies:∑

i

wifi(x) ≥ V ∗(x). (9)

Using this fact, we have that:
‖Hw

∗ − V ∗‖
1,ψ = ψᵀ |Hw

∗ − V ∗| ,

= ψᵀ (Hw
∗ − V ∗) ,

= ψᵀHw
∗ − ψᵀV ∗. (10)



Next, note that the constraints in the relaxed HALP are a sub-
set of those in the complete HALP. Thus, w

∗ is feasible for
the relaxed HALP, and we have that:

ψᵀHw
∗ ≥ ψᵀHŵ. (11)

Now, note that if ŵ is δ-infeasible in the complete HALP,
then if we add δ

1−γ to Hŵ we obtain a feasible solution to the
complete HALP, yielding:∥∥∥∥Hŵ +

δ

1− γ
− V ∗

∥∥∥∥
1,ψ

= ψᵀHŵ +
δ

1− γ
− ψᵀV ∗,

≤ ψᵀHw
∗ +

δ

1− γ
− ψᵀV ∗,

= ‖Hw
∗ − V ∗‖

1,ψ +
δ

1− γ
.

(12)
The proof is concluded by substituting Equation 12 into the

triangle inequality bound:

‖Hŵ − V ∗‖
1,ψ ≤

∥∥∥∥Hŵ +
δ

1− γ
− V ∗

∥∥∥∥
1,ψ

+
δ

1− γ
.

The above result can be combined with the result in Section
3 to obtain the bound on the quality of the ε-HALP.
Theorem 1 Let ŵ be any optimal solution to the relaxed ε-
HALP satisfying the δ infeasibility condition. Then, for any
Lyapunov function L(x), we have:

‖V ∗ −Hŵ‖
1,ψ ≤ 2

δ

1− γ
+

2ψᵀL

1− κ
min
w

‖V ∗ −Hw‖
∞,1/L .

Proof: Direct combination of Propositions 1, 2.

5.2 Resolution of the ε grid
Our bound for relaxed versions on the HALP formulation, pre-
sented in the previous section, relies on adding enough con-
straints to guarantee at most δ-infeasibility. The ε-HALP ap-
proximates the constraints in HALP by restricting values of
its continuous variables to the ε grid. In this section, we ana-
lyze the relationship between the choice of ε and the violation
level δ, allowing us to choose the appropriate discretization
level for a desired approximation error in Theorem 1.

Our condition in Definition 1 can be satisfied by a set
constraints C that ensures a δ max-norm discretization of∑
i ŵiFi(x,a)−R(x,a). In the ε-HALP this condition is met

with the ε-grid discretization that assures that for any state-
action pair x,a there exists a pair xG,aG in the ε grid such
that:∥∥∑

i ŵiFi(x, a)−R(x,a)−
∑
i ŵiFi(xG,aG)−R(xG,aG)

∥∥
∞

≤ δ.

Usually, such bounds are achieved by considering the Lip-
schitz modulus of the discretized function: Let h(u) be an
arbitrary function defined over the continuous subspace U ∈
[0, 1]d with a Lipschitz modulus K and let G be an ε-grid
discretization of U. Then the δ max-norm discretization of
h(u) can be achieved with a ε grid with the resolution ε ≤ δ

K .
Usually, the Lipschitz modulus of a function rapidly increases
with dimension d, thus requiring additional points for a de-
sired discretization level.

Each constraint in the ε-HALP is defined in terms of a sum
of functions:

∑
i ŵiFi(x,a)−

∑
j R(x,a), where each func-

tion depends only on a small number of variables (and thus
has a small dimension). Therefore, instead of using a global
Lipschitz constant K for the complete expression we can ex-
press the relation in between the factor δ and ε in terms of the

0 0.5 1
0

0.5

1
Non−outgoing channels

0 0.5 1
0

1

2

x
i

Outgoing channels

(a) (b)
Figure 1: a. The topology of an irrigation system. Irrigation chan-
nels are represented by links xi and water regulation devices are
marked by rectangles ai. Input and output regulation devices are
shown in light and dark gray colors. b. Reward functions for the
amount of water xi in the ith irrigation channel.

Lipschitz constants of individual functions, exploiting the fac-
torization structure. In particular, let Kmax be the worst-case
Lipschitz constant over both the reward functions Rj(x,a)
and wiFi(x,a). To guarantee that Kmax is bounded, we must
bound the magnitude of ŵi. Typically, if the basis functions
have unit magnitude, the ŵi will be bounded Rmax/(1 − γ).
Here, we can defineKmax to be the maximum of the Lipschitz
constants of the reward functions and of Rmax/(1− γ) times
the constant for each Fi(x,a). By choosing an ε discretization
of only:

ε ≤
δ

MKmax
,

where M is the number of functions, we guarantee the condi-
tion of Theorem 1 for a violation of δ.

6 Experiments
This section presents an empirical evaluation of our approach,
demonstrating the quality of the approximation and the scale-
up potential.

6.1 Irrigation network example
An irrigation system consists of a network of irrigation chan-
nels that are connected by regulation devices (Figure 1a). Reg-
ulation devices are used to regulate the amount of water in the
channels, which is achieved by pumping the water from one
of the channels to another one. The goal of the operator of the
irrigation system is to keep the amount of water in all channels
on an optimal level (determined by the type of planted crops,
etc.), by manipulation of regulation devices.

Figure 1a illustrates the topology of channels and regulation
devices for one of the irrigation systems used in the experi-
ments. To keep problem formulation simple, we adopt several
simplifying assumptions: all channels are of the same size,
water flows are oriented, and the control structures operate in
discrete modes.

The irrigation system can be formalized as a hybrid MDP,
and the optimal behavior of the operator can be found as the
optimal control policy for the MDP. The amount of water in
the ith channel is naturally represented by a continuous state
factor xi ∈ [0, 1]. Each regulation device can operate in mul-
tiple modes: the water can be pumped in between any pair



0 0.5 1
x

i

0 0.5 1
x

i

0 0.5 1
x

i

0 0.5 1
x

i

Figure 2: Feature functions for the amount of water xi in the ith
irrigation channel.

of incoming and outgoing channel. These options are repre-
sented by discrete action variables ai, one variable per regula-
tion device. The input and output regulation devices (devices
with no incoming or no outgoing channels) are special and
continuously pump the water in or out of the irrigation system.
Transition functions are defined as beta densities that represent
water flows depending on the operating modes of the regula-
tion devices. Reward function reflects our preference for the
amount of water in the channels (Figure 1b). The reward func-
tion is factorized along channels, defined by a linear reward
function for the outgoing channels, and a mixture of Gaus-
sians for all other channels. The discount factor is γ = 0.95.
To approximate the optimal value function, a combination of
linear and piecewise linear feature functions is used at every
channel (Figure 2).

6.2 Experimental results
The objective of the first set of experiments was to compare
the quality of solutions obtained by the ε-HALP for varying
grid resolutions ε against other techniques for policy genera-
tion and to illustrate time (in seconds) needed to solve the ε-
HALP problem. All experiments are performed on the irriga-
tion network from Figure 1a with 17 dimensional state space
and 15 dimensional action space. The results are presented in
Figure 3. The quality of policies is measured in terms of the
average reward that is obtained via Monte Carlo simulations of
the policy on 100 state-action trajectories, each of 100 steps.
To assure the fairness of the comparison, the set of initial states
is kept fixed across experiments.

Three alternative solutions are used in the comparison: ran-
dom policy, local heuristic, and global heuristic. The random
policy operates regulation devices randomly and serves as a
baseline solution. The local heuristic optimizes the one-step
expected reward for every regulation device locally, while ig-
noring all other devices. Finally, the global heuristic attempts
to optimize one-step expected reward for all regulatory de-
vices together. The parameter of the global heuristic is the
number of trials used to estimate the global one-step reward.
All heuristic solutions were applied in the on-line mode; thus,
their solution times are not included in Figure 3. The results
show that the ε-HALP is able to solve a very complex opti-
mization problem relatively quickly and outperform strawman
heuristic methods in terms of the quality of their solutions.

6.3 Scale-up study
The second set of experiments focuses on the scale-up poten-
tial of ε-HALP method with respect to the complexity of the
model. The experiments are performed for n-ring and n-ring-
of-rings topologies (Figure 4a). The results, summarized in
Figure 4b, show several important trends: (1) the quality of the
policy for the ε-HALP improves with higher grid resolution ε,
(2) the running time of the method grows exponentially with

ε-HALP Alternative solution
ε µ σ Time[s] Method µ σ
1 42.8 3.0 2 Random 35.9 2.7

1/2 60.3 3.0 21 Local 55.4 2.5
1/4 61.9 2.9 184 Global 1 60.4 3.0
1/8 72.2 3.5 1068 Global 4 66.0 3.6
1/16 73.8 3.0 13219 Global 16 68.2 3.2

Figure 3: Results of the experiments for the irrigation system in
Figure 1a. The quality of found policies is measured by the aver-
age reward µ for 100 state-action trajectories, where σ denotes the
standard deviation of the rewards.

the grid resolution, and (3) the increase in the running time
of the method for topologies of increased complexity is mild
and far from exponential in the number of variables n. Graph-
ical examples of each of these trends are given in Figures 4c,
4d, and 4e. In addition to the running time curve, Figure 4e
shows a quadratic polynomial fitted to the values for different
n. This supports our theoretical findings that the running time
complexity of the ε-HALP method for an appropriate choice
of basis functions does not grow exponentially in the number
of variables.

7 Conclusions
We present the first framework that can exploit problem struc-
ture for modeling and approximately solving hybrid problems
efficiently. We provide bounds on the quality of the solu-
tions obtained by our HALP formulation with respect to the
best approximation in our basis function class. This HALP
formulation can be closely approximated by the (relaxed) ε-
HALP, if the resulting solution is near feasible in the original
HALP formulation. Although we would typically require an
exponentially-large discretization to guarantee this near feasi-
bility, we provide an algorithm that can efficiently generate an
equivalent guarantee with an exponentially-smaller discretiza-
tion. When combined, these theoretical results lead to a prac-
tical algorithm that we have successfully demonstrated on a
set of control problems with up to 28-dimensional continuous
state space and 22-dimensional action space.

The techniques presented in this paper directly generalize
to collaborative multiagent settings, where each agent is re-
sponsible for one of the action variables, and they must co-
ordinate to maximize the total reward. The off-line planning
stage of our algorithm remains unchanged. However, in the
on-line action selection phase, at every time step, the agents
must coordinate to choose the action that jointly maximizes
the expected value for the current state. We can achieve this
by extending the coordination graph algorithm of Guestrin et
al. 2001b to our hybrid setting with our factored discretization
scheme. The result will be an efficient distribute coordination
algorithm that can cope with both continuous and discrete ac-
tions.

Many real-world problems involve continuous and discrete
elements. We believe that our algorithms and theoretical re-
sults will significantly further the applicability of automated
planning algorithms to these settings.

Acknowledgments
Milos Hauskrecht was supported in part by the National
Science Foundation under grant ITR-0325353 and grant
0416754. Branislav Kveton acknowledges the fellowship sup-
port from the School of Arts and Sciences, University of Pitts-



n-ring
ε n = 6 n = 9 n = 12 n = 15 n = 18

µ Time[s] µ Time[s] µ Time[s] µ Time[s] µ Time[s]
1 28.4 1 37.5 1 46.9 1 55.6 2 64.5 3

1 / 2 33.5 3 43.0 5 52.6 9 62.9 17 72.1 28
1 / 4 35.1 11 45.2 21 54.2 43 64.2 63 74.5 85
1 / 8 40.1 46 51.4 85 62.2 118 73.2 168 84.9 193
1 / 16 40.4 331 51.8 519 63.7 709 75.5 963 86.8 1285

n-ring-of-rings
ε n = 6 n = 9 n = 12 n = 15 n = 18

µ Time[s] µ Time[s] µ Time[s] µ Time[s] µ Time[s]
1 14.8 1 16.2 2 17.5 4 18.5 5 19.7 6

1 / 2 38.6 12 50.5 25 44 103 75.8 69 87.6 107
1 / 4 40.1 82 53.6 184 66.7 345 79.0 590 93.1 861
1 / 8 48.0 581 62.4 1250 76.1 2367 90.5 3977 104.5 6377
1 / 16 47.1 4736 62.3 11369 77.6 22699 92.4 35281 107.8 53600

(a) (b)

1 2 4 8 16
0

20

40

60

80

1 / ε

E
xp

ec
te

d 
re

w
ar

d

12−ring−of−rings

1 2 4 8 16
0

1

2

3
x 104

1 / ε

Ti
m

e

12−ring−of−rings

6 9 12 15 18
0

2000

4000

6000

8000

n

Ti
m

e

n−ring−of−rings, 1 / ε = 8

(c) (d) (e)
Figure 4: a. Two irrigation network topologies used in the scale-up experiments: n-ring-of-rings (shown for n = 6) and n-ring (shown for
n = 6). b. Average rewards and policy computation times for different ε and various networks architectures. c. Average reward as a function
of grid resolution ε. d. Time complexity as a function of grid resolution ε. e. Time complexity (solid line) as a function of different network
sizes n. The quadratic approximation of the time complexity is plotted as dashed line.

burgh.

References
Bellman, R.; Kalaba, R.; and Kotkin, B. 1963. Polynomial
approximation – a new computational technique in dynamic
programming. Math. Comp. 17(8):155–161.
Bellman, R. E. 1957. Dynamic programming. Princeton
Press.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-dynamic
Programming. Athena.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995. Ex-
ploiting structure in policy construction. In IJCAI.
de Farias, D. P., and Roy, B. V. 2001. On constraint sampling
for the linear programming approach to approximate dy-
namic programming. Mathematics of Operations Research
submitted.
de Farias, D., and Van Roy, B. 2003. The linear program-
ming approach to approximate dynamic programming. Op-
erations Research 51(6).
Dean, T., and Kanazawa, K. 1989. A model for reasoning
about persistence and causation. Computational Intelligence
5:142–150.
Guestrin, C. E.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient solution algorithms for factored MDPs. JAIR
19:399–468.
Guestrin, C. E.; Koller, D.; and Parr, R. 2001a. Max-norm
projections for factored MDPs. In IJCAI-01.

Guestrin, C. E.; Koller, D.; and Parr, R. 2001b. Multiagent
planning with factored MDPs. In NIPS-14.
Hauskrecht, M., and Kveton, B. 2003. Linear program ap-
proximations to factored continuous-state Markov decision
processes. In NIPS-17.
Kveton, B, and Hauskrecht, M. 2004. Heuristic Refine-
ments of Approximate Linear Programming for Factored
Continuous-State Markov Decision Processes. In ICAPS-14.
Koller, D., and Parr, R. 1999. Computing factored value
functions for policies in structured MDPs. In IJCAI-99.
Roy, B. V. 1998. Learning and value function approximation
in complex decision problems. Ph.D. Dissertation, MIT.
Schuurmans, D., and Patrascu, R. 2002. Direct value-
approximation for factored mdps. In NIPS-14.
Schweitzer, P., and Seidmann, A. 1985. Generalized polyno-
mial approximations in Markovian decision processes. Jour-
nal of Math. Analysis and Apps. 110:568 – 582.


