
Dynamic Programming for Partially Observable Stochastic Games

Eric A. Hansen
Dept. of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu

Daniel S. Bernstein and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

{bern,shlomo}@cs.umass.edu

Abstract

We develop an exact dynamic programming algorithm for
partially observable stochastic games (POSGs). The algo-
rithm is a synthesis of dynamic programming for partially ob-
servable Markov decision processes (POMDPs) and iterated
elimination of dominated strategies in normal form games.
We prove that when applied to finite-horizon POSGs, the al-
gorithm iteratively eliminates very weakly dominated strate-
gies without first forming a normal form representation of the
game. For the special case in which agents share the same
payoffs, the algorithm can be used to find an optimal solu-
tion. Preliminary empirical results are presented.

Introduction 1

The theory of stochastic games provides a foundation
for much recent work on multi-agent planning and learn-
ing (Littman 1994; Boutilier 1999; Kearns, Mansour, &
Singh 2000; Brafman & Tennenholtz 2002; Hu & Wellman
2003). A stochastic game can be viewed as an extension of a
Markov decision process (MDP) in which there are multiple
agents with possibly conflicting goals, and the joint actions
of agents determine state transitions and rewards. Much of
the literature on stochastic games assumes that agents have
complete information about the state of the game; in this re-
spect, it generalizes work on completely observable MDPs.
In fact, exact dynamic programming algorithms for stochas-
tic games closely resemble exact dynamic programming al-
gorithms for completely observable MDPs (Shapley 1953;
Filar & Vrieze 1997; Kearns, Mansour, & Singh 2000). Al-
though there is considerable literature on partially observ-
able Markov decision processes (POMDPs), corresponding
results for partially observable stochastic games (POSGs)
are very sparse, and no exact dynamic programming algo-
rithm for solving POSGs has been previously described.

In this paper, we show how to generalize the dynamic pro-
gramming approach to solving POMDPs in order to develop
a dynamic programming algorithm for POSGs. The dif-
ficulty in developing this generalization is that agents can
have different beliefs. As a result, it is not possible to

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1A longer version of this paper appears in the proceedings of
the main conference.

solve a POSG by transforming it into a completely observ-
able stochastic game over belief states, analogous to how a
POMDP is solved by transforming it into a completely ob-
servable MDP over belief states. A different approach is
needed. Our approach is related to iterative elimination of
dominated strategies in normal form games, which also al-
lows agents to have different beliefs. In fact, our approach
can be viewed as a synthesis of dynamic programming for
POMDPs and iterated elimination of dominated strategies
in normal form games. We define a generalized notion of
belief that includes uncertainty about the underlying state
and uncertainty about other agent’s future plans. This allows
us to define amulti-agent dynamic programming operator.
We show that the resulting dynamic programming algorithm
corresponds to a type of iterated elimination of dominated
strategies in the normal form representation of finite-horizon
POSGs. This is the first dynamic programming algorithm
for iterated strategy elimination. For the special case where
all agents share the same payoff function, our dynamic pro-
gramming algorithm can be used to find an optimal solution.

Related work
A finite-horizon POSG can be viewed as a type of extensive
game with imperfect information (Kuhn 1953). Although
much work has been done on such games, very little of it
is from a computational perspective. This is understand-
able in light of the negative worst-case complexity results
for POSGs (Bernsteinet al. 2002). A notable exception is
reported in (Koller, Megiddo, & von Stengel 1994), in which
the authors take advantage of thesequence formrepresenta-
tion of two-player games to find mixed strategy Nash equi-
libria efficiently. In contrast to their work, ours applies to
any number of players. Furthermore, our algorithms are fo-
cused on eliminating dominated strategies, and do not make
any assumptions about which of the remaining strategies
will be played.

For the special case of cooperative games, several algo-
rithms have been proposed. However, previous algorithms
do not guarantee optimality in general. If all agents share
their private information, a cooperative POSG can be con-
verted to a single-agent POMDP. There are also algorithms
for solving cooperative POSGs with other forms of very spe-
cialized structure (Hsu & Marcus 1982; Beckeret al. 2003).
For general cooperative POSGs, algorithms such as those of

Peshkin et al. (2000) and Nair et al. (2003) can be used, but
they are only guaranteed to converge to local optima.

Background
As background, we review the POSG model and two algo-
rithms that we generalize to create a dynamic programming
algorithm for POSGs: dynamic programming for POMDPs
and elimination of dominated strategies in solving normal
form games.

Partially observable stochastic games
A partially observable stochastic game(POSG) is a tuple
〈I,S, {b0}, {Ai}, {Oi},P , {Ri}〉, where,

• I is a finite set of agents (or controllers) indexed1, . . . , n

• S is a finite set of states

• b0 ∈ ∆(S) represents the initial state distribution

• Ai is a finite set of actions available to agenti and ~A =
×i∈IAi is the set of joint actions (i.e., action profiles),
where~a = 〈a1, . . . , an〉 denotes a joint action

• Oi is a finite set of observations for agenti and ~O =
×i∈IOi is the set of joint observations, where~o =
〈o1, . . . , on〉 denotes a joint observation

• P is a set of Markovian state transition and observation
probabilities, whereP(s′, ~o|s,~a) denotes the probability
that taking joint action~a in states results in a transition
to states′ and joint observation~o

• Ri : S × ~A → < is a reward function for agenti

A game unfolds over a finite or infinite sequence of stages,
where the number of stages is called thehorizonof the game.
In this paper, we consider finite-horizon POSGs; some of the
challenges involved in solving the infinite-horizon case are
discussed at the end of the paper. At each stage, all agents
simultaneously select an action and receive a reward and ob-
servation. The objective, for each agent, is to maximize the
expected sum of rewards it receives during the game.

Whether agents compete or cooperate in seeking reward
depends on their reward functions. The case in which the
agents share the same reward function has been called a
decentralized partially observable Markov decision process
(DEC-POMDP)(Bernsteinet al. 2002).

Dynamic programming for POMDPs

A POSG with a single agent corresponds to a POMDP. We
briefly review an exact dynamic programming algorithm for
POMDPs that provides a foundation for our exact dynamic
programming algorithm for POSGs. We use the same nota-
tion for POMDPs as for POSGs, but omit the subscript that
indexes an agent.

The first step in solving a POMDP by dynamic program-
ming (DP) is to convert it into a completely observable MDP
with a state setB = ∆(S) that consists of all possible be-
liefs about the current state. Letba,o denote the belief state
that results from belief stateb, after actiona and observation

o. The DP operator can be written in the form,

V
t+1(b) = max

a∈A

(

X

s∈S

b(s)

"

R(s, a) +
X

o∈O

P(o|s, a)V t(ba,o)

#)

,

(1)
whereP(o|s, a) =

∑
s′∈S P(s′, o|s, a), and the updated

value function is computed for all belief statesb ∈ B. Ex-
act DP algorithms for POMDPs rely on Smallwood and
Sondik’s (1973) proof that the DP operator preserves the
piecewise linearity and convexity of the value function. This
means that the value function can be represented exactly
by a finite set of|S|-dimensional value vectors, denoted
V = {v1, v2, . . . , vk}, where

V (b) = max
1≤j≤k

X

s∈S

b(s)vj(s). (2)

As elucidated by Kaelbling et al. (1998), each value vec-
tor corresponds to a complete conditional plan that speci-
fies an action for every sequence of observations. Adopting
the terminology of game theory, we often refer to a com-
plete conditional plan as astrategy. We use this interchange-
ably withpolicy tree, because a conditional plan for a finite-
horizon POMDP can be viewed as a tree.

The DP operator of Equation (1) computes an updated
value function, but can also be interpreted as computing an
updated set of policy trees. In fact, the simplest algorithm
for computing the DP update has two steps, which are de-
scribed below.

In the first step, the DP operator is given a setQt of depth-
t policy trees and a corresponding setVt of value vectors
representing the horizon-t value function. It computesQt+1

andVt+1 in two steps. First, a set of deptht + 1 policy
trees,Qt+1, is created by generating every possible depth
t + 1 policy tree that makes a transition, after an action and
observation, to the root node of some depth-t policy tree in
Qt. This operation will hereafter be called anexhaustive
backup. Note that|Qt+1| = |A||Qt||O|. For each policy tree
qj ∈ Qt+1, it is straightforward to compute a corresponding
value vector,vj ∈ V

t+1.
The second step is to eliminate policy trees that need not

be followed by a decision maker that is maximizing expected
value. This is accomplished by eliminating (i.e., pruning)
any policy tree when this can be done without decreasing
the value of any belief state.

Formally, a policy treeqj ∈ Qt+1

i with corresponding
value vectorvj ∈ V

t+1

i is considered dominated if for all
b ∈ B there exists avk ∈ V

t+1

i \ vj such thatb · vk ≥
b · vj . This test for dominance is performed using linear
programming. Whenqj is removed from the setQt+1

i , its
corresponding value vectorvj is also removed fromVt+1

i .
The dual of this linear program can also be used as a test

for dominance. In this case, a policy treeqj with correspond-
ing value vectorvj is dominated when there is a probability
distributionp over the other policy trees, such that

∑

k 6=j

p(k)vk(s) ≥ vj(s), ∀s ∈ S. (3)

This alternative, and equivalent, test for dominance plays
a role in iterated strategy elimination, as we will see in

the next section, and was recently applied in the context of
POMDPs (Poupart & Boutilier 2004).

Iterated elimination of dominated strategies
Techniques for eliminating dominated strategies in solving a
POMDP are very closely related to techniques for eliminat-
ing dominated strategies in solving games in normal form.
A game in normal form is a tupleG = {I, {Di}, {Vi}},
whereI is a finite set of agents,Di is a finite set of strate-
gies available to agenti, andVi : ~D → < is the value (or
payoff) function for agenti. Unlike a stochastic game, there
are no states or state transitions in this model.

Every strategydi ∈ Di is apure strategy. Letδi ∈ ∆(Di)
denote amixed strategy, that is, a probability distribution
over the pure strategies available to agenti, whereδi(di) de-
notes the probability assigned to strategydi ∈ Di. Let d−i

denote a profile of pure strategies for the other agents (i.e.,
all the agents except agenti), and letδ−i denote a profile
of mixed strategies for the other agents. Since agents select
strategies simultaneously,δ−i can also represent agenti’s
belief about the other agents’ likely strategies. If we define
Vi(di, δ−i) =

∑
d−i

δ−i(d−i)Vi(di, d−i), then

Bi(δ−i) = {di ∈ Di|Vi(di, δ−i) ≥ Vi(d
′
i, δ−i) ∀d

′
i ∈ Di}

(4)
denotes thebest response functionof agenti, which is the
set of strategies for agenti that maximize the value of some
belief about the strategies of the other agents. Any strategy
that is not a best response to some belief can be deleted.

A dominated strategydi is identified by using linear pro-
gramming. The linear program identifies a probability dis-
tributionσi over the other strategies such that

Vi(σi, d−i) > Vi(di, d−i), ∀d−i ∈ D−i. (5)

This test for dominance is very similar to the test for
dominance used to prune strategies in solving a POMDP.
It differs in using strict inequality, which is calledstrict
dominance. Game theorists also useweak dominance
to prune strategies. A strategydi is weakly dominated
if Vi(σi, d−i) ≥ Vi(di, d−i) for all d−i ∈ D−i, and
Vi(σi, d−i) > Vi(di, d−i) for somed−i ∈ D−i. The test
for dominance which does not require any strict inequality
is sometimes calledvery weak dominance, and corresponds
exactly to the test for dominance in POMDPs, as given in
Equation (3). Because a strategy that is very weakly dom-
inated but not weakly dominated must bepayoff equivalent
to a strategy that very weakly dominates it, eliminating very
weakly dominated strategies may have the same effect as
eliminating weakly dominated strategies in thereduced nor-
mal formrepresentation of a game, where the reduced nor-
mal form representation is created by combining any set of
payoff-equivalent strategies into a single strategy.

There are a couple other interesting differences between
the tests for dominance in Equations (3) and (5). First, there
is a difference in beliefs. In normal-form games, beliefs are
about the strategies of other agents, whereas in POMDPs,
beliefs are about the underlying state. Second, elimination
of dominated strategies is iterative when there are multiple
agents. When one agent eliminates its dominated strategies,

this can affect the best-response function of other agents (as-
suming common knowledge of rationality). After all agents
take a turn in eliminating their dominated strategies, they
can consider eliminating additional strategies that may only
have been best responses to strategies of other agents that
have since been eliminated. The procedure of alternating
between agents until no agent can eliminate another strategy
is callediterated elimination of dominated strategies.

In solving normal-form games, iterated elimination of
dominated strategies is a somewhat weak solution concept,
in that it does not (usually) identify a specific strategy for
an agent to play, but rather a set of possible strategies. To
select a specific strategy requires additional reasoning, and
introduces the concept of a Nash equilibrium, which is a pro-
file of strategies (possibly mixed), such thatδi ∈ Bi(δ−i)
for all agentsi. Since there are often multiple equilibria,
the problem ofequilibrium selectionis important. (It has
a more straightforward solution for cooperative games than
for general-sum games.) But in this paper, we focus on the
issue of elimination of dominated strategies.

Dynamic programming for POSGs
In the rest of the paper, we develop a dynamic program-
ming algorithm for POSGs that is a synthesis of dynamic
programming for POMDPs and iterated elimination of dom-
inated strategies in normal-form games. We begin by intro-
ducing the concept of a normal-form game with hidden state,
which provides a way of relating the POSG and normal-form
representations of a game. We describe a method for elim-
inating dominated strategies in such games, and then show
how to generalize this method in order to develop a dynamic
programming algorithm for finite-horizon POSGs.

Normal-form games with hidden state
Consider a game that takes the form of a tupleG =
{I,S, {Di}, {Vi}}, whereI is a finite set of agents,S is
a finite set of states,Di is a finite set of strategies available
to agenti, andVi : S× ~D → < is the value (or payoff) func-
tion for agenti. This definition resembles the definition of a
POSG in that the payoff received by each agent is a function
of the state of the game, as well as the joint strategies of all
agents. But it resembles a normal-form game in that there is
no state-transition model. In place of one-step actions and
rewards, the payoff function specifies the value of a strategy,
which is a complete conditional plan.

In a normal form game with hidden state, we define an
agent’s belief in a way that synthesizes the definition of be-
lief for POMDPs (a distribution over possible states) and
the definition of belief in iterated elimination of dominated
strategies (a distribution over the possible strategies ofthe
other agents). For each agenti, a belief is defined as a dis-
tribution overS ×D−i, where the distribution is denotedbi.
The value of a belief of agenti is defined as

Vi(bi) = max
di∈Di

∑

s∈S,d−i∈D−i

bi(s, d−i)Vi(s, di, d−i).

A strategydi for agenti is very weakly dominated if elimi-
nating it does not decrease the value of any belief. The test

for very weak dominance is a linear program that determines
whether there is a mixed strategyσi ∈ ∆(Di \ di) such that

Vi(s, σi, d−i) ≥ Vi(s, di, d−i), ∀s ∈ S, ∀d−i ∈ D−i. (6)

These generalizations of the key concepts of belief, value of
belief, and dominance play a central role in our development
of a DP algorithm for POSGs in the rest of this paper.

In our definition of a normal form game with hidden state,
we do not include an initial state probability distribution.
As a result, each strategy profile is associated with an|S|-
dimensional vector that can be used to compute the value
of this strategy profile foranystate probability distribution.
This differs from a standard normal form game in which
each strategy profile is associated with a scalar value. By
assuming an initial state probability distribution, we could
convert our representation to a standard normal form game
in which each strategy profile has a scalar value. But our
representation is more in keeping with the approach taken
by the DP algorithm for POMDPs, and lends itself more
easily to development of a DP algorithm for POSGs. The
initial state probability distribution given in the definition of
a POMDP is not used by the DP algorithm for POMDPs; it
is only used to select a policy after the algorithm finishes.
The same holds in the DP algorithm for POSGs we develop.
Like the POMDP algorithm, it computes a solution for all
possible initial state probability distributions.

Normal form of finite-horizon POSGs
Disregarding the initial state probability distribution,a
finite-horizon POSG can be converted to a normal-form
game with hidden state. When the horizon of a POSG is
one, the two representations of the game are identical, since
a strategy corresponds to a single action, and the payoff
functions for the normal-form game correspond to the re-
ward functions of the POSG. When the horizon of a POSG
is greater than one, the POSG representation of the game can
be converted to a normal form representation with hidden
state, by a recursive construction. Given the sets of strate-
gies and the value (or payoff) functions for a horizont game,
the sets of strategies and value functions for the horizon
t + 1 game are constructed by exhaustive backup, as in the
case of POMDPs. When a horizon-t POSG is represented
in normal form with hidden state, the strategy sets include
all depth-t policy trees, and the value function is piecewise
linear and convex; each strategy profile is associated with an
|S|-vector that represents the expectedt-step cumulative re-
ward achieved for each potential start state (and so any start
state distribution) by following this joint strategy.

If a finite-horizon POSG is represented this way, iterated
elimination of dominated strategies can be used in solving
the game, after the horizont normal form game is con-
structed. The problem is that this representation can be
muchlarger than the original representation of a POSG. In
fact, the size of the strategy set for each agenti is greater
than |Ai|

|Oi|
t

, which is doubly exponential in the horizon
t. Because of the large sizes of the strategy sets, it is usu-
ally not feasible to work directly with this representation.
The dynamic programming algorithm we develop partially
alleviates this problem by performing iterated elimination

of dominated strategies at each stage in the construction of
the normal form representation, rather than waiting until the
construction is finished.

Multi-agent dynamic programming operator
The key step of our algorithm is amulti-agent dynamic
programming operatorthat generalizes the DP operator for
POMDPs. As for POMDPs, the operator has two steps. The
first is a backup step that creates new policy trees and vec-
tors. The second is a pruning step.

In the backup step, the DP operator is given a set of depth-
t policy treesQt

i for each agenti, and corresponding sets of
value vectorsVt

i of dimension|S ×Qt
−i|. Based on the ac-

tion transition, observation, and reward model of the POSG,
it performs an exhaustive backup on each of the sets of trees,
to formQt+1

i for each agenti. It also recursively computes
the value vectors inVt+1

i for each agenti. Note that this
step corresponds to recursively creating a normal form with
hidden state representation of a horizont+1 POSG, given a
normal form with hidden state representation of the horizon
t POSG.

The second step of the multi-agent DP operator consists
of pruning dominated policy trees. As in the single agent
case, an agenti policy tree can be pruned if its removal does
not decrease the value of any belief for agenti. As with
normal form games, removal of a policy tree reduces the di-
mensionality of the other agents’ belief space, and it can be
repeated until no more policy trees can be pruned from any
agent’s set. (Note that different agent orderings may lead to
different sets of policy trees and value vectors. The question
of order dependence in eliminating dominated strategies has
been extensively studied in game theory, and we do not con-
sider it here.) Pseudocode for the multi-agent DP operator is
given in Table 1.

The validity of the pruning step follows from a version of
the optimality principle of dynamic programming, which we
prove for a single iteration of the multi-agent DP operator.
By induction, it follows for any number of iterations.

Theorem 1 Consider a setQt
i of deptht policy trees for

agenti, and consider the setQt+1

i of deptht+1 policy trees
created by exhaustive backup, in the first step of the multi-
agent DP operator. If any policy treeqj ∈ Qt

i is very weakly
dominated, then any policy treeq′ ∈ Qt+1

i that containsqj

as a subtree is also very weakly dominated.

Thus, pruning very weakly dominated strategies from the
setsQt

i before using the dynamic programming operator is
equivalent to performing the dynamic programming opera-
tor without first pruningQt

i. The advantage of first pruning
very weakly dominated strategies from the setsQt

i is that it
improves the efficiency of dynamic programming by reduc-
ing the initial size of the setsQt+1

i generated by exhaustive
backup.

It is possible to define a multi-agent DP operator that
prunes strongly dominated strategies. However, sometimes
a strategy that is not strongly dominated will have a strongly
dominated subtree. This is referred to as anincredible threat
in the literature. Thus it is an open question whether we can
define a multi-agent DP operator that prunes only strongly

Input: Sets of depth-t policy treesQt
i and corresponding

value vectorsVt
i for each agenti.

1. Perform exhaustive backups to getQt+1

i for eachi.

2. Recursively computeVt+1

i for eachi.

3. Repeat until no more pruning is possible:

(a) Choose an agenti, and find a policy treeqj ∈ Qt+1

i

for which the following condition is satisfied:
∀b ∈ ∆(S×Qt+1

−i), ∃vk ∈ V
t+1

i \vj s.t. b·vk ≥ b·vj .

(b) Qt+1

i ← Qt+1

i \ qj .

(c) Vt+1

i ← Vt+1

i \ vj .

Output: Sets of depth-t + 1 policy treesQt+1

i and corre-
sponding value vectorsVt+1

i for each agenti.

Table 1: The multi-agent dynamic programming operator.

dominated strategies. In this paper, we focus on pruning
very weakly dominated strategies. As already noted, this is
identical to the form of pruning used for POMDPs.

There is an important difference between this algorithm
and the dynamic programming operator for single-agent
POMDPs, in terms of implementation. In the single agent
case, only the value vectors need to be kept in memory. At
execution time, an optimal action can be extracted from the
value function using one-step lookahead, at each time step.
We do not currently have a way of doing this when there
are multiple agents. In the multi-agent case, instead of se-
lecting an action at each time step, each agent must select a
policy tree (i.e., a complete strategy) at the beginning of the
game. Thus, the policy tree sets must also be remembered.
Of course, some memory savings is possible by realizing
that the policy trees for an agent share subtrees.

Solving finite-horizon POSGs

As we have described, any finite-horizon POSG can be given
a normal form representation. The process of computing
the normal form representation is recursive. Given the def-
inition of a POSG, we successively compute normal form
games with hidden state for horizons one, two, and so on,
up to horizonT . Instead of computing all possible strate-
gies for each horizon, we have defined a multi-agent dy-
namic programming operator that performs iterated elimi-
nation of very weakly dominated strategies at each stage.
This improves the efficiency of the algorithm because if a
policy tree is pruned by the multi-agent DP operator at one
stage, every policy tree containing it as a subtree is effec-
tively eliminated, in the sense that it will not be created ata
later stage. We can prove a theorem stating that performing
iterated elimination of very weakly dominated strategies at
each stage in the construction of the normal form game is
equivalent to waiting until the final stage to perform iterated
elimination of very weakly dominated strategies.

Theorem 2 Dynamic programming applied to a finite-
horizon POSG corresponds to iterated elimination of very

Horizon Brute force Dynamic programming
1 (2, 2) (2, 2)
2 (8, 8) (6, 6)
3 (128, 128) (20, 20)
4 (32768, 32768) (300, 300)

Table 2: Performance of both algorithms on the multi-access
broadcast channel problem. Each cell displays the number
of policy trees produced for each agent. The brute force
algorithm could not compute iteration4. The numbers (in
italics) shown in that cell reflect how many policy trees it
would need to create for each agent.

weakly dominated strategies in the normal form of the
POSG.

In the case of cooperative games, also known as DEC-
POMDPs, removing very weakly dominated strategies pre-
serves at least one optimal strategy profile. Thus, the multi-
agent DP operator can be used to solve finite-horizon DEC-
POMDPs optimally. When the DP algorithm reaches step
T , we can simply extract the highest-valued strategy profile
for the start state distribution.

Corollary 1 Dynamic programming applied to a finite-
horizon DEC-POMDP yields an optimal strategy profile.

For general-sum POSGs, the DP algorithm converts the
POSG to a normal form representation with reduced sets
of strategies in which there are no very weakly dominated
strategies. Although selecting an equilibrium presents a
challenging problem in the general-sum case, standard tech-
niques for selecting an equilibrium in a normal form game
can be used.

Example
We ran initial tests on a cooperative game involving control
of a multi-access broadcast channel (Ooi & Wornell 1996).
In this problem, nodes need to broadcast messages to each
other over a channel, but only one node may broadcast at
a time, otherwise a collision occurs. The nodes share the
common goal of maximizing the throughput of the channel.

The process proceeds in discrete time steps. At the start
of each time step, each node decides whether or not to send
a message. The nodes receive a reward of 1 when a message
is successfully broadcast and a reward of 0 otherwise. At the
end of the time step, each node receives a noisy observation
of whether or not a message got through.

The message buffer for each agent has space for only one
message. If a node is unable to broadcast a message, the
message remains in the buffer for the next time step. If a
nodei is able to send its message, the probability that its
buffer will fill up on the next step ispi. Our problem has
two nodes, withp1 = 0.9 andp2 = 0.1. There are 4 states,
2 actions per agent, and 2 observations per agent.

We compared our DP algorithm with a brute-force algo-
rithm, which also builds sets of policy trees, but never prunes
any of them. On a machine with 2 gigabytes of memory, the
brute-force algorithm was able to complete iteration 3 before

running out of memory, while the DP algorithm was able to
complete iteration 4. At the end of iteration 4, the num-
ber of policy trees for the DP algorithm was less than 1%
of the number that would have been produced by the brute-
force algorithm, had it been able to complete the iteration.
This result, shown in Table 2, indicates that the multi-agent
DP operator can prune a significant number of trees. How-
ever, even with pruning, the number of policy trees grows
quickly with the horizon. At the end of the fourth iteration,
each agent has 300 policy trees that are not dominated. Be-
cause the piecewise linear and convex value function con-
sists of one|S|-vector for each pair of policy trees from the
two agents, the representation of the value function requires
3002 |S|-vectors. In the fifth iteration, an exhaustive backup
would create a value function that consists of2 · 3004 |S|-
vectors, or more than 16 billion|S|-vectors, before begin-
ning the process of pruning. This illustrates how the al-
gorithm can run out of memory. We are currently looking
into possible ways to avoid the explosion in size of the value
function.

Conclusion
We have presented an algorithm for solving POSGs that gen-
eralizes both dynamic programming for POMDPs and it-
erated elimination of dominated strategies for normal form
games. It is the first exact algorithm for general POSGs, and
we have shown that it can be used to find optimal solutions
for cooperative POSGs. Although currently limited to solv-
ing very small problems, its development helps to clarify the
relationship between POMDPs and game-theoretic models.
There are many avenues for future research, in both making
the algorithm more time and space efficient and extending it
beyond finite-horizon POSGs.

Acknowledgments We thank the anonymous reviewers
for helpful comments. This work was supported in part by
the National Science Foundation under grants IIS-0219606
and IIS-9984952, by NASA under cooperative agreement
NCC 2-1311, and by the Air Force Office of Scientific Re-
search under grant F49620-03-1-0090. Daniel Bernstein
was supported by a NASA GSRP Fellowship. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not reflect the
views of the NSF, NASA or AFOSR.

References
Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman, C. V.
2003. Transition-independent decentralized Markov deci-
sion processes. InProceedings of the 2nd International
Conference on Autonomous Agents and Multi-agent Sys-
tems, 41–48.
Bernstein, D.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of
Markov decision processes.Mathematics of Operations
Research27(4):819–840.
Boutilier, C. 1999. Sequential optimality and coordination
in multiagent systems. InProceedings of the 16th Interna-
tional Joint Conference on Artificial Intelligence, 478–485.

Brafman, R., and Tennenholtz, M. 2002. R-MAX–a gen-
eral polynomial time algorithm for near-optimal reinforce-
ment learning. Journal of Machine Learning Research
3:213–231.
Filar, J., and Vrieze, K. 1997.Competitive Markov Deci-
sion Processes. Springer-Verlag.
Hsu, K., and Marcus, S. I. 1982. Decentralized control
of finite state Markov processes.IEEE Transactions on
Automatic ControlAC-27(2):426–431.
Hu, J., and Wellman, M. 2003. Nash Q-learning for
general-sum stochastic games.Journal of Machine Learn-
ing Research4:1039–1069.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence101:99–134.
Kearns, M.; Mansour, Y.; and Singh, S. 2000. Fast plan-
ning in stochastic games. InProceedings of the 16th Con-
ference on Uncertainty in Artificial Intelligence (UAI-00),
309–316.
Koller, D.; Megiddo, N.; and von Stengel, B. 1994. Fast
algorithms for finding randomized strategies in game trees.
In Proceedings of the 26th ACM Symposium on Theory of
Computing, 750–759.
Kuhn, H. 1953. Extensive games and the problem of infor-
mation. In Kuhn, H., and Tucker, A., eds.,Contributions to
the Theory of Games II. Princeton University Press. 193–
216.
Littman, M. 1994. Markov games as a framework for
multi-agent reinforcement learning. InProceedings of the
11th International Conference on Machine Learning, 157–
163.
Nair, R.; Pynadath, D.; Yokoo, M.; Tambe, M.; and
Marsella, S. 2003. Taming decentralized POMDPs: To-
wards efficient policy computation for multiagent settings.
In Proceedings of the 18th International Joint Conference
on Artificial Intelligence, 705–711.
Ooi, J. M., and Wornell, G. W. 1996. Decentralized con-
trol of a multiple access broadcast channel: Performance
bounds. InProceedings of the 35th Conference on Deci-
sion and Control, 293–298.
Peshkin, L.; Kim, K.-E.; Meuleau, N.; and Kaelbling, L. P.
2000. Learning to cooperate via policy search. InProceed-
ings of the 16th International Conference on Uncertainty
in Artificial Intelligence, 489–496.
Poupart, P., and Boutilier, C. 2004. Bounded finite state
controllers. InAdvances in Neural Information Processing
Systems 16: Proceedings of the 2003 Conference. MIT
Press.
Shapley, L. 1953. Stochastic games.Proceedings of
the National Academy of Sciences of the United States of
America39:1095–1100.
Smallwood, R., and Sondik, E. 1973. The optimal con-
trol of partially observable Markov processes over a finite
horizon.Operations Research21:1071–1088.

