
A Logic-based Approach to Dynamic Programming

Steffen Hölldobler and Olga Skvortsova∗
Computer Science Department
Technische Universität Dresden

Dresden, Germany
{sh,skvortsova}@inf.tu-dresden.de

Abstract

We present a first-order value iteration algorithm that ad-
dresses the scalability problem of classical dynamic program-
ming techniques bylogically partitioning the state space. An
MDP is represented in the Probabilistic Fluent Calculus, that
is a first-order language for reasoning about actions. More-
over, we develop a normalization algorithm that discovers and
prunes redundant states. We have implemented our approach
and describe some experimental results.

Introduction
Markov decision processes (MDPs) have been adopted
as a representational and computational model for
decision-theoretic planning problems in much recent
work, e.g., (Barto, Bradtke, & Singh 1995). However,
classical dynamic programming (DP) algorithms for solv-
ing MDPs require explicit state and action enumeration.
Therefore these algorithms do not scale up to large domains.
Recently, following the idea of symbolic DP within the Sit-
uation Calculus (SC) by Boutilier and colleagues (Boutilier,
Reiter, & Price 2001), we have developed an algorithm,
that we refer to as first-order value iteration algorithm
(FOVIA), that addresses the above scalability problem
by dividing a state space into clusters, calledabstract
states, and computing the value functions for them there-
after (Großmann, Ḧolldobler, & Skvortsova 2002). The
dynamics of an MDP is formalized in the Probabilistic
Fluent Calculus, that extends the original version of the
Fluent Calculus (Ḧolldobler & Schneeberger 1990) by
introducing probabilistic effects. The Fluent Calculus (FC)
is a first-order equational language for specifying actions,
states and causality. Our approach constructs a first-order
representation of value functions and policies by exploiting
the logical structure of the MDP. Thus, FOVIA can be seen
as a symbolic (logical) counterpart of the classical value
iteration algorithm (Bellman 1957).

Symbolic dynamic programming approaches in SC as
well as in FC rely on the normalization of the state space.
Such normalization was done by hand so far. In (Skvortsova

∗Supported by the grant from GRK 334/3 (DFG). Correspond-
ing author.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

2003) an automated normalization procedure has been de-
veloped that, given a state space, delivers an equivalent one
that contains no redundancies. The technique employs the
notion of a subsumption relation determining the redundant
states which can be removed from the state space.

Our current prototypical implementation of FOVIA along
with the normalization algorithm, referred to as FCPlanner,
is tailored to the domains and problems that were specifi-
cally designed for the probabilistic track of the International
Planning Competition’2004. The domains themselves to-
gether with the competition results will be released at the
14th International Conference on Automated Planning and
Scheduling. Preliminary experiments which are described
later indicate that on symbolic problems (where the goals
are specified in a non-ground form) FCPlanner may outper-
form propositional MDP solvers that do rely on full domain
and problem groundization. Whereas, on grounded prob-
lems, we expect that FCPlanner will not be as competitive as
modern propositional MDP solvers like, e.g., SPUDD (Hoey
et al. 1999) which employs a very efficient logical reasoning
software. But the actual comparison results will be available
only after the competition.

Probabilistic planning domains and problems in the
aforementioned competition are expressed in PPDDL lan-
guage (Younes & Littman 2003), that is an extension of
PDDL (McDermott 1998) specifically designed to incorpo-
rate decision-theoretic notions. On the other hand, the dy-
namics of an MDP is specified within the Probabilistic Flu-
ent Calculus (PFC). In order to incorporate these language
discrepancies, we have developed a translation procedure,
that given a generic PPDDL domain/problem description re-
turns a PFC one, and implemented it in the FCPlanner.

Reasoning about Actions within FC
The Fluent Calculus, much like the Situation Calculus, is
a logical approach to modelling dynamically changing sys-
tems based on first-order logic. One could indeed argue
that the Fluent and the Situation Calculus have very much
in common. But the latter has the following disadvantage:
Knowledge of the current state is represented indirectly via
the initial conditions and the actions which the agent has
performed up to a point. As a consequence, each time a
condition is evaluated in an agent program, the entire his-
tory of actions is involved in the computation (Thielscher



2004). The Fluent Calculus overcomes the aforementioned
unfolding problem by providing an explicit state represen-
tation. The information about fluents in the current state of
the world is effortlessly extracted from the state description
without tracing back to the initial state.

Following the idea by (Green 1969) of planning as first-
order theorem proving, FC was originally set up as a first-
order logic program with equality using SLDE-resolution as
sole inference rule (Ḧolldobler & Schneeberger 1990). In
the meantime, FC has been revised as a predicate logic spec-
ification language using constraint handling rules for reason-
ing (Thielscher 2004). The original version allows for back-
ward as well as forward reasoning. Classical DP algorithms
for solving MDPs are intimately related to regression, and
from this prospective, the original version of the Fluent Cal-
culus appears to have a natural mechanism for approaching
this problem.

In FC, functions whose values vary from state to state
are calledfluents and are denoted by function symbols.
Throughout the paper, we will use examples taken from
Blocksworld scenario. For instance, the fluenton(a, b) de-
notes the fact that the blocka is on the blockb. A stateis a
multiset of fluents represented as a term, calledfluent term,
using a constant1 denoting the empty multiset and a binary
AC1-function symbol◦ denoting multiset. For example, a
state in which blocksa andb are on the table and a blockc
is ona is represented by

on(a, table) ◦ on(b, table) ◦ on(c, a) .

Constants are denoted by small letters, variables by capi-
tal ones and substitutions byθ or σ. All changes to the world
are the result ofactions. An action is represented using a
predicate symbolaction(P,N, E), whose arguments denote
the preconditions (P ), the name (N ), and the effects (E) of
an action, respectively. Similar to states, preconditions and
effects are multisets of fluents represented as terms. As an
example, consider themoveaction:

action(on(X, Y ),move(X, Y ), holding(X)) .

Causality is represented using a predicate symbol
causes/3, whose arguments denote a state, a sequence of
actions, and a successor state, respectively. Intuitively, an
atom such ascauses(Z,P, Z ′) is to be understood as: The
execution of a planP transforms a stateZ into a stateZ ′.
The predicatecauses/3 is defined recursively on the struc-
ture of plans, which are lists of actions.

The definition forcausestogether with the formulae rep-
resenting actions as well as the AC1 equational theory com-
prise the FC theory.

Symbolic Dynamic Programming
Abstract statesare characterized by means of conditions that
must hold in each ground instance thereof and, thus, they
represent sets of real-world states. Informally, abstract states
can be specified by stating that particular fluent terms do or
do not hold. We refer to such abstract states asCN-states,
whereC stands for conjunction andN for negation, respec-
tively.

Formally, letL be a set of fluent terms. ACN-stateis a
pair (P,N ), whereP ∈ L, N ∈ 2L. Let ·M be a mapping
from fluent terms to multisets of fluents, which can be for-
mally defined as follows:1M = {̇}̇ or FM = {̇F }̇, if F is
a fluent, or(F ◦G)M = FM ∪̇ GM , whereF,G are fluent
terms anḋ∪ is a multiset union. LetI = (∆, ·I) be an inter-
pretation, whose domain∆ is a set of all finite multisets of
ground fluents and everyCN-stateZ = (P,N ) is mapped
onto

ZI = {d ∈ ∆ | ∃θ. (Pθ)M
.
⊆ d ∧

∀N ∈ N .∀σ.((Nθ)σ)M
.

* d} ,

where
.
⊆ is a submultiset relation.

In other words, theP -part of a stateZ describes prop-
erties that a real-world state should satisfy, whereasN -part
specifies the properties that are not allowed to fulfil. For
example, theCN-state

Z = (on(X, table) ◦ red(X), {on(Y,X)})
represents all states in which there exists a red object that is
on the table and clear, viz., none of other objects covers it.

Thus, the real-world state

z =
.

{on(a, table), red(a), on(b, table), green(b)
.

}
is specified byZ. Whereas,

z′ =
.

{on(a, table), red(a), on(b, a)
.

}
is not.

Please note thatCN-statesshould be thought of as incom-
plete state descriptions, i.e., the properties that are not listed
in eitherP - orN -part can hold or not.

Herein, we present the Probabilistic Fluent Calculus
(PFC) that extends the original Fluent Calculus by decision-
theoretic notions. For lack of space, we will only concen-
trate on the representation of stochastic actions in PFC. The
technique used here is to decompose a stochastic action into
deterministic primitives under nature’s control, referred to
asnature’s choices. We use a relation symbolchoice/2 to
model nature’s choice. Consider the actionmove(X, Y ):

choice(move(X, Y ), A) ↔
(A = moveS(X, Y ) ∨A = moveF(X, Y )) ,

wheremoveS(X, Y ) andmoveF(X, Y ) define two nature’s
choices for actionmove(X, Y ), viz., that it is successfully
executed or fails. For each of nature’s choicesaj(X) as-
sociated with an actiona(X) with parametersX we define
the probabilityprob(aj(X), a(X), Z) denoting the proba-
bility with which one of nature’s choicesaj(X) is chosen in
a stateZ. For example,

prob(moveS(X, Y ), move(X, Y ), Z) = .75
states that the probability for the successful execution of the
moveaction in stateZ is .75.

FOVIA is an iterative approximation algorithm for con-
structing optimal policies. The difference to the classical
case is that it produces a first-order representation of opti-
mal policies by utilizing the logical structure of MDP. The
algorithm itself can be found in (Großmann, Hölldobler, &
Skvortsova 2002).



Normalizing State Descriptions
The regression in PFC is realized by using a fluent unifi-
cation problem of the form(F ◦ X)σ =AC1 Gσ, where
F,G are fluent terms, AC1 is an equational theory andX
is a variable not occurring inF or G. Since it is known
that a fluent unification problem may have more than one
solution (Großeet al. 1992), the regression of a single ab-
stract state may yield several abstract states. Moreover, the
state space obtained after regression may contain several re-
dundancies that proliferate exponentially many unnecessary
computations in subsequent steps of FOVIA. We have de-
veloped a normalization algorithm that normalizes the state
space obtained after regression and delivers an equivalent
state space that is free of redundancies.

Consider a setS of CN-statesand letZ ∈ S. Informally,
Z is redundant iff the set of states represented byZ is con-
tained in the set of states represented by another member
of S. This kind of redundancy can be captured by sub-
sumption: LetP1, P2 be fluent terms.P1 is said tosub-
sumeP2, written P2 vf P1, iff ∃σ. (P1σ)M

.
⊆ PM

2 . Let
Z1 = (P1, N1) andZ2 = (P2, N2) beCN-states. ThenZ1

is said tosubsumeZ2, written Z2 v Z1, iff P2 vf P1 and
∀F ∈ N1. ∃G ∈ N2. F vf G. One should note that our
notion ofv bears the intuition of the truth ordering≤t in
a bilattice〈C × D,≤k,≤t〉, whereC andD are complete
lattices and≤k is knowledge ordering (Ginsberg 1988).

In order to illustrate the definition of the subsumption
relation onCN-stateswe use an example taken from lo-
gistics scenario, because it is more representative than a
blocksworld example. Consider twoCN-statesZ1 =
(P1, N1) with P1 = on(R, T ) andN1 = {rin(f,m)◦rain}
as well asZ2 = (P2, N2) with P2 = on(f, T ) ◦ tin(T,m)
andN2 = {rin(f, C)}. In this case,P2 vf P1 with the
help of σ = {R 7→ f} and F1 vf F2 with the help
of θ = {C 7→ m}, whereF1 = rin(f,m) ◦ rain and
F2 = rin(f, C). Thus,Z2 v Z1.

We use the notion of system to represent in a compact way
CN-statesalong with their values. Formally, asystemS is
a multiset of pairs〈Z,α〉, whereZ is a CN-stateandα is
its value. For instance, in our logistics example, a systemS
defined as
.

{〈Z ′
1 = (rin(f,m), ∅), 10〉, 〈Z ′

2 = (1, {rin(f,m)}), 0〉
.

}

describes symbolically a goal state space that consists of two
CN-statesZ ′

1 andZ ′
2 together with their values: States in

which the Ferrari (f ) is in Monte Carlo (m)receive a reward
of 10; all other states receive a reward of 0. The regression
of systemS through the actionunload(R, T ) results in a
systemS1:

{̇ 〈Z1 = (on(f, T ) ◦ tin(T,m), {rin(f,m)}), 0〉,
〈Z2 = (on(R, T ) ◦ tin(T,C) ◦ rin(f,m), ∅), 10〉,
〈Z3 = (on(R, T ) ◦ tin(T,C),

{rin(f,m), on(f, T ) ◦ tin(T,m)}), 0〉,
〈Z4 = (on(R, T ) ◦ tin(T,C) ◦ rin(f,m), ∅), 10〉,
〈Z5 = (on(R, T ) ◦ tin(T,C), {rin(f,m)}), 0〉 }̇.

SystemS1 contains several redundancies:Z2 v Z4 (as
well asZ4 v Z2); Z1 v Z5; Z3 v Z5. Hence,Z1, Z2

Let S be a system such that〈Z, α〉, 〈Z′, α〉 ∈ S.

1.
〈Z, α〉 〈Z′, α〉

〈Z, α〉 Z′ v Z

2. Let Z = (P, {F1, F2, . . . , Fk}).

〈(P, {F1, F2, . . . , Fk}), α〉
〈(P, {F2, . . . , Fk}), α〉

F1 vf F2

Figure 1: Simplification rules forCN-states.

andZ3 are subsumed and, thus, are redundant. They should
be removed from the system. Please note that the compar-
ison of CN-statesmakes only sense in case when the re-
spective values are identical. For instance, the statesZ1 and
Z2 in S1 are not comparable because their values are differ-
ent. The aforementioned intuition for determining redundant
CN-statesis reflected in the first rule in Figure 1. Namely, if
two CN-statesZ,Z ′ have identical values andZ ′ v Z then
the pair〈Z ′, α〉 ought to be removed from the system. The
second rule in Figure 1 removes redundancies in negative
parts of single abstract states. Intuitively, the application of
a simplification rule should not alter the meaning of a sys-
tem. SystemsS1 andS2 are said to beequivalentiff for each
pair〈Zi, αi〉 ∈ S1 there exists a pair〈Zj , αi〉 ∈ S2 such that
Zi v Zj , and vice versa. In addition, we want to apply the
simplification rules as long as possible: A system is said to
be innormal formif none of the rules shown in Figure 1 is
applicable.

Returning to the running example, after applying the nor-
malization algorithm to the systemS1 we obtain the system
S2:

{̇ 〈Z4 = (on(R, T ) ◦ tin(T,C) ◦ rin(f,m), ∅), 10〉,
〈Z5 = (on(R, T ) ◦ tin(T,C), {rin(f,m)}), 0〉 }̇.

Some useful properties of the normalization algorithm, in-
cluding termination, correctness, completeness as well as
the uniqueness result have been proven (see (Skvortsova
2003)).

PPDDL and the Probabilistic Fluent Calculus
We have implemented the first-order value iteration algo-
rithm FOVIA including the normalization procedure that
was presented in the previous section. Our current imple-
mentation, that is referred to as FCPlanner, is targeted to
the domains that were designed for the probabilistic track of
the International Planning Competition’2004. The domains
themselves are represented in PPDDL (Younes & Littman
2003) and will be released at the 14th International Confer-
ence on Automated Planning and Scheduling.

Because the dynamics of an MDP, that is an input of
FOVIA, is formalized within PFC, a translation procedure,
that given a PPDDL description of an MDP returns an
equivalent PFC one, is required. For some PPDDL con-
structs, e.g., objects, sorts, predicates, the translation is quite



Input: PPDDL formulaF
Output: S, a set ofCN-states

1. S := ∅.

2. ConvertF into the negation normal formF ′.

3. ConvertF ′ into the prenex normal formF ′′.

4. Convert the matrix ofF ′′ into DNFD = d1∨d2∨. . .∨dn.

5. Let d be the first disjunct ofD.

6. If d contains bad variables then eliminate them fromD via
groundization obtainingD′. F := D′. Go to 2.

7. Otherwise, construct aCN-stateZ = (P, N), whereP is a
fluent term that is built from the positive conjuncts ind and
N is a set of fluent terms that correspond to the negative
conjuncts ind.

8. S := S ∪ {Z}.

9. If n > 1 thenD := d2 ∨ . . . ∨ dn. Go to 5.

10. ReturnS.

Figure 2: Translation procedure for PPDDL formulae.

straightforward. Whereas goal descriptions as well as action
preconditions and effects should be treated more carefully.

We start with presenting how a PPDDL goal description
can be translated into a respective PFC one. Given a PPDDL
formula F , that is a first-order formula without function
symbols, plus domain objects with sorts, the translation pro-
cedure delivers a set ofCN-statesS, such thatS is equiva-
lent to F in the sense thatM is a model forF iff M is a
model for someZ from S, and is minimal wrt the set inclu-
sion. The translation procedure itself is depicted on Figure 2.

In the sixth step of the translation procedure, a disjunct
d, which is a conjunction of literals, is checked against bad
variables. The ‘bad variables check’ is performed as fol-
lows. LetV + denote variables that occur in positive literals
of a disjunct andV − contain all variables that occur in neg-
ative literals and do not occur in positive ones. Variables
of V + that are existentially quantified are marked as good.
All other variables ofV + are marked as bad. A variable
from V −, that is bounded universally and, most importantly,
after all good variables fromV +, is marked as good. All
other variables inV − are marked as bad. For example, con-
sider a disjunctd = ∃X.(on(X, table) ∧ ∀Y.¬on(Y, X)).
Both variablesX andY will be marked as good. As it was
intended, the intuition behind the ‘bad variable check’ pre-
cisely coincides with the semantics of variables inCN-states
that is defined in section on Symbolic Dynamic Program-
ming.

Because action preconditions are expressed as PPDDL
formulae, the translation procedure on Figure 2 can be di-
rectly applied for them. Action effects, however, need an ad-
ditional treatment. PPDDL actions may have several kinds
of effects. First of all, the effect can be an atomic formula.
Secondly, conjunctive effects are allowed, viz., of the form
<effect 1> and <effect 2>. Thirdly, the effect may
represent a negation of the atomic formula. The fourth, fifth,

and sixth cases correspond to conditional, universal, and
probabilistic effects, respectively. The first three cases are
obvious. Conditional effects of the form:

:action Name
Pre: P
Eff : when C E1∧

E2

will be translated into two actions
:action Name1 :action Name2

Pre: P ∧ C Pre: P ∧ ¬C
Eff : E1 ∧ E2 Eff : E2 .

For the sake of readability, we use an informal syntax
which is different from PPDDL syntax. Each of the uni-
versal quantifiers should be eliminated via groundization.

Probabilistic effects of the form:
:action Name

Pre: P
Eff : E0 ∧

probabilistic p1 E1 p2 E2

are translated into three actions:
:action Name1 :action Name2 :action Name3

Pre: P Pre: P Pre: P
Eff : E0 ∧ E1 Eff : E0 ∧ E2 Eff : E0

The effects of actions Name1, Name2, and Name3 will occur
with probabilitiesp1, p2, and1− p1 − p2, respectively.

As a result, instead of an action with complex effects we
obtain a set of actions with primitive effects, where ‘prim-
itive’ stands for conjunction of literals. Positive literals
are additive effects, whereas negative literals are subtrac-
tive ones. The current version of FCPlanner implements the
aforementioned translation procedure that enables to process
a generic PPDDL domain/problem specification.

Some Experimental Results
The experimental results described in this section were all
obtained using a Linux Red Hat machine running at 2.7GHz
Pentium IV with 2Gb of RAM.

The colored Blocksworld scenario was one of the sym-
bolic domains that were made available to participants prior
to the competition and where a goal is specified in a non-
ground form. Herein, we present some timing results that
characterize the best- and worst-case computational be-
haviour of our planner on the examples taken from the col-
ored Blocksworld scenario. In the colored Blocksworld sce-
nario, along with the unique number, each block is assigned
a specific color. A goal formula specifies an arrangement of
colors instead of an arrangement of blocks. In other words,
a symbolic goal state description represents an equivalence
class of the grounded goal state descriptions that have the
same color distribution.

For example, consider the initial situation that contains
two blue blocksb1, b2, and one red blockb3 that are on the
table. The symbolic state description, that is of the form

(∃X1.is-blue(X1) ∧
(∃X2.is-red(X2) ∧ on(X1, X2)∧
(∃X3.is-blue(X3) ∧ on(X2, X3) ∧ on(X3, table)))) ,



g

g

b

b

m

r

m

r

c

b

mrrb

b

mg

b

g

c

(a) (b)

Figure 3: Descriptions of initial (a) and goal (b) states. Each
block is assigned one of five colors, namely red (r), cyan (c),
magenta (m), green (g), or blue (b).

represents an equivalence class that consists of two distinct
grounded state descriptions that resemble the same color ar-
rangement as in the symbolic representation, namely

is-blue(b1) ∧ is-red(b3) ∧ on(b1, b3) ∧
is-blue(b2) ∧ on(b3, b2) ∧ on(b2, table)

and

is-blue(b2) ∧ is-red(b3) ∧ on(b2, b3) ∧
is-blue(b1) ∧ on(b3, b1) ∧ on(b1, table) .

Such sort of problems, where the goal descriptions do not
put restrictions on the objects of the domain, but rather rep-
resent a combination of object properties (like, e.g., colors),
requires the first-order expressiveness of the language for
describing an MDP.

Why do we think that FCPlanner will demonstrate the bet-
ter computational behaviour on the symbolic problems, e.g.,
colored Blocksworld? The dynamics of an MDP in FCPlan-
ner is represented within PFC. The first-order nature of the
Fluent Calculus enables to specify the (goal) states symbol-
ically, namely the clusters of ground states are represented
asCN-states, and hence, avoid the full state space proposi-
tionalization. On the other hand, in order to solve a sym-
bolically represented problem, a propositional solver would
require to consider all possible ground combinations of the
problem. For example, in the scenario, where both the initial
and goal state specifications contain ten red blocks, a sym-
bolic description of a state that represents a pyramid of ten
red blocks results into10! = 3628800 its ground instances.

Because our implementation is tailored to the competi-
tion domains and they were made known in advance, we
were able to tune our normalization algorithm based on this
information. For example, the goal formulae generated by
the competition problem generator contain the information
about all blocks from the domain. The state descriptions,
that are obtained after regression, contain no negative literals
either. Thus, the negative parts ofCN-statescan be omitted.
Consequently, the second rule on Figure 1 becomes inap-
plicable, which means that the computation process at the
normalization step of FOVIA will be much simpler. One
should note that it is not true in general. An arbitrary state
description may contain positive as well as negative literals
which makes the second rule of the normalization algorithm
applicable again.

Moreover, in the (colored) Blocksworld scenario, the
states are described in such a way that makes it possible to

apply a sort of structural subsumption algorithm of quadratic
worst-case complexity instead of general subsumption algo-
rithm which is based on solving NP-hard submultiset match-
ing problem. This results in considerable computational sav-
ings on the normalization step of FOVIA.

In general, as a worst-case example for FCPlanner, one
could take an example, where the number of blocks is equal
to the number of colors and no two blocks have the same
color. This example corresponds to extreme case, when a
colored (symbolic) blocksworld problem degenerates into
its non-colored (grounded) counterpart. Such an example
will not serve as a representative for analyzing the worst-
case behaviour of our planner on thecolored Blocksworld
problems. Therefore, as a worst-case example we have cho-
sen an example with five (maximum number for the com-
petition domains) colors and ten blocks. In order to illus-
trate the best-case behaviour of FCPlanner on the colored
Blocksworld domains, we use an example with ten blocks
of the same color. The initial and goal state descriptions for
the worst-case scenario are depicted on Figure 3.

Some representative timing results for the first ten itera-
tions of the FOVIA algorithm can be found in Table 1. For
each iteration, the size of the state space at the regression
stepS, after the regression stepSREGR, and after the normal-
ization stepSNORM as well as the timing results for the regres-
sion REGR, normalizationNORM andv-values computation
VALUES procedures are depicted. In each row, the results
for both best- and worst-case examples are presented; the
first line of eachIth iteration corresponds to the best-case
scenario, whereas the second - to the worst case.

In the best-case example, the state space growth stabilizes
with the number of iterations. Whereas for the worst-case,
the state space grows exponentially in a number of itera-
tions. Normalization grants the decrease in the size of the
state spaceSREGR obtained after the regression. E.g., on the
7th iteration in the best-case example the normalization co-
efficientγ, i.e., SREGR

SNORM
, is equal to 11. Whereas, for the worst-

case scenario it approaches 4. In addition, for the best-case
scenario,γ increases as the state space grows. E.g., on 5th
iteration,γ is equal to 8, whereas on the 9th it already ap-
proaches 14.

If we calculate the total time (REGRplusNORM plusVAL -
UES) that FCPlanner with the normalization switched on has
to spend during the first six iterations (for the worst-case sce-
nario) and compare it with the total time (REGR plus VAL -
UES) that FCPlanner with the normalization switched off has
to spend during the same six iterations, then it turns out that
the normalization brings the gain of about three orders of
magnitude.

At the time of writing, we can make the following con-
clusions about the best- and worst-case computational be-
haviour of FCPlanner. First, having two problems with the
same number of colors, the one with the larger number of
blocks is harder to solve. This conclusion is quite obvi-
ous and therefore we present no representative timing re-
sults. Second, having two problems with the same number
of blocks, the one with the larger number of colors is harder
to solve. Table 1 illustrates exactly this case.



I Number of states Time, msec
S SREGR SNORM REGR NORM VALUES

0 1 9 6 47 1 97
1 9 6 47 1 97

1 6 24 14 204 3 189
6 24 14 204 3 189

2 14 94 23 561 12 323
14 94 39 561 11 561

3 23 129 33 885 16 492
39 203 82 1491 29 1250

4 33 328 39 1473 46 606
82 652 208 3584 167 3301

5 39 361 48 1740 51 779
208 1449 434 8869 614 7839

6 48 604 52 2340 107 928
434 3634 962 19359 2981 22299

7 52 627 54 2573 110 961
962 7608 2029 44512 12166 89378

8 54 795 56 2799 157 1074
2029 18090 4407 104567 54747 279512

9 56 811 59 2965 154 1166
4407 36720 9415 245647 238697 894438

Table 1: Representative timing results for first ten iterations
of FOVIA.

Questions like ‘if one problem contains more blocks than
the another one, and the second problem contains more col-
ors than the first, on which of these problems FCPlanner
will demonstrate the better behaviour?’, have not yet been
answered but are considered as a next step in evaluating the
FCPlanner. Another interesting class of problems that FC-
Planner should be tested on are the problems where the goal
contains (much) less objects than are present in the domain.
Our preliminary investigations show that it would require
the introduction of new variables in the domain. In general,
FCPlanner supports this feature, but for the sake of the com-
petition (competition problems introduce no new variables),
it was disabled. We believe, that FCPlanner may outper-
form modern propositional MDP solvers on problems that
require new variables, but an extensive analysis is involved
at this point. We expect to obtain some of these and other
(especially, comparison with similar approaches) evaluation
results after the competition.

Acknowledgements

We would like to thank Axel Großmann for his valuable
comments on the previous versions of the paper. We also
deeply appreciate Eldar Karabaev for his hard work in de-
signing and coding the FCPlanner. Many thanks to all
anonymous referees for their helpful suggestions.

References

Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to Act Using Real-Time Dynamic Programming.Arti-
ficial Intelligence72(1-2):81–138.

Bellman, R. E. 1957.Dynamic Programming. Princeton,
NJ, USA: Princeton University Press.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic Dy-
namic Programming for First-Order MDPs. In Nebel, B.,
ed.,Proceedings of the Seventeenth International Confer-
ence on Artificial Intelligence (IJCAI-01), 690–700. Mor-
gan Kaufmann.
Ginsberg, M. 1988. Multivalued Logics: A Uniform Ap-
proach to Inference in Artificial Intelligence.Computa-
tional Intelligence4(3).
Green, C. 1969. Application of theorem proving to prob-
lem solving. InProceedings of the International Joint Con-
ference on Artificial Intelligence, 219–239. Morgan Kauf-
mann Publishers.
Große, G.; Ḧolldobler, S.; Schneeberger, J.; Sigmund, U.;
and Thielscher, M. 1992. Equational logic programming,
actions, and change. In Apt, K., ed.,IJCSLP, 177–191.
MIT Press.
Großmann, A.; Ḧolldobler, S.; and Skvortsova, O. 2002.
Symbolic Dynamic Programming within the Fluent Calcu-
lus. In Ishii, N., ed.,Proceedings of the IASTED Interna-
tional Conference on Artificial and Computational Intelli-
gence, 378–383. Tokyo, Japan: ACTA Press.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic Planning using Decision Diagrams. In
Proceedings of the Conference on Uncertainty in Artificial
Intelligence (UAI), 279–288.
Hölldobler, S., and Schneeberger, J. 1990. A new deductive
approach to planning.New Generation Computing8:225–
244.
McDermott, D. 1998. PDDL - the planning domain def-
inition language. Technical Report 1165, Yale University,
Department of Computer Science.
Skvortsova, O. 2003. Towards Automated Symbolic Dy-
namic Programming. Master’s thesis, TU Dresden.
Thielscher, M. 2004. FLUX: A logic programming method
for reasoning agents.Theory and practive of Logic Pro-
gramming.
Younes, H., and Littman, M. 2003. PPDDL1.0: An exten-
sion to PDDL for expressing planning domains with prob-
abilistic effects. InProceedings of the 14th International
Conference on Automated Planning and Scheduling. To
appear.


