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Abstract

Decision-theoretic planning with risk-sensitive planning objec-
tives is important for building autonomous agents or decision-
support agents for real-world applications. However, thisline
of research has been largely ignored in the artificial intelligence
and operations research communities since planning with risk-
sensitive planning objectives is much more complex than plan-
ning with risk-neutral planning objectives. To remedy thissit-
uation, we develop conditions that guarantee the existenceand
finiteness of the expected utilities of the total plan-execution re-
ward for risk-sensitive planning with totally observable Markov
decision process models. In case of Markov decision process
models with both positive and negative rewards our results hold
for stationary policies only, but we conjecture that they can be
generalized to hold for all policies.

Introduction
Decision-theoretic planning is important since real-world ap-
plications need to cope with uncertainty. Many decision-
theoretic planners use totally observable Markov decisionpro-
cess (MDP) models from operations research (Puterman 1994)
to represent planning problems under uncertainty. However,
most of them minimize the expected total plan-execution cost
or, synonymously, maximize the expected total reward (MER).
This planning objective and similar simplistic planning objec-
tives often do not take the preferences of human decision mak-
ers sufficiently into account, for example, their risk attitudes in
planning domains with huge wins or losses of money, equip-
ment or human life. This means that they are not well suited
for real-world planning domains such as space applications
(Zilbersteinet al. 2002), environmental applications (Blythe
1997), and business applications (Goodwin, Akkiraju, & Wu
2002). In this paper, we provide a first step towards a compre-
hensive foundation of risk-sensitive planning. In particular,
we develop sets of conditions that guarantee the existence and
finiteness of the expected utilities when maximizing the ex-
pected utility (MEU) of the total reward for risk-sensitive plan-
ning with totally observable Markov decision process models
and non-linear utility functions.

Risk Attitudes and Utility Theory
Human decision makers are typically risk-sensitive and thus
do not maximize the expected total reward in planning do-
mains with huge wins or losses. Table 1 shows an example
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Table 1: An Example of Risk Sensitivity
Probability Reward Expected

Reward Utility Expected
Utility

Choice 1
50% $10,000,000

$5,000,000
−0.050

−0.525
50% $ 0 −1.000

Choice 2 100% $ 4,500,000 $4,500,000 −0.260 −0.260

for which many human decision makers prefer Choice 2 over
Choice 1 even though its expected total reward is lower. They
are risk-averse and thus accept a reduction in expected total re-
ward for a reduction in variance. Utility theory (von Neumann
& Morgenstern 1944) suggests that this behavior is rational
because human decision makers maximize the expected utility
of the total reward. Utility functions map total rewards to the
corresponding finite utilities and capture the risk attitudes of
human decision makers (Pratt 1964). They are strictly mono-
tonically increasing in the total reward. Linear utility func-
tions characterize risk-neutral human decision makers, while
non-linear utility functions characterize risk-sensitive human
decision makers. In particular, concave utility functionschar-
acterize risk-averse human decision makers (“insurance hold-
ers”), and convex utility functions characterize risk-seeking
human decision makers (“lottery players”). For example, if
a risk-averse human decision maker has the concave exponen-
tial utility function U(w) = −0.9999997w and thus associates
the utilities shown in Table 1 with the total rewards of the two
choices, then Choice 2 maximizes their expected utility and
should thus be chosen by them. On the other hand,MER plan-
ners choose Choice 1, and the human decision maker would
thus be extremely unhappy with them with 50 percent proba-
bility.

Markov Decision Process Models
We study decision-theoretic planners that use MDPs to repre-
sent probabilistic planning problems. Formally, an MDP is a
4-tuple (S,A,P, r) of a state spaceS, an action spaceA, a
set of transition probabilitiesP , and a set of finite (immediate)
rewardsr. If an agent executes actiona ∈ A in states ∈ S,
then it incurs rewardr(s, a, s′) and transitions to states′ ∈ S
with probabilityP (s′|s, a). An MDP is called finite if its state
space and action space are both finite. We assume through-
out this paper that the MDPs are finite since decision-theoretic
planners typically use finite MDPs.

The number of time steps that a decision-theoretic planner



plans for is called its (planning) horizon. A history at timestep
t is the sequenceht = (s0, a0, · · · , st−1, at−1, st) of states
and actions from the initial state to the current state. The set of
all histories at time stept is Ht = (S ×A)t × S. A trajectory
is an element ofH∞ for infinite horizons andHT for finite
horizons, whereT ≥ 1 denotes the last time step of the finite
horizon.

Decision-theoretic planners determine a decision rule for
every time step within the horizon. A decision rule deter-
mines which action the agent should execute in its current
state. A deterministic history-dependent (HD) decision rule
at time stept is a mappingdt : Ht → A. A randomized
history-dependent (HR) decision rule at time stept is a map-
ping dt : Ht → P(A), whereP(A) is the set of probability
distributions overA. Markovian decision rules are history-
dependent decision rules whose actions depend only on the
current state rather than the complete history at the current
time step. A deterministic Markovian (MD) decision rule
at time stept is a mappingdt : S → A. A randomized
Markovian (MR) decision rule at time stept is a mapping
dt : S → P(A). A policy π is a sequence of decision rules
dt, one for every time stept within the horizon. We useΠK

to denote the set of all policies whose decision rules all be-
long to the same class, whereK ∈ {HR, HD, MR, MD}. The
set of all possible policiesΠ is the same asΠHR. Decision-
theoretic planners typically determine stationary policies. A
Markovian policyπ ∈ Π is stationary ifdt = d for all time
stepst, and we writeπ(s) = d(s). We useΠSD to denote
the set of all deterministic stationary (SD) policies andΠSR

to denote the set of all randomized stationary (SR) policies.
The state transitions resulting from stationary policies are de-
termined by Markov chains. A state of a Markov chain and
thus also a state of an MDP under a stationary policy is called
recurrent iff the expected number of time steps between vis-
iting the state is finite. A recurrent class is a maximal set of
states that are recurrent and reachable from each other. These
concepts play an important role in the proofs of our results.

Planning Objectives
MEU planners determine policies that maximize the expected
utility of the total reward for a given utility functionU . One
difference between theMER and MEU objective is that the
MEU objective can result in planning problems that are not
decomposable, which makes it impossible to use the divide-
and-conquer principle (such as dynamic programming) to effi-
ciently find policies that maximize the expected utility. There-
fore, we need to re-examine the basic properties of decision-
theoretic planning when switching from theMER to theMEU

objective.
For planning problems with finite horizonsT , the expected

utility of the total reward starting froms ∈ S underπ ∈ Π is

vπ
U,T (s) = Es,π

[

U

(

T−1
∑

t=0

rt

)]

,

where the expectationEs,π is taken over all possible trajecto-
ries. The expected utilities exist (= are well-defined) under
all policies and are bounded because the number of trajec-
tories is finite for finite MDPs.MEU planners then need to
determine the maximal expected utilities of the total reward
v∗

U,T (s) = supπ∈Π vπ
U,T (s) and a policy that achieves them. The
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maximal expected utilities exist and are finite because the ex-
pected utilities are bounded under all policies.

For planning problems with infinite horizons, the expected
utility of the total reward starting froms ∈ S under policyπ
is

v
π
U (s) = lim

T→∞
v

π
U,T (s) = lim

T→∞
Es,π

[

U

(

T−1
∑

t=0

rt

)]

. (1)

The expected utilities exist iff the limit converges on the ex-
tended real line, that is, the limit results in a finite number,
positive infinity or negative infinity.MEU planners then need
to determine the maximal expected utilities of the total re-
ward v∗

U(s) = supπ∈Π vπ
U (s) and a policy that achieves them.

To simplify our terminology, we refer to the expected utili-
ties vπ

U (s) for all s ∈ S as the values under policyπ ∈ Π
and to the maximal expected utilitiesv∗

U(s) for all s ∈ S as
the optimal values. A policy is optimal if its values equal
the optimal values for all states. A policy isK-optimal if
it is optimal and it is in the class of policiesΠK , where
K ∈ {HR, HD, MR, MD, SR, SD}.

Discussion of Assumptions
So far, we have motivated why decision-theoretic planners
should maximize the values for non-linear utility functions.
The kinds of MDPs that decision-theoretic planners typically
use tend to have goal states that need to get reached (Boutilier,
Dean, & Hanks 1999). The MDP in Figure 1 gives an ex-
ample. Its transitions are labeled with their rewards followed
by their probabilities. The rewards of the two actions in state
s1 are negative because they correspond to the costs of the
actions. States2 is the goal state, in which only one action
can be executed, namely an action with zero reward whose
execution leaves the state unchanged. The optimal value of
a state then corresponds to the largest expected utility of the
plan-execution cost for reaching the goal state from the given
state. To achieve generality, however, we do not make any
assumptions in this paper about the structure of the MDPs or
their rewards. For example, we do not make any assumptions
about how the structure of the MDPs and their rewards encode
the goal states. Neither do we make any assumptions about
whether all of the rewards are positive, negative or zero. We
avoid such assumptions because MDPs can mix positive re-
wards (which model, for example, rewards for reaching a goal
state) and negative rewards (which model, for example, action
costs).

The results of this paper would be trivial if we used dis-
counting, that is, assumed that a reward obtained at some
time step is worth only a fraction of the same reward ob-
tained one time step earlier. Discounting is a way of mod-
eling interest on investments. In our case, there is typically
no way to invest resources and thus no reason to use dis-
counting. This is fortunate because discounting makes it dif-
ficult to find optimal policies for theMEU objective even
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though it guarantees that the expected utilities exist and are
finite (White 1987). For example, all optimal policies can
be non-stationary for theMEU objective if the utility func-
tion is exponential and discounting is used (Chung & Sobel
1987), which makes it very difficult to find an optimal pol-
icy. On the other hand, there always exists an SD-optimal
policy for the MEU objective if the utility function is ex-
ponential and discounting is not used (Ávila-Godoy 1999;
Cavazos-Cadena & Montes-de-Oca 2000). Thus, there is an
advantage to not using discounting for theMEU objective.
This advantage does not exist for theMER objective because
there always exists an SD-optimal policy for theMER objec-
tive whether discounting is used or not (Puterman 1994).

Existence and Finiteness Conditions
In this paper, we study conditions that guarantee that the val-
ues of all states exist and are finite for theMEU objective.

It is important that the optimal values exist sinceMEU

planners determine a policy that achieves the optimal values.
There are cases where the optimal values do not exist, as the
MDP in Figure 2 illustrates. An agent that starts in states1

receives the following sequence of rewards for its only pol-
icy: +1,−1,+1,−1, . . . , and consequently the following se-
quence of total rewards:+1, 0,+1, 0, . . . , which oscillates.
Thus, the limit in Formula (1) does not exist for any utility
function under this policy, and the optimal value of states1

does not exist either. A similar argument holds for states2 as
well.

It is also important that the optimal values be finite. There
are cases where the optimal values are not finite. The MDP in
Figure 1 illustrates such a case and the problem that it poses
for MEU planners. The MDP has two SD policies. Policyπ1

assigns the top action to states1, and policyπ2 assigns the
bottom action to states1. The values of both states are the
same under both policies and utility functionU(w) = −0.5w,
namely

v
π1

U (s1) =
∞
∑

t=1

[

−0.5(−1)t
· 0.5t

]

= −

∞
∑

t=1

1 = −∞,

v
π2

U (s1) =

∞
∑

t=1

[

−0.5(−2)t
· 0.5t

]

= −

∞
∑

t=1

2t = −∞,

andvπ1

U (s2) = vπ2

U (s2) = −1. Thus, the optimal value of state
s1 exists but is negative infinity. All trajectories have identical
probabilities under both policies, but the total reward andthus
also the utility of each trajectory is larger under policyπ1 than
under policyπ2. Thus, policyπ1 should be preferred over pol-
icy π2 for all utility functions. Policyπ2 of this example shows
that a policy that achieves the optimal values and thus is op-
timal according to our definition is not always the best one.
The problem is that the values of the states under policyπ1 are
guaranteed to dominate the values of the states under policy

π2, but they are guaranteed to strictly dominate the values of
the states under policyπ2 only if the optimal values are finite.
This example also shows that the optimal values are not guar-
anteed to be finite even if all policies reach a goal state with
probability one. Furthermore, the optimal values of both states
are, for example, finite for the utility functionU(w) = w and
thus any policy that achieves the optimal values is indeed the
best one for this utility function, which shows that the problem
can exist for some utility functions but not others, depending
on whether the optimal values are finite for the given MDP.

Existing Results
The easiest way to guarantee that the optimal values exist and
are finite is to impose conditions that guarantee that the values
of all states exist for all policies and are finite. We first review
such conditions that have been obtained primarily for MDPs
with linear and exponential utility functions. We then use these
results to identify similar conditions for more general MDPs.

Linear Utility Functions

Linear utility functions characterize risk-neutral humandeci-
sion makers. In this case, theMEU objective is the same as
theMER objective. We omit the subscriptU for linear utility
functions.

Positive MDPs MDPs for which Condition 1 holds are
called positive (Puterman 1994). The values exist for posi-
tive MDPs under all policies sincevπ

T (s) is monotonic inT .
Thus, the optimal values exist as well. They are finite ifCon-
dition 2 holds (Puterman 1994). In fact, the optimal values
are finite even ifΠ is replaced withΠSD in Condition 2, since
there exists an SD-optimal policy for theMER objective (Put-
erman 1994). Note that the values of all recurrent states under
a policy are zero ifCondition 2 holds.

Condition 1: For alls, s′ ∈ S and alla ∈ A, r(s, a, s′) ≥ 0.

Condition 2: For allπ ∈ Π and alls ∈ S, vπ(s) is finite.

Negative MDPs MDPs for which Condition 3 holds are
called negative (Puterman 1994). Similar to positive MDPs,
the values exist for negative MDPs under all policies and thus
the optimal values exist as well. The optimal values are finite
if Condition 4 holds (Puterman 1994). Again, the optimal val-
ues are finite even ifΠ is replaced withΠSD in Condition 4
since there exists an SD-optimal policy for theMER objective
(Puterman 1994).

Condition 3: For alls, s′ ∈ S and alla ∈ A, r(s, a, s′) ≤ 0.

Condition 4: There existsπ ∈ Π such that for alls ∈ S,
vπ(s) are finite.

General MDPs In general, MDPs can have both positive
and negative (as well as zero) rewards. We define the pos-
itive part of a real numberr to be r+ = max(r, 0) and its
negative part to ber− = min(r, 0). We then obtain the pos-
itive part of an MDP by replacing every reward of the MDP
with its positive part. We usev+π(s) to denote the values of
the positive part of an MDP under policyπ ∈ Π. We define
the negative part of an MDP and the valuesv−π(s) in an anal-
ogous way. The values exist under all policies ifCondition 5
holds (Feinberg 2002). Thus, the optimal values exist as well
if Condition 5 holds. They are finite ifCondition 5 andCon-
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dition 6 hold (Feinberg 2002). Again, the optimal values are
finite even ifΠ is replaced withΠSD in Condition 5 andCon-
dition 6, since there exists an SD-optimal policy for theMER

objective (Puterman 1994).

Condition 5: For allπ ∈ Π and alls ∈ S, v+π(s) is finite.

Condition 6: There existsπ ∈ Π such that for alls ∈ S,
v−π(s) is finite.

Condition 7 is the weakest condition that we use in this
paper. It is more general thanCondition 1, Condition 3, and
Condition 5, since, for example,Condition 1 implies that for
all π ∈ Π and alls ∈ S, v−π(s) = 0. The values exist under
all policies andvπ(s) = v+π(s) + v−π(s) for all s ∈ S and
all π ∈ Π if Condition 7 holds (Puterman 1994). Thus, the
optimal values exist as well ifCondition 7 holds, but they are
not guaranteed to be finite (Puterman 1994).

Condition 7: For all π ∈ Π and alls ∈ S, at least one of
v+π(s) andv−π(s) is finite.

The MDPs in Figures 2 and 3 illustrateCondition 7. The
MDP in Figure 2 does not satisfyCondition 7. The val-
ues of its states do not exist under its only policyπ, as we
have argued earlier. It is easy to see thatv+π(s1) = +∞
andv−π(s1) = −∞, which violatesCondition 7 and illus-
trates thatCondition 7 indeed rules out MDPs whose values
do not exist under all policies. The MDP in Figure 3 is an-
other MDP that does not satisfyCondition 7. The values of its
states, however, exist under its only policyπ′. For example, an
agent that starts in states1 receives the following sequence of
rewards:+2,−1,+2,−1, . . . , and consequently the follow-
ing sequence of total rewards:+2,+1,+3,+2,+4,+3, . . . ,
which converges toward positive infinity. Thus, the limit in
Formula (1) exists underπ′, and the value of states1 thus
exists as well underπ′. However, it is easy to see that
v+π′

(s1) = +∞ andv−π′

(s1) = −∞, which violatesCon-
dition 7 and demonstrates thatCondition 7 is not a necessary
condition for the values to exist under all policies.

Exponential Utility Functions

Exponential utility functions are the most widely used non-
linear utility functions (Corner & Corner 1995). They are of
the formUexp(w) = ιγw, whereι = signln γ. If γ > 1,
then the exponential utility function is convex and character-
izes risk-seeking human decision makers. If0 < γ < 1, then
the utility function is concave and characterizes risk-averse hu-
man decision makers. We use the subscriptexp instead ofU
for exponential utility functions and useMEUexp instead of
MEU to refer to the planning objective.

Positive MDPs The values exist for positive MDPs under
all policies sincevπ

exp,T (s) is monotonic inT . Thus, the op-
timal values exist as well. They are finite if0 < γ < 1 or
if γ > 1 andCondition 8 holds (Cavazos-Cadena & Montes-

de-Oca 2000). Again, the optimal values are finite even ifΠ
is replaced withΠSD in Condition 8 since there exists an SD-
optimal policy for theMEUexp objective (Cavazos-Cadena &
Montes-de-Oca 2000).
Condition 8: For allπ ∈ Π and alls ∈ S, vπ

exp(s) is finite.

Negative MDPs The values exist for negative MDPs under
all policies sincevπ

exp,T (s) is monotonic inT . Thus, the op-
timal values exist as well. They are finite ifγ > 1 or if
0 < γ < 1 and Condition 9 holds (Ávila-Godoy 1999).
Again, the optimal values are finite even ifΠ is replaced with
ΠSD in Condition 9 since there exists an SD-optimal policy
for theMEUexp objective (́Avila-Godoy 1999).
Condition 9: There existsπ ∈ Π such that for alls ∈ S,
vπ
exp(s) is finite.

Some Useful Lemmata
The following lemmata are key to proving Theorem 4, The-
orem 6, Theorem 9, and Theorem 10. Because of the space
limit, we state these lemmata and the following theorems with-
out proof. Lemma 1 describes the behavior of the agent after
entering a recurrent class, and Lemma 2 describes its behavior
before entering a recurrent class. The idea of splitting trajec-
tories according to whether the agent is in a recurrent classis
key to the proofs of the results in following sections.

Lemma 1 states that one can only receive all non-negative
rewards, all non-positive rewards or all zero rewards if one
enters a recurrent class andCondition 7 holds.
Lemma 1. Assume thatCondition 7 holds. Consider an arbi-
trary π ∈ ΠSR and an arbitrarys ∈ S that is recurrent under
π. LetAπ(s) ⊆ A denote the set of actions whose probability
is positive under the probability distributionπ(s).
a. If vπ(s) = +∞, then for alla ∈ Aπ(s) and alls′ ∈ S with

P (s′|s, a) > 0, r(s, a, s′) ≥ 0.
b. If vπ(s) = −∞, then for alla ∈ Aπ(s) and alls′ ∈ S with

P (s′|s, a) > 0, r(s, a, s′) ≤ 0.
c. If vπ(s) = 0, then for alla ∈ Aπ(s) and all s′ ∈ S with

P (s′|s, a) > 0, r(s, a, s′) = 0.
Lemma 2 concerns the well-known geometric rate of state

evolution (Kemeny & Snell 1960) and its corollaries. We use
this lemma, together with the fact that the rewards accumulate
at a linear rate, to show that the limit in (1) converges on the
extended real line under various conditions.
Lemma 2. For all π ∈ ΠSR, letRπ denote the set of recurrent
states underπ. Then for alls ∈ S, there exists0 < ρ < 1
such that for allt ≥ 0,
a. there existsa > 0 such thatP s,π(st /∈ Rπ) ≤ aρt,
b. there existsb > 0 such thatP s,π(st /∈ Rπ, st+1 ∈ Rπ) ≤

bρt, and
c. for any recurrent classRπ

i , there existsc > 0 such that
P s,π(st /∈ Rπ, st+1 ∈ Rπ

i ) ≤ cρt,
whereP s,π is a shorthand for the probability underπ condi-
tional ons0 = s.

The MDP in Figure 4 illustrates Lemma 2. States2 is the
only recurrent state under its only policy ifp > 0. For this
policy π and allt ≥ 0, P s1,π(st 6= s2) = (1 − p)t (which
illustrates Lemma 2a) andP s1,π(st 6= s2, st+1 = s2) = p(1−
p)t (which illustrates Lemma 2b and Lemma 2c).
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Exponential Utility Functions
and General MDPs

We discuss convex and concave exponential utility functions
separately for MDPs with both positive and negative rewards.
We usev+π

exp(s) to denote the values of the positive part of an
MDP with exponential utility functions under policyπ ∈ Π
andv+∗

exp(s) to denote its optimal values. We define the values
v−π
exp(s) andv−∗

exp(s) in an analogous way.

Convex Exponential Utility Functions
Theorem 4 shows that the values exist for convex exponential
utility functions under all SR policies ifCondition 10 holds.
Condition 10 is analogous toCondition 7, and Lemma 3 re-
lates them.

Condition 10: For all π ∈ Π and alls ∈ S, at least one of
v+π
exp(s) andv−π(s) is finite.

Lemma 3. If γ > 1, Condition 10 impliesCondition 7.

Theorem 4. Assume thatCondition 10 holds andγ > 1. For
all π ∈ ΠSRand all s ∈ S, vπ

exp(s) exists.

However, it is still an open problem whether there exists an
SD-optimal policy for MDPs with both positive and negative
rewards for theMEUexp objective. Therefore, it is currently
unknown whether the optimal values exist.

Assume thatCondition 10 holds and the optimal values ex-
ist. The optimal values are finite if for allπ ∈ Π and alls ∈ S,
v+π
exp(s) is finite. This is so becauseCondition 8 implies that

for all s ∈ S, v+∗

exp(s) is finite. Furthermore, for allπ ∈ Π and
all s ∈ S,

vπ
exp,T (s) = E

s,π



Uexp





T−1
∑

t=0

rt







 ≤ E
s,π



Uexp





T−1
∑

t=1

r
+
t







 = v
+π

exp,T
(s).

Taking the limit asT approaches infinity shows thatvπ
exp(s) ≤

v+π
exp(s) < +∞. Therefore,v∗

exp(s) ≤ v+∗

exp(s) < +∞.
The MDP in Figure 4 illustrates Theorem 4. Its probabilities

and rewards are parameterized, wherep > 0. We will show
that the values of both states under its only policyπ exist for
all parameter values ifCondition 10 holds andγ > 1. As-
sume that the premise is true. We distinguish two cases: either
v−π(s1) is finite orv−π(s1) is negative infinity.

If v−π(s1) is finite, thenv−π(s2) is finite as well. If
v−π(s2) is finite, then it is zero since states2 is recurrent. If
v−π(s2) is zero, thenb ≥ 0, that is, eitherb > 0 or b = 0. If
b > 0, thenvπ

exp(s1) = vπ
exp(s2) = +∞, that is, the values of

both states exist. Ifb = 0 (Case X), thenvπ
exp(s2) = 1 and

v
π
exp(s1) =

∞
∑

t=0

γ
(t+1)a

p(1 − p)t
.

If γa(1 − p) < 1, then the above sum can be simplified to

v
π
exp(s1) =

pγa

1 − γa(1 − p)
,

otherwise it is positive infinity. Thus, in either case, the values
of both states exist.

If v−π(s1) is negative infinity, thenv−π(s2) is negative in-
finity as well. If v−π(s2) is negative infinity, thenb < 0 and
vπ
exp(s2) = 0. We distinguish two cases: eithera ≤ 0 or

a > 0. If a ≤ 0, then the total rewards of all trajectories are
negative infinity and thusvπ

exp(s1) = 0, that is, the values of
both states exist. Ifa > 0, thenγa(1−p) < 1 becauseCondi-
tion 10 requires thatv+π

exp(s1) be finite if v−π(s1) is negative
infinity and the positive part of the MDP satisfies the condi-
tions of Case X above. If the agent enters states2 at time step
t + 1, then it receives rewardb from then on. Thus,

v
π
exp,T (s1) =

T−1
∑

t=0

γ
(t+1)a+(T−t−1)b

p(1 − p)t + γ
Ta(1 − p)T

= pγ
a−b γbT − [γa(1 − p)]T

1 − γa−b(1 − p)
+ [γa(1 − p)]T .

Sinceγ > 1 andγa(1 − p) < 1, it holds that

v
π
exp(s1) = lim

T→∞
v

π
exp,T (s1) = 0.

Thus, in all cases,Condition 10 indeed guarantees that the
values of both states exist for the MDP in Figure 4.

Concave Exponential Utility Functions
The results and proofs for concave exponential utility func-
tions are analogous to the ones for convex exponential utility
functions.

Condition 11: For all π ∈ Π and alls ∈ S, at least one of
v+π(s) andv−π

exp(s) is finite.

Lemma 5. If 0 < γ < 1, Condition 11 impliesCondition 7.

Theorem 6. Assume thatCondition 11 holds and0 < γ < 1.
For all π ∈ ΠSRand all s ∈ S, vπ

exp(s) exists.

Assume thatCondition 11 holds and the optimal values ex-
ist. The optimal values are finite if there existsπ ∈ Π such that
for all s ∈ S, v−π

exp(s) is finite. This is so because for thisπ
and alls ∈ S,

vπ
exp,T (s) = Es,π

[

Uexp

(

T−1
∑

t=0

rt

)]

≥ Es,π

[

Uexp

(

T−1
∑

t=0

r
−

t

)]

= v
−π
exp,T

(s).

Taking the limit asT approaches infinity shows thatv∗

exp(s) ≥

vπ
exp(s) ≥ v−π

exp(s) > −∞.

General Utility Functions
We now consider non-linear utility functions that are more
general than exponential utility functions. Such utility func-
tions are necessary to model risk attitudes that change with
the total reward.

Positive and Negative MDPs
The values exist for positive and negative MDPs under all poli-
cies sincevπ

U,T (s) is monotonic inT . Thus, the optimal values
exist as well. Theorem 7 gives a condition under which the op-
timal values are finite for positive MDPs, and Theorem 8 gives
a condition under which they are finite for negative MDPs.

Theorem 7. Assume thatCondition 1 andCondition 8 hold
for someγ > 1. If the utility functionU satisfiesU(w) =
O(γw) asw → +∞, then for allπ ∈ Π and all s ∈ S, vπ

U (s)
andv∗

U (s) are finite.



Theorem 8. Assume thatCondition 3 andCondition 9 hold
for someπ ∈ Π and someγ with 0 < γ < 1. If the utility
functionU satisfiesU(w) = O(γw) as w → −∞, then for
thisπ and all s ∈ S, vπ

U (s) andv∗

U (s) are finite.

General MDPs
The following sections suggest conditions that constrain
MDPs with both positive and negative rewards and the util-
ity functions to ensure that the values exist. The first part
gives conditions that constrain the MDPs but not the utility
functions. The second part gives conditions that constrainthe
utility functions but require the MDPs to satisfy onlyCon-
dition 7. The last part, finally, gives conditions that mediate
between the two extremes.

Bounded Total Rewards We first consider the case where
the total reward is bounded. We useHs,π to denote the set
of trajectories starting froms ∈ S under policyπ ∈ Π. We

definew(h) =
∞
∑

t=0

rt(h) for h ∈ Hs,π, v
π
max(s) = max

h∈Hs,π
w(h)

andv
π
min(s) = min

h∈Hs,π
w(h). The total rewardw(h) exists if

Condition 7 holds. The optimal values exist and are finite if
Condition 7 holds and for alls ∈ S,

sup
π∈Π

v
π
max(s) < +∞ and inf

π∈Π
v

π
min(s) > −∞.

These conditions are, for example, satisfied for acyclic MDPs
if plan execution ends in absorbing states but are satisfied for
some cyclic MDPs as well. Unfortunately, it can be difficult
to check the conditions directly. However, the optimal values
also exist and are finite if for alls ∈ S,

sup
π∈Π

v
+π
max(s) < +∞ and inf

π∈Π
v
−π
min(s) > −∞.

In fact, the optimal values also exist even ifΠ is replaced with
ΠSD in this condition, which allows one to check the condition
with a dynamic programming procedure.

Bounded Utility Functions We now consider the case
where the utility functions are bounded. In this case,vπ

U,T (s)
is bounded asT approaches infinity but the limit might not
exist since the values can oscillate. Theorem 9 provides a
condition that guarantees that the values exist under station-
ary policies.

Theorem 9. Assume that Condition 7 holds. If
lim

w→−∞
U(w) = U

− and lim
w→+∞

U(w) = U
+ with U+ 6= U−

being finite, then for allπ ∈ ΠSR and all s ∈ S, vπ
U (s) exists

and is finite.

Linearly Bounded Utility Functions Finally, we consider
the case where the utility functions are bounded by linear func-
tions. Theorem 10 shows that the values exist under conditions
that are, in part, similar to those for theMER objective.

Theorem 10. AssumeCondition 7 holds. IfU(w) = O(w)
asw → ±∞, then for allπ ∈ ΠSRand alls ∈ S, vπ

U (s) exists.

Conclusions and Future Work
We have discussed conditions that guarantee the existence
and finiteness of the expected utilities of the total plan-
execution reward for risk-sensitive planning with totallyob-
servable Markov decision process models. Our results are

only a first step towards a comprehensive foundation of risk-
sensitive planning. In future work, we will study the existence
of optimal andε-optimal policies, the structure of such poli-
cies, and basic computational procedures for obtaining them.
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