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Abstract

Optimal solutions to Markov Decision Problems
(MDPs) are very sensitive with respect to the state tran-
sition probabilities. In many practical problems, the
estimation of those probabilities is far from accurate.
Hence, estimation errors are limiting factors in apply-
ing MDPs to real-world problems. We propose an al-
gorithm for solving £nite-state and £nite-action MDPs,
where the solution is guaranteed to be robust with re-
spect to estimation errors on the state transition proba-
bilities. Our algorithm involves a statistically accurate
yet numerically ef£cient representation of uncertainty
via likelihood functions. The worst-case complexity of
the robust algorithm is the same as the original Bellman
recursion. Hence, robustness can be added at practically
no extra computing cost.

Introduction
We consider a £nite-state and £nite-action Markov decision
problem in which the transition probabilities themselves are
uncertain, and seek a robust decision for it. Our work is mo-
tivated by the fact that in many practical problems, the tran-
sition matrices have to be estimated from data. This may be
a dif£cult task and the estimation errors may have a huge im-
pact on the solution, which is often quite sensitive to changes
in the transition probabilities (Feinberg & Shwartz 2002). A
number of authors have addressed the issue of uncertainty
in the transition matrices of an MDP. A Bayesian approach
such as described by (Shapiro & Kleywegt 2002) requires
a perfect knowledge of the whole prior distribution on the
transition matrix, making it dif£cult to apply in practice.
Other authors have considered the transition matrix to lie in a
given set, most typically a polytope: see (Satia & Lave 1973;
White & Eldeib 1994; Givan, Leach, & Dean 1997). Al-
though our approach allows to describe the uncertainty on
the transition matrix by a polytope, we may argue against
choosing such a model for the uncertainty. First, a general
polytope is often not a tractable way to address the robust-
ness problem, as it incurs a signi£cant additional compu-
tational effort to handle uncertainty. Perhaps more impor-
tantly, polytopic models, especially interval matrices, may
be very poor representations of statistical uncertainty and
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lead to very conservative robust policies. In (Bagnell, Ng,
& Schneider 2001), the authors consider a problem dual to
ours, and provide a general statement according to which
the cost of solving their problem is polynomial in problem
size, provided the uncertainty on the transition matrices is
described by convex sets, without proposing any speci£c
algorithm. This paper is a short version of a longer report
(Nilim & El-Ghaoui 2004), which contains all the proofs of
the results summarized here.

Notation. P > 0 or P ≥ 0 refers to the strict or non-
strict componentwise inequality for matrices or vectors. For
a vector p > 0, log p refers to the componentwise opera-
tion. The notation 1 refers to the vector of ones, with size
determined from context. The probability simplex in Rn is
denoted ∆n = {p ∈ Rn

+ : pT1 = 1}, while Θn is the set
of n × n transition matrices (componentwise non-negative
matrices with rows summing to one). We use σP to denote
the support function of a set P ⊆ Rn, with for v ∈ Rn,
σP(v) := sup{pT v : p ∈ P}.

The problem description

We consider a £nite horizon Markov decision process with
£nite decision horizon T = {0, 1, 2, . . . , N − 1}. At each
stage, the system occupies a state i ∈ X , where n = |X |
is £nite, and a decision maker is allowed to choose an ac-
tion a deterministically from a £nite set of allowable actions
A = {a1, . . . , am} (for notational simplicity we assume that
A is not state-dependent). The system starts in a given initial
state i0. The states make Markov transitions according to a
collection of (possibly time-dependent) transition matrices
τ := (P a

t )a∈A,t∈T , where for every a ∈ A, t ∈ T , the n×n
transition matrix P a

t contains the probabilities of transition
under action a at stage t. We denote by π = (a0, . . . ,aN−1)
a generic controller policy, where at(i) denotes the con-
troller action when the system is in state i ∈ X at time t ∈ T .
Let Π = AnN be the corresponding strategy space. De£ne
by ct(i, a) the cost corresponding to state i ∈ X and action
a ∈ A at time t ∈ T , and by cN the cost function at the
terminal stage. We assume that ct(i, a) is non-negative and
£nite for every i ∈ X and a ∈ A.

For a given set of transition matrices τ , we de£ne the



£nite-horizon nominal problem by
φN (Π, τ) := min

π∈Π
CN (π, τ), (1)

where CN (π, τ) denotes the expected total cost under con-
troller policy π and transitions τ :

CN (π, τ) := E

(

N−1
∑

t=0

ct(it,at(i)) + cN (iN )

)

. (2)

A special case of interest is when the expected total cost
function bears the form (2), where the terminal cost is zero,
and ct(i, a) = νtc(i, a), with c(i, a) now a constant cost
function, which we assume non-negative and £nite every-
where, and ν ∈ (0, 1) is a discount factor. We refer to this
cost function as the discounted cost function, and denote by
C∞(π, τ) the limit of the discounted cost (2) as N →∞.

When the transition matrices are exactly known, the
corresponding nominal problem can be solved via a dy-
namic programming algorithm, which has total complexity
of mn2N ¤ops in the £nite-horizon case. In the in£nite-
horizon case with a discounted cost function, the cost of
computing an ε-suboptimal policy via the Bellman recursion
is O(mn2 log(1/ε)); see (Puterman 1994) for more details.

The robust control problems
At £rst we assume that when for each action a and time t,
the corresponding transition matrix P a

t is only known to lie
in some given subset Pa. Two models for transition matrix
uncertainty are possible, leading to two possible forms of
£nite-horizon robust control problems. In a £rst model, re-
ferred to as the stationary uncertainty model, the transition
matrices are chosen by nature depending on the controller
policy once and for all, and remain £xed thereafter. In a
second model, which we refer to as the time-varying uncer-
tainty model, the transition matrices can vary arbitrarily with
time, within their prescribed bounds. Each problem leads to
a game between the controller and nature, where the con-
troller seeks to minimize the maximum expected cost, with
nature being the maximizing player.

Let us de£ne our two problems more formally. A policy of
nature refers to a speci£c collection of time-dependent tran-
sition matrices τ = (P a

t )a∈A,t∈T chosen by nature, and the
set of admissible policies of nature is T := (⊗a∈AP

a)N .
Denote by Ts the set of stationary admissible policies of na-
ture:
Ts = {τ = (P a

t )a∈A,t∈T ∈ T : P a
t = P a

s for every t, s ∈
T, a ∈ A}.
The stationary uncertainty model leads to the problem

φN (Π, Ts) := min
π∈Π

max
τ∈Ts

CN (π, τ). (3)

In contrast, the time-varying uncertainty model leads to a
relaxed version of the above:

φN (Π, Ts) ≤ φN (Π, T ) := min
π∈Π

max
τ∈T

CN (π, τ). (4)

The £rst model is attractive for statistical reasons, as it is
much easier to develop statistically accurate sets of con£-
dence when the underlying process is time-invariant. Unfor-
tunately, the resulting game (3) seems to be hard to solve be-
cause “principle of optimality” may not hold in these prob-
lems due to the dependence of optimal actions of nature

among different stages. The second model is attractive as
one can solve the corresponding game (4) using a variant of
the dynamic programming algorithm seen later, but we are
left with a dif£cult task, that of estimating a meaningful set
of con£dence for the time-varying matrices P a

t . In this paper
we will use the £rst model of uncertainty in order to derive
statistically meaningful sets of con£dence for the transition
matrices, based on likelihood or entropy bounds. Then, in-
stead of solving the corresponding dif£cult control problem
(3), we use an approximation that is common in robust con-
trol, and solve the time-varying upper bound (4), using the
uncertainty sets Pa derived from a stationarity assumption
about the transition matrices. We will also consider a variant
of the £nite-horizon time-varying problem (4), where con-
troller and nature play alternatively, leading to a repeated
game

φrepN (Π,Q) := min
a0

max
τ0∈Q

min
a1

max
τ1∈Q

. . . min
aN−1

max
τN−1∈Q

CN (π, τ),

(5)
where the notation τt = (P a

t )a∈A denotes the collection
of transition matrices at a given time t ∈ T , and Q :=
⊗a∈AP

a is the corresponding set of con£dence.
Finally, we will consider an in£nite-horizon robust con-

trol problem, with the discounted cost function referred to
above, and where we restrict control and nature policies to
be stationary:

φ∞(Πs, Ts) := min
π∈Πs

max
τ∈Ts

C∞(π, τ), (6)

where Πs denotes the space of stationary control policies.
We de£ne φ∞(Π, T ), φ∞(Π, Ts) and φ∞(Πs, T ) accord-
ingly.

In the sequel, for a given control policy π ∈ Π and subset
S ⊆ T , the notation φN (π,S) := maxτ∈S CN (π, τ) de-
notes the worst-case expected total cost for the £nite-horizon
problem, and φ∞(π,S) is de£ned likewise.

Main results

Our main contributions are as follows. First we provide a
recursion, the “robust dynamic programming” algorithm,
which solves the £nite-horizon robust control problem (4).
We provide a simple proof in (Nilim & El-Ghaoui 2004) of
the optimality of the recursion, where the main ingredient
is to show that perfect duality holds in the game (4). As a
corollary of this result, we obtain that the repeated game (5)
is equivalent to its non-repeated counterpart (4). Second, we
provide similar results for the in£nite-horizon problem with
discounted cost function, (6). Moreover, we obtain that if
we consider a £nite-horizon problem with a discounted cost
function, then the gap between the optimal value of the sta-
tionary uncertainty problem (3) and that of its time-varying
counterpart (4) goes to zero as the horizon length goes to in-
£nity, at a rate determined by the discount factor. Finally, we
identify several classes of uncertainty models, which result
in an algorithm that is both statistically accurate and numer-
ically tractable. We provide precise complexity results that
imply that, with the proposed approach, robustness can be
handled at practically no extra computing cost.



Finite-Horizon robust MDP
We consider the £nite-horizon robust control problem de-
£ned in section . For a given state i ∈ X , action a ∈ A,
and P a ∈ Pa, we denote by pai the next-state distribution
drawn from P a corresponding to state i ∈ X ; thus pai is the
i-th row of matrix P a. We de£ne P a

i as the projection of
the set Pa onto the set of pai -variables. By assumption, these
sets are included in the probability simplex of Rn, ∆n; no
other property is assumed. The following theorem is proved
in (Nilim & El-Ghaoui 2004).

Theorem 1 (robust dynamic programming) For the ro-
bust control problem (4), perfect duality holds:

φN (Π, T ) = min
π∈Π

max
τ∈T

CN (π, τ) = max
τ∈T

min
π∈Π

CN (π, τ)

:= ψN (Π, T ).

The problem can be solved via the recursion

vt(i) = min
a∈A

(

ct(i, a) + σPa

i
(vt+1)

)

, i ∈ X , t ∈ T, (7)

where σP(v) := sup{pT v : p ∈ P} denotes the support
function of a set P , vt(i) is the worst-case optimal value
function in state i at stage t. A corresponding optimal con-
trol policy π∗ = (a∗0, . . . ,a

∗
N−1) is obtained by setting

a
∗
t (i) ∈ argmin

a∈A

{

ct(i, a) + σPa

i
(vt+1)

}

, i ∈ X . (8)

The effect of uncertainty on a given strategy π =
(a0, . . . ,aN ) can be evaluated by the following recursion

vπt (i) = ct(i,at(i)) + σ
P

at(i)
i

(vπt+1), i ∈ X , (9)

which provides the worst-case value function vπ for the
strategy π.

The above result has a nice consequence for the repeated
game (5):

Corollary 2 The repeated game (5) is equivalent to the
game (4):

φrepN (Π,Q) = φN (Π, T ),

and the optimal strategies for φN (Π, T ) given in theorem 1
are optimal for φrepN (Π,Q) as well.

The interpretation of the perfect duality result given in the-
orem 1, and its consequence given in corollary 2, is that it
does not matter wether the controller or nature play £rst,
or if they alternatively; all these games are equivalent. Now
consider the following algorithm, where the uncertainty is
described in terms of one of the models described in section
“Kullback-Liebler Divergence Uncertainty Models”:

Robust Finite Horizon Dynamic Programming
Algorithm

1. Set ε > 0. Initialize the value function to its terminal value
v̂N = cN .

2. Repeat until t = 0:

(a) For every state i ∈ X and action a ∈ A, compute,
using the bisection algorithm given in (Nilim & El-
Ghaoui 2004), a value σ̂ai such that

σ̂ai − ε/N ≤ σPa

i
(v̂t) ≤ σ̂ai .

(b) Update the value function by v̂t−1(i) =
mina∈A(ct−1(i, a) + σ̂ai ) , i ∈ X .

(c) Replace t by t− 1 and go to 2.
3. For every i ∈ X and t ∈ T , set πε = (aε

0, . . . ,a
ε
N−1),

where

a
ε
t(i) = argmax

a∈A
{ct−1(i, a) + σ̂ai } , i ∈ X , a ∈ A.

As shown in (Nilim & El-Ghaoui 2004), the above al-
gorithm provides an suboptimal policy πε that achieves the
exact optimum with prescribed accuracy ε, with a required
number of ¤ops bounded above by O(mn2N log(N/ε)).
This means that robustness is obtained at a relative increase
of computational cost of only log(N/ε) with respect to the
classical dynamic programming algorithm, which is small
for moderate values of N . If N is very large, we can turn
instead to the in£nite-horizon problem examined in the fol-
lowing section, and similar complexity results hold.

In£nite-Horizon MDP
In this section, we address the in£nite-horizon robust con-
trol problem, with a discounted cost function of the form
(2), where the terminal cost is zero, and ct(i, a) = νtc(i, a),
where c(i, a) is now a constant cost function, which we as-
sume non-negative and £nite everywhere, and ν ∈ (0, 1) is
a discount factor.

We begin with the in£nite-horizon problem involving sta-
tionary control and nature policies de£ned in (6). The fol-
lowing theorem is proved in (Nilim & El-Ghaoui 2004).

Theorem 3 (Robust Bellman recursion) For the in£nite-
horizon robust control problem (6) with stationary uncer-
tainty on the transition matrices, stationary control poli-
cies, and a discounted cost function with discount factor
ν ∈ [0, 1), perfect duality holds:

φ∞(Πs, Ts) = max
τ∈Ts

min
π∈Πs

C∞(π, τ) := ψ∞(Πs, Ts). (10)

The optimal value is given by φ∞(Πs, Ts) = v(i0), where
i0 is the initial state, and where the value function v satis£es
the optimality conditions

v(i) = min
a∈A

(

c(i, a) + νσPa

i
(v)
)

, i ∈ X . (11)

The value function is the unique limit value of the convergent
vector sequence de£ned by

vk+1(i) = min
a∈A

(

c(i, a) + νσPa

i
(vk)

)

, i ∈ X , k = 1, 2, . . .

(12)
A stationary, optimal control policy π = (a∗,a∗, . . .) is ob-
tained as

a
∗(i) ∈ argmin

a∈A

{

c(i, a) + νσPa

i
(v)
}

, i ∈ X . (13)



Note that the problem of computing the dual quantity
ψ∞(Πs, Ts) given in (10), has been addressed in (Bagnell,
Ng, & Schneider 2001), where the authors provide the re-
cursion (12) without proof.

Theorem (3) leads to the following corollary, also proved
in (Nilim & El-Ghaoui 2004).

Corollary 4 In the in£nite-horizon problem, we can without
loss of generality assume that the control and nature policies
are stationary, that is,

φ∞(Π, T ) = φ∞(Πs, Ts) = φ∞(Πs, T ) = φ∞(Π, Ts).
(14)

Furthermore, in the £nite-horizon case, with a discounted
cost function, the gap between the optimal values of the
£nite-horizon problems under stationary and time-varying
uncertainty models, φN (Π, T )−φN (Π, Ts), goes to zero as
the horizon length N goes to in£nity, at a geometric rate ν.

Now consider the following algorithm, where we de-
scribe the uncertainty using one of the models of section
“Kullback-Liebler Divergence Uncertainty Models”.

Robust In£nite Horizon Dynamic Programming
Algorithm

1. Set ε > 0, initialize the value function v̂1 > 0 and set
k = 1.

2.(a) For all states i and controls a, compute, using the bi-
section algorithm given in (Nilim & El-Ghaoui 2004),
a value σ̂ai such that

σ̂ai − δ ≤ σPa

i
(v̂k) ≤ σ̂ai ,

where δ = (1− ν)ε/2ν.
(b) For all states i and controls a, compute v̂k+1(i) by,

v̂k+1(i) = min
a∈A

(c(i, a) + νσ̂ai ) .

3. If

‖v̂k+1 − v̂k‖ <
(1− ν)ε

2ν
,

go to 4. Otherwise, replace k by k + 1 and go to 2.
4. For each i ∈ X , set an πε = (aε,aε, . . .), where

a
ε(i) = argmax

a∈A
{c(i, a) + νσ̂ai } , i ∈ X .

In (Nilim & El-Ghaoui 2003; 2004), we establish that
the above algorithm £nds an ε-suboptimal robust policy in
at most O(mn2 log(1/ε)2) ¤ops. Thus, the extra computa-
tional cost incurred by robustness in the in£nite-horizon case
is only O(log(1/ε)).

Solving the inner problem
Each step of the robust dynamic programming algorithm in-
volves the solution of an optimization problem, referred to
as the “inner problem”, of the form

σP(v) = max
p∈P

vT p, (15)

where the variable p corresponds to a particular row of a spe-
ci£c transition matrix, P = P a

i is the set that describes the

uncertainty on this row, and v contains the elements of the
value function at some given stage. The complexity of the
sets Pa

i for each i ∈ X and a ∈ A is a key component in the
complexity of the robust dynamic programming algorithm.
Note that we can safely replace P in (15) by its convex hull,
so that convexity of the setsPa

i is not required; the algorithm
only requires the knowledge of their convex hulls.

Beyond numerical tractability, an additional criteria for
the choice of a speci£c uncertainty model is that the sets P a

should represent accurate (non-conservative) descriptions of
the statistical uncertainty on the transition matrices. Perhaps
surprisingly, there are statistical models of uncertainty de-
scribed via Kullback-Liebler divergence that are good on
both counts; speci£c examples of such models are described
in the following sections.

Kullback-Liebler Divergence Uncertainty
Models

We now address the inner problem (15) for a speci£c action
a ∈ A and state i ∈ X . Denote by D(p‖q) denotes the
Kullback-Leibler (KL) divergence (relative entropy) from
the probability distribution q ∈ ∆n to the probability dis-
tribution p ∈ ∆n:

D(p‖q) :=
∑

j

p(j) log
p(j)

q(j)
.

The above function provides a natural way to describe er-
rors in (rows of) the transition matrices; examples of models
based on this function are given below.

Likelihood Models: Our £rst uncertainty model is de-
rived from a controlled experiment starting from state i =
1, 2, . . . , n and the count of the number of transitions to dif-
ferent states. We denote by F a the matrix of empirical fre-
quencies of transition with control a in the experiment; de-
note by fai its ith row. We have F a ≥ 0 and F a1 = 1,
where 1 denotes the vector of ones. The “plug-in” estimate
P̂ a = F a is the solution to the maximum likelihood prob-
lem

max
P

∑

i,j

F a(i, j) logP (i, j) : P ≥ 0, P1 = 1. (16)

The optimal log-likelihood is βa
max =

∑

i,j F
a(i, j) logF a(i, j). A classical description

of uncertainty in a maximum-likelihood setting is
via the ”likelihood region” (Lehmann & Casella
1998) Pa = {P ∈ Rn×n : P ≥ 0, P1 =
1,
∑

i,j F
a(i, j) logP (i, j) ≥ βa},

where βa < βamax is a pre-speci£ed number, which repre-
sents the uncertainty level. In practice, the designer speci£es
an uncertainty level βa based on re-sampling methods, or
on a large-sample Gaussian approximation, so as to ensure
that the set above achieves a desired level of con£dence.

With the above model, we note that the in-
ner problem (15) only involves the set Pa

i :=
{

pai ∈ Rn : pai ≥ 0, pai
T
1 = 1,

∑

j F
a(i, j) log pai (j) ≥ βai

}

,

where βai := βa−
∑

k 6=i

∑

jF
a(k, j)logF a(k, j). The set



Pa
i is the projection of the set described above on a

speci£c axis of pai -variables. Noting further that the
likelihood function can be expressed in terms of KL
divergence, the corresponding uncertainty model on the
row pai for given i ∈ X , a ∈ A, is given by a set of
the form Pa

i = {p ∈ ∆n : D(fai ‖p) ≤ γai }, where
γai =

∑

j F
a(i, j) logF a(i, j) − βai is a function of the

uncertainty level, and fai is the ith row of the matrix F a.
Maximum A-Posteriori (MAP) Models: a variation on

Likelihood models involves Maximum A Posteriori (MAP)
estimates. If there exist a prior information regarding the un-
certainty on the i-th row of P a, which can be described via
a Dirichlet distribution (Ferguson 1974) with parameter αa

i ,
the resulting MAP estimation problem takes the form

max
p

(fai + αa
i − 1)T log p : pT1 = 1, p ≥ 0.

Thus, the MAP uncertainty model is equivalent to a Like-
lihood model, with the sample distribution fai replaced by
fai + αa

i − 1, where αa
i is the prior corresponding to state i

and action a.
Relative Entropy Models: Likelihood or MAP models in-

volve the KL divergence from the unknown distribution to
a reference distribution. We can also choose to describe un-
certainty by exchanging the order of the arguments of the
KL divergence. This results in a so-called “relative entropy”
model, where the uncertainty on the i-th row of the tran-
sition matrix P a described by a set of the form Pa

i =
{p ∈ ∆n : D(p‖qai ) ≤ γai }, where γai > 0 is £xed, qai > 0
is a given “reference” distribution (for example, the Maxi-
mum Likelihood distribution).

Inner problem with Likelihood Models

The inner problem (15) with the Likelihood uncertainty
model is the following,

σ∗ := max
p

pT v : p ∈ ∆n,
∑

j

f(j) log p(j) ≥ β, (17)

where we have dropped the subscript i and superscript a
in the empirical frequencies vector fai and in the lower
bound βai . In this section βmax denotes the maximal value
of the likelihood function appearing in the above set, which
is βmax =

∑

j f(j) log f(j). We assume that β < βmax,
which, together with f > 0, ensures that the set above has
non-empty interior. Without loss of generality, we can as-
sume that v ∈ Rn

+.

The dual problem

The Lagrangian L : Rn×Rn×R×R → R associated with
the inner problem can be written as

L(v, ζ, µ, λ) = pT v+ζT p+µ(1−pT1)+λ(fT log p−β),

where ζ, µ, and λ are the Lagrange multipliers. The La-
grange dual function d : Rn ×R×R → R is the maximum
value of the Lagrangian over p, i.e., for ζ ∈ Rn, µ ∈ R, and

λ ∈ R,

d(ζ, µ, λ) = sup
p
L(v, ζ, µ, λ) (18)

= sup
p
(pT v + ζT p+ µ(1− pT1)

+ λ(fT log p− β)).

The optimal p∗ = arg supp L(v, ζ, µ, λ) is readily be ob-
tained by solving ∂L

∂p
= 0, which results in

p∗(i) =
λf(i)

µ− v(i)− ζ(i)
.

Plugging the value of p∗ in the equation for d(ν, µ, λ) yields,
with some simpli£cation, the following dual problem:

σ := min
λ,µ,ζ

µ− (1 + β)λ+ λ
∑

j

f(j) log
λf(j)

µ− v(j)− ν(j)
,

such that λ ≥ 0, ζ ≥ 0, ζ + v ≤ µ1.

Since the above problem is convex, and has a feasible set
with non-empty interior, there is no duality gap, that is, σ∗ =
σ. Moreover, by a monotonicity argument, we obtain that the
optimal dual variable ζ is zero, which reduces the number of
variables to two:

σ∗ = min
λ,µ

h(λ, µ)

where

h(λ, µ) :=











µ− (1 + β)λ+

λ
∑

j f(j) log
λf(j)

µ− v(j)
if λ > 0, µ > vmax,

+∞ otherwise.
(19)

(Note that, vmax := maxj v(j)).

For further reference, we note that h is twice differentiable
on its domain, and that its gradient is given by

∇h(λ, µ) =









∑

j f(j) log
λf(j)

µ− v(j)
− β

1− λ
∑

j

f(j)

µ− v(j)









. (20)

A bisection algorithm
From the expression of the gradient obtained above, we ob-
tain that the optimal value of λ for a £xed µ, λ(µ), is given
analytically by

λ(µ) =





∑

j

f(j)

µ− v(j)





−1

, (21)

which further reduces the problem to a one-dimensional
problem:

σ∗ = min
µ≥vmax

σ(µ),

where vmax = maxj v(j), and σ(µ) = h(λ(µ), µ). By con-
struction, the function σ(µ) is convex in its (scalar) argu-
ment, since the function h de£ned in (19) is jointly convex



in both its arguments (see (Boyd & Vandenberghe January
2004, p.74)). Hence, we may use bisection to minimize σ.

To initialize the bisection algorithm, we need upper and
lower bounds µ− and µ+ on a minimizer of σ. When µ →
vmax, σ(µ) → vmax and σ′(µ) → −∞ (see (Nilim & El-
Ghaoui 2004)). Thus, we may set the lower bound to µ− =
vmax.

The upper bound µ+ must be chosen such that σ′(µ+) >
0. We have

σ′(µ) =
∂h

∂µ
(λ(µ), µ) +

∂h

∂λ
(λ(µ), µ)

dλ(µ)

dµ
. (22)

The £rst term is zero by construction, and dλ(µ)/dµ > 0
for µ > vmax. Hence, we only need a value of µ for which

∂h

∂λ
(λ(µ), µ) =

∑

j

f(j) log
λ(µ)f(j)

µ− v(j)
− β > 0. (23)

By convexity of the negative log function, and using the fact
that fT1 = 1, f ≥ 0, we obtain that

∂h

∂λ
(λ(µ), µ) = βmax − β +

∑

j f(j) log
λ(µ)

µ− v(j)

≥ βmax − β − log

(

∑

j f(j)
µ− v(j)

λ(µ)

)

≥ βmax − β + log
λ(µ)

µ− v̄
,

where v̄ = fT v denotes the average of v under f .
The above, combined with the bound on λ(µ): λ(µ) ≥

µ− vmax, yields a suf£cient condition for (23) to hold:

µ > µ0+ :=
vmax − e

β−βmax v̄

1− eβ−βmax
. (24)

By construction, the interval [vmax, µ
0
+] is guaranteed to

contain a global minimizer of σ over (vmax,+∞).
The bisection algorithm goes as follows:

1. Set µ− = vmax and µ+ = µ0+ as in (24). Let δ > 0 be a
small convergence parameter.

2. While µ+ − µ− > δ(1 + µ− + µ−), repeat

(a) Set µ = (µ+ + µ−)/2.
(b) Compute the gradient of σ at µ.
(c) If σ′(µ) > 0, set µ+ = µ; otherwise, set µ− = µ.
(d) go to 2a.

In practice, the function to minimize may be very “¤at” near
the minimum. This means that the above bisection algorithm
may take a long time to converge to the global minimizer.
Since we are only interested in the value of the minimum
(and not of the minimizer), we may modify the stopping cri-
terion to

µ+ − µ− ≤ δ(1 + µ− + µ−) or σ′(µ+)− σ
′(µ−) ≤ δ.

The second condition in the criterion implies that |σ′((µ++
µ−)/2)| ≤ δ, which is an approximate condition for global
optimality.

Inner problem with Maximum A Posteriori
Models

The inner problem (15) with MAP uncertainty models takes
the form

σ∗ := max
p

pT v : p ≥ 0, pT1 = 1,

∑

j

(f(j) + α(j)− 1) log p(j) ≥ κ,

where κ depends on the normalizing constant K appearing
in the prior density function and on the chosen lower bound
on the MAP function, β. We observe that this problem has
exactly the same form as in the case of likelihood function,
provided we replace f by f + α − 1. Therefore, the same
results apply to the MAP case.

Inner problem with Entropy Models
The inner problem (15) with entropy uncertainty models
takes the form

σ∗ := max
p

pT v :
∑

j

p(j) log
p(j)

q(j)
≥ β : pT1 = 1, p ≥ 0.

We note that the constraint set actually equals the whole
probability simplex if β is too large, speci£cally if β ≥
maxi(− log qi), since the latter quantity is the maximum
of the relative entropy function over the simplex. Thus, if
β ≥ maxi(− log qi), the worst-case value of pT v for p ∈ P
is equal to vmax := maxj v(j).

Dual problem
By standard duality arguments (set P being of non-empty
interior), the inner problem is equivalent to its dual:

min
λ>0,µ

µ+ βλ+ λ
∑

j

q(j) exp

(

v(j)− µ

λ
− 1

)

.

Setting the derivative with respect to µ to zero, we obtain the
optimality condition

∑

j

q(j) exp

(

v(j)− µ

λ
− 1

)

= 1,

from which we derive

µ = λ log





∑

j

q(j) exp
v(j)

λ



− λ.

The optimal distribution is

p∗ =
q(j) exp v(j)

λ
∑

i q(i) exp
v(i)
λ

.

As before, we reduce the problem to a one-dimensional
problem:

min
λ>0

σ(λ)



where σ is the convex function:

σ(λ) = λ log





∑

j

q(j) exp
v(j)

λ



+ βλ. (25)

Perhaps not surprisingly, the above function is closely linked
to the moment generating function of a random variable v

having the discrete distribution with mass qi at vi.

A bisection algorithm
As proved in (Nilim & El-Ghaoui 2004), the convex function
σ in (25) has the following properties:

∀ λ ≥ 0, qT v + βλ ≤ σ(λ) ≤ vmax + βλ, (26)

and
σ(λ) = vmax + (β + logQ(v))λ+ o(λ), (27)

where

Q(v) :=
∑

j : v(j)=vmax

q(j) = Prob{v = vmax}.

Hence, σ(0) = vmax and σ′(0) = β+logQ(v). In addition,
at in£nity the expansion of σ is

σ(λ) = qT v + βλ+ o(1). (28)

The bisection algorithm can be started with the lower
bound λ− = 0. An upper bound can be computed by £nding
a solution to the equations σ(0) = qT v + βλ, which yields
the initial upper bound λ0+ = (vmax−q

T v)/β. By convexity,
a minimizer exists in the interval [0 λ0+].

Note that if σ′(0) ≥ 0, then λ = 0 is optimal and the opti-
mal value of σ is vmax. This means that if β is too high, that
is, if β > − logQ(v), enforcing robustness amounts to dis-
regard any prior information on the probability distribution
p. We have observed in (Nilim & El-Ghaoui 2004) a similar
phenomenon brought about by too large values of β, which
resulted in a setP equal to the probability simplex. Here, the
limiting value − logQ(v) depends not only on q but also on
v, since we are dealing with the optimization problem (15)
and not only with its feasible set P .

Computational complexity of the inner
problem

Equipped with one of the above uncertainty models, we
have shown in the previous section that the inner problem
can be converted by convex duality, to a problem of mini-
mizing a single-variable, convex function. In turn, this one-
dimensional convex optimization problem can be solved
via a bisection algorithm with a worst-case complexity of
O(n log(vmax/δ)) (see (Nilim & El-Ghaoui 2004) for de-
tails), where δ > 0 speci£es the accuracy at which the opti-
mal value of the inner problem (15) is computed, and vmax
is a global upper bound on the value function.

Remark: We can also use models where the uncertainty in
the i-th row for the transition matrix P a is described by a
£nite set of vectors, P a

i = {pa,1i , . . . , pa,Ki }. In this case the
complexity of the corresponding robust dynamic program-
ming algorithm is increased by a relative factor ofK with re-
spect to its classical counterpart, which makes the approach
attractive when the number of “scenarios” K is moderate.

Concluding remarks
We proposed a “robust dynamic programming” algorithm
for solving £nite-state and £nite-action MDPs whose so-
lutions are guaranteed to tolerate arbitrary changes of the
transition probability matrices within given sets. We pro-
posed models based on KL divergence, which is a natural
way to describe estimation errors. The resulting robust dy-
namic programming algorithm has almost the same com-
putational cost as the classical dynamic programming algo-
rithm: the relative increase to compute an ε-suboptimal pol-
icy is O(log(N/ε)) in the N -horizon case, and O(log(1/ε))
for the in£nite-horizon case.
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