
Sparse Distributed Memories in Reinforcement Learning: Case Studies

Bohdana Ratitch Swaminathan Mahadevan Doina Precup
{bohdana,smahad1,dprecup}@cs.mcgill.ca, McGill University, Canada

Abstract

In this paper, we advocate the use of Sparse Distributed Mem-
ories (SDMs) (Kanerva, 1993) for on-line, value-based rein-
forcement learning (RL). The SDMs model was originally
designed for the case, where a very large input (address)
space has to be mapped into a much smaller physical memory.
SDMs provide a linear, local function approximation scheme,
which is often preferred in RL. In our recent work (Ratitch &
Precup 2004), we developed an algorithm for learning simul-
taneously the structure and the content of the memory on-
line. In this paper, we investigate the empirical performance
of the Sarsa algorithm using the SDM function approximator
on three domains: the traditional Mountain-car task, a vari-
ant of a hunter-prey task and a motor-control problem called
Swimmer (Coulom 2002). The second and third tasks are
highly-dimensional and exhibit complex dynamics, yet our
approach provides good solutions.

Introduction
Value-based RL methods typically rely on function approx-
imators in order to represent value functions in large or
continuous domains. Linear approximators are usually pre-
ferred to non-linear ones due to better theoretical guaran-
tees and ease of use. At the same time, local approxima-
tors are often preferred to global ones, because they can in-
corporate new data faster, and are less vulnerable to corre-
lated and non-stationary training data. Many practical RL
applications have been built around linear and/or local ap-
proximators, e.g., CMACs (Sutton & Barto 1998), piecewise
linear interpolations (Munos & Moore 2000) and memory-
based methods (Atkeson, Moore, & Schaal 1997; Santa-
maria, Sutton, & Ram 1998). Radial Basis Function Net-
works (RBFNs) have been used much less (Gordon 1995;
Sutton & Barto 1998), because of the difficulty of choosing
their centers and widths. One important problem cited in
application papers, e.g., (Munos & Moore 2000), is the poor
scaling of such approximators with the dimensionality of the
state space.

In our recent work (Ratitch & Precup 2004), we investi-
gated the use of Sparse Distributed Memories (SDMs) (Kan-
erva 1993) as a function approximator for value-based RL
algorithms. SDMs were originally designed for very large,

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

highly dimensional input spaces. They provide a linear, lo-
cal approximation scheme. In general, local architectures,
SDMs included, can be subject to the curse of dimensional-
ity, as some target functions may require, in the worst case,
an exponential number of local units to be approximated ac-
curately across the entire input space. However, it is widely
believed that most decision-making systems need high ac-
curacy only around low-dimensional manifolds of the state
space, or important state “highways”. We combined the
SDM memory model with the ideas from instance-based
learning, which provides an approximator that can dynami-
cally adapt its structure and resolution in order to cover such
state “highways”. One of the advantages of instance-based
methods (Atkeson, Moore, & Schaal 1997) is that they do
not require choosing the size or the structure of the approx-
imator in advance, but shape it based on the observed data.
We introduced a new algorithm for training SDMs in the
context of RL, which configures the memory architecture
on-line during learning, similarly to instance-based meth-
ods, while also limiting the growth of the memory size. Un-
like other function approximators from supervised learning,
our approach for memory allocation is robust with respect
to the non-stationary data distribution caused by the fact
that control strategies change during learning. The result-
ing learning algorithms remain close (though outside) of the
scope of current theoretical results on value-based RL with
function approximation. In this paper, we present experi-
ments using our approach in the Mountain-Car task, as well
as case studies in two complex domains: a motor-control
task called the Swimmer (Coulom 2002) and a variant of
a hunter-prey domain. Based on our experiments, the pro-
posed approach has great practical potential by providing
good performance while being very efficient in terms of the
resulting memory sizes as well as the computation time.

Sparse Distributed Memories
SDMs are a generalized random-access memory, based on
an array of addressable storage locations of fixed capacity.
For large virtual address spaces, a memory location cannot
be allocated for every possible address. A reasonably large
sample of addresses is chosen instead so that it is sufficient
to approximate a target function. There are no restrictions
in the generic architecture design as to how this sample has
to be chosen. However, it is important that the sample ad-

dresses approximately correspond to the underlying distri-
bution of inputs in the approximation problem. The original
work of Kanerva (1993) developed SDMs for the case of bi-
nary addresses and memory contents. We focus instead on
continuous addresses and memory contents, as our goal is to
handle continuous RL tasks.

Retrieval/Prediction. When a value is to be retrieved
from some address x, a set Hx of nearby locations is acti-
vated, as determined by a similarity measure µk = µ(hk,x)
between the target address and the locations hk,k = 1, . . .M,
where M is the memory size. The similarity measure can be
defined in many different ways, e.g., Hamming distance, if
addresses are binary. We focus on the case of real-valued
input vectors. For our experiments, we chose a similarity
measure between input vector x = 〈x1, ...,xn〉 and location
h = 〈h1, ...,hn〉 based on symmetric triangular functions:

µ(h,x) = min
i=1,...,n

µi(h,x)

µi(h,x) =

{
1− |xi−hi|

βi
if |xi −hi| ≤ βi

0 otherwise

(1)

Here, 〈h1, ...,hn〉 represent the location address and βi are
the activation radii in each dimension. The similarity mea-
sure directly translates into the location’s degree of activa-
tion, which, in this case, is continuous in the [0,1] interval.

Let wk be a value stored at hk. Then the predicted value
for the target address x is computed as:

f̂ (x) =
∑k∈Hx µkwk

∑k∈Hx µk . (2)

The normalized activations of the memory locations,
µm

∑k∈Hx µk , can be viewed as features of the input x. Hence,

the prediction is a linear combination of local features.
Storage/Learning. Upon receiving a training sample

〈x, f (x)〉, the values stored in all the active locations are
updated using the standard gradient descent algorithm for
linear function approximation:

wm := wm +α
[

f (x)− f̂ (x)
] µm

∑k∈Hx µk ,∀m ∈ Hx (3)

where f̂ (x) is the prediction and α is the learning rate.
SDMs can be combined with RL algorithms in a straight-

forward way. For instance, in order to combine SDMs with
SARSA(0) (Sutton & Barto 1998), one approximator is used
to represent the action-value function Q(s,a) for each action.
The values stored in the SDMs are updated after every tran-
sition 〈s,a〉 r→ 〈s′,a′〉 as follows:

wm(a) := wm(a)+α
[
r +γQ(s′,a′)−Q(s,a)

] µm

∑k∈Hx µk (4)

for all m = 1, . . .Ma. The SDMs can also be easily used with
the eligibility traces (Ratitch & Precup 2004).

Choosing the SDM structure
The distribution of memory locations across the input space
is very important for the success of SDMs and related mod-
els such as RBFNs. We refer the reader to (Ratitch & Pre-
cup 2004) for a discussion of the methods used in super-
vised learning to choose automatically the addresses of the

memory locations or the structure of RBFNs. From our past
experience, it is usually not appropriate to import directly
such approaches into RL, because the non-stationary and
correlated nature of the training data makes these methods
perform poorly. Instead, we developed an algorithm that al-
locates and adapts memory resources dynamically, based on
the observed data, and is suitable for RL tasks. Below we
present the most important ideas of our algorithm; more de-
tailed information can be found in (Ratitch & Precup 2004).

Our dynamic allocation algorithm starts with an empty
memory and gradually adds locations based on the observed
data. This is reminiscent of instance-based learning, which
memorizes all data. However, because the maximum size of
the memory is limited, and because the samples obtained in
RL are correlated in space and time, just memorizing sam-
ples until the memory is filled tends to create very densely
populated areas, while leaving other parts of the state space
uncovered. Hence, our goal is to add locations only if the
memory is too sparse around the training samples.

In this paper, we assume that the activation radii of the
memory locations are uniform and fixed by the user and our
algorithm automatically chooses the addresses of the mem-
ory locations. The algorithm has only one parameter, de-
noted N, which is the minimum number of locations that we
would like to see activated for a data sample. It is also im-
portant to ensure that these locations are “evenly distributed”
across their local neighborhoods; hence, we do not allow lo-
cations to be too close. More specifically, for any pair of
locations hi,h j, we enforce the condition:

µ(hi,h j) ≤
{

1− 1
N−1 N ≥ 3

0.5 N = 2
(5)

This condition means that the fewer locations are required
in a neighborhood (the smaller N), the farther apart these lo-
cations should be. Our experiments showed that this con-
dition makes a big impact on the performance of SDMs,
as it prevents allocating resources in clumps. One or more
new locations can be added upon observing any new sam-
ple 〈(s,a), Q̄(s,a)〉, where s = 〈s1, ...,sn〉 represents the input
to the SDM for the value function of action a, and Q̄(s,a)
represents the target for the taken action a. For example,
Q̄(s,a) = r +γQ(s′,a′) in the case of SARSA algorithm.

In order to ensure that at least N locations are activated
in the neighborhood of state s, we use the following heuris-
tic (which we will refer to as the N-based heuristic later in
this paper): if the number of activated locations is N′ < N,
then (N −N′) locations are randomly placed in the neigh-
borhood of the current sample. The addresses of new lo-
cations are set by sampling uniformly randomly from the
intervals [si − βi,si + βi] in each dimension. The new lo-
cations are screened to ensure that condition (5) is not vio-
lated. The content of each location is initialized with value
currently predicted by the memory for the corresponding ad-
dress. With this heuristic, memory resources are allocated
relatively close to the actual data samples. The parameter
N is reminiscent of the parameter K in K-nearest-neighbor
methods, but we do not store all the data, as is typical in
nearest-neighbor methods. Instead, we use this parameter
to obtain good space coverage, while also controlling the

memory size.
If the memory size limit is reached but we still encounter

a data sample for which the number of active locations N′
is smaller then the minimum desired number N, we allow
existing locations to move around. To this end, N −N′ in-
active locations are picked at random and removed; the cor-
responding number of new locations are added to the neigh-
borhood of the current sample using the previous heuristic.
This approach, which we call adaptive reallocation, allows
the memory to react quickly to a lack of resources in the re-
gions visited under the current behavior policy. At the same
time, the randomized nature of the removals and the fact that
there are sufficient locations in most of the previously visited
regions does not dramatically affect the approximation in the
areas where the removals occur.

Resource allocation proceeds in parallel with learning the
memory content. On each time step, new locations are
added, if necessary, then the content stored in the memory
locations is updated as presented in Eq.(4). We also exper-
imented with a version in which the memory structure can
be updated on prediction as well as learning steps, which
exhibited positive effects on performance.

Related approaches. The instance-based approach of
Forbes (2002) is conceptually similar to ours. It also uses
heuristics for selectively adding new instances to the mem-
ory and for removing some of them when the memory ca-
pacity limit is reached. The method was formulated in the
classical instance-based framework, based on the definition
of two functions: a distance metric in the input space, e.g.,
the Euclidean distance, and a weighting function, e.g., Gaus-
sian, that transforms the distances into weights to be used in
locally weighted regression. In (Forbes 2002), as well as ear-
lier in (Santamaria, Sutton, & Ram 1998), new instances are
added to the memory if they are farther away from the exist-
ing instances than a specified threshold. The threshold was
defined in terms of the distance metric and was not related
to the bandwidths of the weighting functions. If this corre-
pondance is not explicitly addressed, the obtained memory
can be too sparse for the weighting functions that are being
used. While it is easy to prevent this in the case of a uniform
and fixed bandwidth of the weighting functions, such a for-
mulation does not generalize to the varying bandwidths. In
(Forbes 2002), no discussion of the practical behavior of the
method and its parameter settings is provided (though there
is a claim of using adaptive bandwidths).

Our approach, on the other hand, is directly related to the
similarity function. It ensures that the memory locations are
spread appropriately with respect to the radii of the simi-
larity function and allows a coherent extension to the case
of variable radii. In our approach, the similarity thresh-
old is implied implicitly from the parameter N (minimum
desired number of activated locations). Although this may
seem equivalent, our experience with a fixed threshold, cor-
responding to some N through condition (5), showed that
many more than N training samples can satisfy the threshold
condition and thus be added to the memory. Using the pa-
rameter N provides a more stringent way to control the size
of the memory, as illustrated in our experiments discussed
in the next section.

The heuristic in (Forbes 2002) for removing instances
when the memory capacity limit is reached is also different
from ours. It suggests to discard instances whose removal
introduces the least error in the prediction of the values of
their neighbors:

errorm =
1

|Hhm | ∑
k∈Hhm

|Q(hk,a)−Q−m(hk,a)| (6)

where Q−m(hk,a) is the prediction for input hk without the
instance hm. In the next section, we illustrate empirically
the fact that this error-based heuristic and the randomized
heuristic behave differently in practice. The former is also
more expensive computationally: it requires either to per-
form a complete memory sweep when the reallocation is
necessary, or to perform (|Hhm | − 1) additional predictions
on every memory access in order to maintain (approximate)
error estimates. The cost of the randomized heuristic, on the
other hand, is that of generating a random number and ap-
plies only when a new location actually has to be added in
an underrepresented region of the input space.

Experimental Results
In all experiments, we used SARSA(0) (Sutton & Barto
1998) with ε-greedy exploration, where the action-value
functions were represented using SDM function approxima-
tors. The longer version of the paper (Ratitch & Precup
2004) contains extensive results on the standard Mountain
Car domain (Sutton & Barto 1998), where we compare the
performance of SDMs to that of CMACs as well as to the re-
lated memory allocation method from (Forbes 2002). Here,
we first highlight some of those results to illustrate the rela-
tive performance of our approach and that of (Forbes 2002).
Then, we present new results from two case studies: one on
a motor-control domain, known as Swimmer (Coulom 2002)
and the other on a version of a predator-prey domain.

Mountain Car domain. We compared the dynamic al-
location method based on our N-based heuristic with a dy-
namic allocation method in the style of (Forbes 2002). In
the latter approach, a new location is added when the sim-
ilarity of the new sample to all existing locations is below
some threshold µ∗, without checking what the number of ac-
tive locations is. We will refer to it as the threshold-based
heuristic. We set the similarity thresholds µ∗ to the values
that would be obtained from Eq.(5) for the values of N and
the activation radii used in the corresponding experiments
with our heuristic. The objective was to investigate the re-
sulting memory sizes, layouts and the performance based on
the two heuristics.

Graphs (a) and (b) of Fig.1 present the returns of the
greedy policies learned by using dynamic allocation with
each of the two heuristics. In these experiments, the mem-
ory size limit was set sufficiently high to ensure that it would
not be reached and we could test the dynamic allocation
method alone. The asymptotic performance of the SDMs
with the threshold-based heuristic is similar to that of our
heuristic, but the learning is slower. The resulting memo-
ries are between 2-4 times larger with the threshold-based

heuristic, which slows down learning, because more train-
ing is required for larger architectures. As mentioned be-
fore, our heuristic, which relies solely on the number of ac-
tive locations, enables a better control over the amount of
allocated resources and, as the experiments show, results in
faster learning.

Graph (a) of Fig.2 shows the performance of the adap-
tive reallocation method, which allows moving the existing
locations when the memory size limit is reached. The ex-
periments were performed for the case in which the agent
always starts the episodes from a single state, in which the
car is at rest, at the bottom of the hill. We used our heuris-
tic for adding locations. We tested two removal approaches:
the randomized one, introduced in this paper and the error-
based, suggested in (Forbes 2002). The graph shows exper-
iments with memory parameters N = 5,β = 〈0.17,0.014〉.
The memory size limits were chosen to be equal to 230 and
175 so that the static memories of the same sizes were not
able to learn a good policy. The SDMs were initialized with
all locations distributed uniformly randomly across the state
space and then allowed to move according to the heuristics
used. As can be seen from graph (a), both removal heuris-
tics exhibit very similar performance. However, as shown
on graph (b), the behavior of the two heuristics is quite dif-
ferent. With the randomized heuristic, most reallocations
happen at the beginning of learning and then their number
decreases almost to zero. With the error-based heuristic
the number of reallocations is much higher. This happens
because the addition heuristic is density-based and the re-
moval heuristic is error-based, and their objectives are not
“in agreement”. Graph (c) depicts 3000 location moves
at the end of one training run, where removed locations
are plotted with black dots and added locations with white.
A mixed black-and-white cloud in one region of the state
space shows that most removals happen in a particular re-
gion where the value function is relatively flat, but the same
region is then visited and found to be too sparsely repre-
sented by the addition heuristic, which causes locations to be
added back. Apparently such a cycle repeats. As mentioned
earlier, with the randomized heuristic, no specific area of
the input space is affected by removals more than others,
thus cyclic behavior is minimized. The randomized heuristic
is computationally much cheaper while showing more sta-
ble behavior and providing good policies. The error-based
heuristic can still be an interesting choice, provided that it is
in tune with the addition heuristic.

Hunter-Prey Domain. In this task, H hunters team up
against a prey. RL is used to learn how to control the prey,
while the hunters behave according to fixed, heuristic strate-
gies. The state is given by 2H continuous variables, repre-
senting the position of each hunter relative to a polar coordi-
nate system centered on the prey, and one integer variable for
the number of alive hunters. To capture the prey, C hunters
have to approach it within a circle of radius of 5, and the an-
gle between adjacent hunters has to be ≤ 2∗π

C + 0.6 radians.
However, if fewer than K hunters are within 5 units of the
prey, the closest one is killed. The hunters start each episode
at random positions inside a circle of radius 50 around the
prey. A stochastic controller moves the hunters individually

as follows: w.p. 0.3, a hunter moves clockwise or coun-
terclockwise 0.2 radians; w.p. 0.7, the hunter moves in the
radial direction, either towards the prey, if this is safe, or
away from the prey by 5 units. The episode ends when the
prey is captured or when fewer than C hunters are alive. The
prey can move north, south, east or west, 5 units per time
step. The prey receives a reward of 1 if it kills a hunter, -200
if captured, and -1 per time step otherwise.

Figure 3 presents the results of experiments for 2-, 3- and
5-hunter tasks (5, 7 and 11 state dimensions respectively)
with C = H and K = 2 in each case. Graph (a) shows
the performance of the SDM and CMAC (Sutton & Barto
1998) architectures on the 2-hunter task. The SDMs were
trained with the dynamic allocation method. The learning
step and the exploration rate parameters were optimized for
each model and each configuration. As shown in the graph,
CMACs were not able to learn the task even with consid-
erable memory sizes. Graph (b) shows the results on the
3-hunter task, illustrating the effect of changing the activa-
tion radii and value of N. The choice of the activation radii
seems to have a stronger impact on the overall performance
compared to the N parameter. Graph (c) shows the average
learning curve for the 5-hunter task, using the SDM resolu-
tion that seemed best in the 2- and 3-hunter tasks. Despite
the higher dimension of the task, the performance achieved
is the same as in the 2 and 3-hunter case, while the memory
size does not increase significantly.

Swimmer task. The Swimmer motor control task
(Coulom 2002) involves a multi-link robot with the links
connected by joints, at which control torques can be applied.
The swimmer is moving in a two-dimensional pool, where
movement is due to the viscous friction with the water. The
goal is to swim along the positive x direction as fast as pos-
sible. In the experiments reported here, we used a 2-link
swimmer. The state is defined by the angles θi of the seg-
ments with respect to the x axis, the Cartesian coordinates
Gx and Gy of the center of mass, and their derivatives. This
would yield a total of 8 state variables. However, the re-
ward function and the optimal control do not depend on Gx
and Gy, so in the experiments we use only 6 state variables,
namely < Ġx, Ġy,θ1, θ̇1,θ2, θ̇2 >. We use a discrete action
space, where the torque choices are limited to two values,
−5 and +5. The immediate reward of the swimmer is the ve-
locity of its center of mass along the x-axis, Ġx. We used the
implementation of the Swimmer available from Coulom’s
web page1. We modeled the Swimmer as an episodic task
(with γ= 1), where each episode (or trial) corresponded to 5
sec. of the physical time and consisted of 2000 discrete-time
decision stages.

As a baseline, we consider the performance of a heuris-
tic controller, which makes the swimmer exhibit a behav-
ior similar to the human leg-movement during swimming.
To achieve such behavior, we apply a negative (-5) torque
whenever the angle of the first segment is in a specified range
([−θ,θ] in Fig.4(a)), and positive (+5) torque otherwise. We
measure the performance of the swimmer in terms of dis-
tance swum during a simulation equivalent to 5 seconds of

1http://remi.coulom.free.fr/swimmer.tar.bz2

0 2000 4000 6000 8000 10000
−800

−700

−600

−500

−400

−300

−200

−100

0

R
e

tu
rn

 o
f
th

e
 g

re
e

d
y

p
o

lic
y

Learning trial

(a) SDMs with N−based heuristic

Uniformly random start states

Size 309: N=5, radii <0.17,0.014>
Size 133: N=5, radii <0.28,0.023>
Size 82: N=3, radii <0.28,0.023>
Size 59: N=3, radii <0.34,0.028>
Size 31: N=2, radii <0.425,0.035>

0 2000 4000 6000 8000 10000
−800

−700

−600

−500

−400

−300

−200

−100

0

R
e

tu
rn

 o
f
th

e
 g

re
e

d
y

p
o

lic
y

Learning trial

(b) SDMs with threshold−based heuristic

Uniformly random start states

Size 1342: µ*=0.75, radii <0.17,0.014>
Size 534: µ*=0.75, radii <0.28,0.023>
Size 122: µ*=0.5, radii <0.28,0.023>
Size 86: µ*=0.5, radii <0.34,0.028>
Size 56: µ*=0.5, radii <0.425,0.035>

Figure 1: Mountain Car task and dynamic allocation method. Returns of the greedy policies are averaged over 30 runs. On
graphs (a)-(c), returns are also averaged over 50 fixed starting test states. SDM sizes represent maximum over 30 runs. The
exploration parameter ε and the learning step α were optimized for each architecture. Graphs (g) and (h) are for SDMs with
radii 〈0.34,0.028〉, and N = 5 and µ∗ = 0.5 respectively.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

R
e

tu
rn

 o
f
th

e
 g

re
e

d
y

p
o

lic
y

Learning trial

(a) SDMs with adaptive reallocation

Error−based heuristic, memory size 175
Error−based heuristic, memory size 230
Randomized heuristic, memory size 175
Randomized heuristic, memory size 230
Static memory of size 175
Static memory of size 230

100 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

800

1000

1200

Learning trial

N
u

m
b

e
r

o
f
m

o
ve

d
 lo

ca
tio

n
s

(b) Behavior of two heuristics

Error−based heuristic, memory size 175
Randomized heuristic, memory size 175

−1.5
−1

−0.5
0

0.5

−0.05
0

0.05
−80

−60

−40

−20

0

Car positionCar velocity

(c) Error−based heuristic

A
ct

io
n−

V
al

ue
 fu

nc
tio

n

Figure 2: Mountain Car tasks and adaptive reallocation method. Each point on graph (b) represents the average over 100 trials
and 30 runs. Graph (c) depicts the action-value function for “positive throttle”.

the physical time (which is equivalent to the length of the
episodes we performed for training and testing the RL con-
troller).

Figure 4(a) shows the performance of the heuristic con-
troller as a function of the length of the angle interval in-
side of which we apply the negative torque, as explained
above. Intuitively, the shorter the interval, the higher the
rate of ”flapping” and hence the faster the movement. In-
terestingly, the relation between the interval length and the
performance is not linear and differs across states. The best
performance is observed in the case of very small intervals.
Based on this observation, the RL controller would require a
high resolution in the value function representation along the
state dimensions representing the angles. At the same time,
this task pushes the SDMs with the uniform radii of activa-
tion to its limitation: small radii (fine resolution) may result
in big memory sizes, while large radii would not allow good
performance. Ideally, we would like to have variable radii
for the SDM locations, so that we have non-overlapping ac-
tivation neighborhoods along the boundary where the opti-
mal control changes, while having memory locations with
wide activation radii in areas where the optimal control re-
mains the same. In this paper, we investigate how good a
performance we can obtain using uniform radii and adaptive
addresses.

Each learning trial started from a state where the angles of
the segments were picked uniformly randomly in the interval
[0,2π]. During each learning run, we performed testing of
the current greedy policy after each 50 trials. The testing
was performed for 5 random starting states (generated in the
same manner as for learning trials and fixed ahead of time)
as well as for the state corresponding to a vertical position.

For each starting state, we simulated 5 testing trials with the
current greedy policy and averaged the observed returns.

In our experiments, we used relatively large activation
radii for the SDM, namely β = 〈0.8,5,1,1.2,1,1.2〉. We
compared the performance of the learned strategies with the
performance of the heuristic swimmer of a “similar resolu-
tion”. That is, the (half) size of the angle interval, inside
of which the heuristic controller applies the (-5) torque, is
equal to the the SDM’s radii in the state dimensions, corre-
sponding to the segment angles (radii of 1 in this case). The
number of memory locations that we wish to be activated on
every memory access was set to N = 10.

The RL swimmer is able to learn this complex task: as can
be seen from Fig.4 (b) and (c), it improves its performance
with training and outperforms the heuristic swimmer, both
for the vertical start state and for the random start states.
The controller obtained in this setting uses a relatively small
memory, as illustrated on Fig.4 (d). The experiments re-
ported here are still preliminary; in particular, we have not
yet used SDMs of fine resolution, with which we would ex-
pect to get better performance. This is left for future work.

Conclusions and Future Work
Our experiments demonstrated the ability of the value-based
RL agents using SDM function approximators to learn com-
plex, high-dimensional continuous control tasks. The pro-
posed algorithm for allocation of the memory resources is
robust in the context of RL and produces relatively compact
representations of the action-value functions. However, the
trade-off between memory resolution and size is not opti-
mally resolved by adaptively choosing only the addresses of
the memory locations. The activation neighborhoods should

0 500 1000 1500 2000
−160

−140

−120

−100

−80

−60

−40

−20

Learning Trial

R
e

tu
rn

 o
f

th
e

 g
re

e
d

y
p

o
lic

y

SDM: Size 1950: N=3, <5.0,0.65>2

SDM: Size 294: N=3, <10.1,1.3>2

SDM: Size 89: N=3, <15.5,2.15>2

CMAC: Size 90000: 3 Tilings, <5.0x0.65> 2 tiles
CMAC: Size 5625: 3 Tilings, <10.1x1.3> 2 tiles
CMAC: Size 729: 3 Tilings, <15.5x2.15> 2 tiles

SDMs

CMACs

(a) 2 Hunters (5 state dimensions)

0 500 1000 1500 2000
−35

−30

−25

−20

−15

−10

−5

0

Learning Trial

R
e

tu
rn

 o
f

th
e

 g
re

e
d

y
p

o
lic

y

Size 5000: N=7, <5.0,0.65>3

Size 2028: N=5, <10.1,1.3>3

Size 524: N=7, <15.5,2.15>3

Size 244: N=3, <15.5,2.15>3

(b) 3 Hunters (7 dimensions)

0 500 1000 1500 2000
−35

−30

−25

−20

−15

−10

−5

0

Learning Trial

R
e

tu
rn

 o
f
th

e
 g

re
e

d
y

p
o

lic
y

Size 5000: N=5, <10.1,1.3>5

(c) 5 Hunters (11 dimensions)

Figure 3: Hunter-prey domain. Returns are averaged over 20 runs and 100 fixed starting test states, sampled uniformly ran-
domly. The exploration parameter ε = 0.05 and the learning step α was optimized for each architecture and task.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5

6

Starting from a set of random test states
Starting from vertical test state

(a) Performance of the Heuristic Swimmer

D
is

ta
n

ce
 S

w
u

m
 in

 5
 s

e
co

n
d

s

Theta (Radians) − Angle of the first segment such that
the swimmer applies −5 Torque inside the interval [−Theta, Theta]

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

(b) Performance of the RL swimmer
starting from the vertical and a set of
 five random test states (averaged)

Learning Trial

D
is

ta
n

ce
 S

w
u

m
 in

 5
 s

e
co

n
d

s

Heuristic Controller
SDM Controller (Mean of 12 Runs)

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

(c) Performance of the RL swimmer
starting from the vertical state alone

Learning Trial

D
is

ta
n

ce
 S

w
u

m
 in

 5
 s

e
co

n
d

s Heuristic Controller
SDM Controller (Mean of 12 runs)

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

(d) Size of the SDM (Mean of 12 runs)

Learning Trial

N
u

m
b

e
r

o
f

M
e

m
o

ry
 L

o
ca

tio
n

s

Figure 4: Performance on the Swimmer domain. Graph (a) shows the performance of the heuristic swimmer as a function of the
interval length used in the swimmer heuristic design (see text). Graphs (b) and (c) show the performance of the RL vs. heuristic
swimmer from five randomly chosen start states and the vertical starting state alone respectively. The SDM size growth during
learning is shown on graph (d).

also vary in size depending on the properties of the target
function. While we are working on extending our algorithm
to this case, one simple solution, based on the current algo-
rithm is also possible.

In order to obtain better performance while minimizing
the increase in the computational time, we are currently ex-
perimenting with the idea of a progressive refinement, where
we use a coarser memory resolution at the beginning of
learning (corresponding to large activation radii) and then
switch to a finer one. Intuitively, a small memory first learns
a coarse representation of the action-value function and then
refines it where necessary. The fine-grained SDM inherits
from the coarse SDM locations that already have reason-
able values; hence, learning can proceed faster. Also, as
certain parts of the state space are visited less with a rea-
sonable coarse policy, fewer new locations are added to the
finer SDM. In contrast to other approximators, e.g., neural
networks, SDMs easily allow changing structural parame-
ters, without retraining the model from scratch.

Acknowledgments

This research was supported in part by research grants to
Doina Precup from NSERC, CFI and FQRNT.

References

Atkeson, C.; Moore, A.; and Schaal, S. 1997. Locally
weighted learning for control. Artificial Intelligence Re-
view (11):75–113.

Coulom, R. 2002. Reinforcement Learning Using Neu-

ral Networks, with Applications to Motor Control. Ph.D.
Dissertation, Institut National Polytechnique de Grenoble.
Forbes, J. 2002. Reinforcement Learning for Autonomous
Vehicles. Ph.D. Dissertation, Computer Science Depart-
ment, University of California at Berkeley.
Gordon, G. J. 1995. Stable function approximation in dy-
namic programming. In ICML’95. Morgan Kaufman.
Kanerva, P. 1993. Sparse distributed memory and related
models. In Hassoun, M., ed., Associative Neural Memo-
ries: Theory and Implementation. N.Y.: Oxford University
Press. 50–76.
Munos, R., and Moore, A. 2000. Variable resolution dis-
cretization in optimal control. Machine learning (49):291–
323.
Ratitch, B., and Precup, D. 2004. Sparse distributed mem-
ories for value-based reinforcement learning. Will be avail-
able from www.cs.mcgill.ca/∼sonce/sdm-paper.pdf after
March 24, 2004.
Santamaria, J. C.; Sutton, R. S.; and Ram, A. 1998. Exper-
iments with reinforcement learning in problems with con-
tinuous state and action spaces. Adaptive Behavior 6:163–
218.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing. An Introduction. Cambridge, MA: The MIT Press.

