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Abstract

Humans possess the remarkable ability to navigate
through large-scale spaces, such as a building or a city,
with remarkable ease and proficiency. The current se-
ries of studies uses usesPartially Observable Markov
Decision Processes(POMDP) to better understand how
humans navigate through large-scale spaces when they
have state uncertainty (i.e., lost in a familiar environ-
ment.). To investigate this question, we familiarized
subjects with a novel, indoor, virtual reality environ-
ment. After familiarizing the subject with the environ-
ment, we measured subject’sefficiencyfor navigating
from an unspecified location within the environment
to a specific goal state. The environments were visu-
ally sparse and thus produced a great deal ofperceptual
aliasing(more than one state produced the same obser-
vation). We investigated whether human inefficiency
was due to: 1) accessing their cognitive map; 2) Up-
dating their belief vector; or 3) An inefficient decision
process. The data clearly show that subjects are lim-
ited by an inefficient belief vector updating procedure.
We discuss the ramifications of these finding on human
way-finding behavior in addition to more general issues
associated with decision making with uncertainty.

Introduction
In the field of artificial intelligence and robotics,Partially
Observable Markov Decision Processes(POMDP) have
provided a powerful tool for developing autonomous robots
(Cassandra, Kaelbling, & Littman 1994; Kaelbling, Littman,
& Cassandra 1998; Kaelbling, Cassandra, & Kurien 1996;
Sondik 1971). The power behind POMDPs is that they are
able to deal with state uncertainty (the robot’s uncertainty
about their position and orientation within an environment)
optimally. In robotics, this uncertainty can be generated by
measurement errors (due to noisy systems) or slippage in the
robotic wheels. These errors can prove to be catastrophic to
a robot. Thus dealing with the uncertainty optimally pro-
vides the autonomous system with its best chance of suc-
ceeding in its navigation task.

Currently, human navigation is much more robust than
robot navigation. However,there are conditions in which
humans also find themselves in a state of uncertainty in a
familiar environment. Typically, this refers to being “lost”.
State uncertainty can be generated under many conditions

such as not “paying attention” while you are navigating, or
taking a route that you are unfamiliar with, or poor obser-
vation conditions (e.g., fog, rain, smoke, etc.). Just as the
robot must deal with state uncertainty to successfully nav-
igate to its goal, humans must do the same. That is, they
ultimately must “re-orient” themselves so that they can suc-
cessfully navigate to their goal.

The current studies investigate human navigationeffi-
ciency(performance relative to the optimal observer) when
there is state uncertainty. In these studies, subjects are
familiarized with a novel virtual indoor environment in
which there is a specific target position within the envi-
ronment. To test human navigation efficiency with un-
certainty, we start subjects from an unspecified location
within the environment and instruct the user to move to the
target location making as few actions as possible (trans-
lations and rotations). We recorded the subjects’ move-
ments and compared their performance to the ideal navigator
(POMDP). More specifically we measured human naviga-
tion efficiency by taking the ratio of the number of actions
taken by the POMDP relative to the human observer (Num-
ber Actions POMDP/NumberActions Human).

We use this efficiency measure to get an understanding of
why human observers are inefficient at navigating with un-
certainty. Specifically the studies are designed to determine
if humans are inefficient at: accessing theirCognitive Map
(Tolman 1948), accurately generating an updating theirbe-
lief vector, or are simply inefficient at deciding what action
to generate given the current state of uncertainty.

Human Efficiency
Ideal observer analysis (Bayesian Statistics) has been used
to understand cognitive functions in many domains. It has
been used to study the quantum limits of light detection
of human vision (Hecht, Shlaer, & Pirenne 1942) to many
forms of visual pattern detection and discrimination (Geisler
1989), to reading (Leggeet al. 2002; Legge, Klitz, &
Tjan 1997) object recognition (Liu, Knill, & Kersten 1995;
Tjanet al. 1995; Tjan & Legge 1998) and movement actions
(Trommersḧauser, Maloney, & Landy 2003). These studies
have used ideal observer analysis, not as a model of human
cognition, but instead, as a benchmark to help understand
the cognitive limitations associated with specific cognitive
tasks. These studies have illuminated our understanding of



human cognition by understanding the information used by
human observers and the sub-optimal or optimal strategies
used by human observers. In much the same way, we plan
to use the POMDP algorithm to study human spatial naviga-
tion. That is, the model will not serve as our hypothesis as to
how humans navigate through large-scale spaces, but instead
it will serve as a benchmark to understand the information
used and the strategies adopted for a specific task.

In order to investigate how “efficient” a human observer is
at this task, one needs to compute the optimal performance
for the task. Fortunately, the POMDP algorithm provides us
with the optimal behavior when there is spatial uncertainty.
The current study investigates human way-finding efficiency
by comparing human performance for reaching a target lo-
cation in a familiar, indoor, virtual environment to that of the
ideal navigator (POMDP). We are interested in determining
how efficient subjects were at this task in addition to local-
izing which sub-process might be responsible for any inef-
ficiencies. Specifically, we investigated whether the ineffi-
ciency was in accessing their cognitive map (Tolman 1948)
or in accurately generating and updating their belief vector,
or in deciding which action to select.

The Utility of Virtual Environments
Virtual reality (VR) technology provides an experimenter
with much more control over the subject’s environment than
would be available in real environments (Wilson 1997). One
can easily manipulate the size of an environment or the num-
ber and arrangement of landmarks. For the types of studies
that we are conducting, having well controlled environments
is critical. That is, we need to be certain that thetaskthat the
human observer and the ideal observer is solving is the same.
This means that the observations have to have the same in-
formation content and the actions have to be the same be-
tween both observers. If this is not achieved, the comparison
between the human observer and the ideal observer is not as
informative. For this reason we have chosen to study human
navigation in virtual environments.

However it is well known that it is difficult to give the hu-
man observer the same information in a VR environment as
they would have in a real environment. For example, when
running experiments usingdesktop VR(the type of displays
used in the current studies) subjects receive the appropri-
ate visual information (i.e., optic flow) through the environ-
ment, but they do not have access to the proprioceptive and
vestibular information that they typically have access to in
the real environment. Chance, Gaunet, Beall and Loomis
(Chanceet al. 1998) demonstrated that subjects were better
at completing a dead-reckoning task when their was vestibu-
lar information than when it was not present. Furthermore,
Thompson, Willemsen, Boog, Creem-Regehr, Loomis and
Beall (Thompsonet al. in press) showed that distance esti-
mations for observed objects is compressed in VR relative
to those same estimates in real environments. These results
bring into question the ecological validity of using virtual
reality to study human navigation behavior.

Although there is evidence that not all information can
be acquired by using desktop or immersive environments,
the studies that question the use of VR as a tool typically

focus on our ability to generate a metric representation of
a small-scalespace. Other researchers who have used VR
technology to study human way-finding behavior in large-
scale spaces have found little difference in performance be-
tween real and VR conditions. For example, (Ruddle, Payne,
& Jones 1997) used VR to replicate the classic study by
(Thorndyke & Hayes-Roth 1982), which found that sub-
jects who learned an environment from a map had better
configural knowledge of the environment while those who
physically moved through the environment had better route
knowledge. In the Ruddle et al. they found the same ef-
fect in VR as Thorndyke et al. found in real environments.
In another study, by Koh et al. (Kohet al. 1999) subjects
were given a 10-minute training session on the structure of
a real building, either through physical travel, an immersive
VR display, or a desktop VR display. Subjects were asked
to estimate the direction and distance from one location in
the environment to another unobservable location within the
environment. The researchers found that subjects performed
just as well when they were trained in the VR conditions
(either immersive or desktop) as they did in the real envi-
ronment. Since these tasks are similar to the experiments
we conducted we believe that our methodology based on the
use of VR is reliable.

Methods
Apparatus.The experiment was run on an IBM Dell com-
puter with a 19” color monitor. Subjects moved through the
environment by making key presses that corresponded to a
90̊ clockwise rotation, a 90̊ counter-clockwise rotation or a
forward translation of one hallway unit (a forward move was
equivalent to moving between two nodes in Figure 1). After
the subject made a key press, the computer would rotate or
translate the virtual “camera” in the virtual space. The cam-
era would produce the appropriate optic flow information for
the action indicated by the key press.

Stimuli. A randomly generated layout was used that was
composed of 40 hallways units (one hallway unit is a con-
nection between two nodes in Figure 1). The environments
were rendered from a first-person perspective with the eye
height of the camera (in the virtual environment) placed at
5 feet. Figure 2 provides a sample view of the environment
from the subject’s perspective. To increase the subject’s abil-
ity to differentiate between an intersecting hallway and a
wall, red railings were placed at junctions on walls where
there was no intersecting hallway (see Figure 2 on the left).

Procedure
Subjects participated in aTraining Phaseand in a Test
Phase.

Training Phase The training phase familiarized the sub-
ject with the virtual environment that they would later be
tested. Subjects were instructed to learn both the layout of
the environment and the location of theTarget Position. The
Target Position was indicated to the subject with an auditory
signal (the sound of a bell) when they walked over the po-
sition. Subjects were informed that later in the experiment



Figure 1: A map representation of the types of envi-
ronments used in the current studies. These environ-
ments were randomly generated by randomly selecting
connecting nodes in the grid.

they would be asked to move to this target location from
a randomly selected position within the environment. Sub-
jects in the study were made completely aware of the task
that they would be completing (in fact one subject is an au-
thor on this manuscript).

To familiarize the subjects with the environments sub-
jects participated in anExploration session and aDraw-
ing session. In the Exploration Session subjects freely ex-
plored the environment for 100 forward actions. The subject
moved through the environment by making key presses on
the number pad to indicate the movement that they wanted to
make. The “8” corresponded to a forward movement, while
the “4” and “6” corresponding to rotate counter-clockwise
and clockwise rotations respectively. During the Exploration
Session, subjects learned both the layout of the environment
and a target location.

After exploring the environment, subjects participated in
the drawing session. In the drawing session, the subject was
given a grid pattern that had a single L-junction placed near
the center of the grid that corresponded to the starting loca-
tion in the exploration phase of the study (this was used to
orient the subject and aided in the “scoring” of the drawn
map). The subject was told to “connect the dots” to create
a map of the environment to the best of their abilities. Sub-
jects were informed that each dot could be thought of as a
node, or the stopping location when they made a forward
movement through the environment. If the subject’s map
drawing did not perfectly reproduce the grid layout of the en-
vironment, then the subject participated in another 100 for-
ward move exploration session followed by another drawing
test. Subjects continued in the exploration phase followed by
the drawing phase until they drew the environment correctly

Figure 2: A sample view of what subjects saw in the
study. In these environments there were no “landmark”
objects. This produced a great deal of perceptual alias-
ing (two states generating the same observation).

twice in a row.

Test Phase After reaching criterion in the training phase,
the subjects entered the test phase of the experiment. In the
test phase, subjects started from a random state (i.e., a ran-
dom location and orientation) in the environment. Subjects
were instructed to move to the target location using as few
actions (key presses) as possible. They were informed that
a rotation and a translation were both considered an action.
When subjects reached the target location there was no audi-
tory signal indicating they were there. Instead, subjects were
required to indicate when they believed they had reached
the target location by pressing the space-bar on the com-
puter. After pressing the space-bar the screen went white.
When the subject was ready to begin the next trial, the sub-
ject pressed the space-bar a second time to reveal their new
starting view.

Human Spatial Navigation Efficiencies

We modeled the current task using the POMDP approach.
The observations that were given to the model were the
views that the model expected to observe from each state.
The POMDP had no observation noise and thus the obser-
vations were completely deterministic. However, because
the environments were visually sparse, most views were not
unique (i.e., there was perceptual aliasing). Just as the hu-
man, the model had three actions available to it (move for-
ward, rotate left, rotate right). The model also did not have
any action noise. Thus the model was completely determin-
istic. The cost for making each action was also the same with
a constant reward for reaching the goal. Thus, the model’s
task was identical to that of the human: reach the goal using
as few actions as possible and be certain that it is at the goal.

In order to successfully perform this task an agent must
engage in the following processes: (1) Make accurate ob-
servations; (2) Access their cognitive map; (3) Generate a



belief vector, (i.e., a hypothesis about the set of possible lo-
cations and orientations in the environment), and (4) Make a
decision about what action to generate. The current studies
are designed to understand the role of these four processes
in human way-finding and localization.

The key measure of human performance isaction effi-
ciency: the ratio of the number of actions taken by the ideal
navigator to the number of actions taken by the human sub-
ject. We can design experiments to add or remove informa-
tion of various kinds, and examine the relative impact of the
change on the human subjects and on the ideal navigator.

Map Memory, Uncertainty, or Strategy
In this study, we added two types of information to the dis-
play that the ideal navigator is already using, which there-
fore cannot change its performance but might change the
performance of the human subjects dependent on what sub-
process the human observer is inefficient. In one condition
we placed a map of the environment on the display, in the
second we added the map plus an accurate belief vector that
was dynamically updated based upon the subjects move-
ments through the environment.

Subjects ran in three conditions:No-Map; Map; andMap
+ Belief Vector(see Figure 4). The No-Map condition was
our base-line condition that allowed us to determine each
subject’s action efficiency under normal conditions. It is
hypothesized that in the No-Map condition, the human ob-
server must compute all three of the above mentioned pro-
cesses internally (access the cognitive map, update their be-
lief vector and make their action decision).

In the Map+ Belief Vector condition we placed the map
on the computer screen and superimposed over the map was
an accurate belief vector (the set of states that the subject
could be in given the prior actions and observations). The
belief vector was dynamically updated after every action that
the subject made based upon the previous belief vector, the
current action and the current observation.

Empirical Logic The No-Map condition provided us with
a base-line efficiency performance for the task. The Map
and Map+ Belief Vector conditions allow us to determine
whether there is a cognitive limitation associated with ac-
cessing the cognitive map and/or updating their belief vector.
We predicted that if subjects are having difficulty accessing
the cognitive map during way-finding, then these difficul-
ties would be eliminated or reduced when we provided the
external map. Thus, if subjects’ limitations lie in accessing
their cognitive map then we predict a significant increase in
efficiencies from the No-Map to the Map conditions.

By contrast, suppose subjects have little difficulty access-
ing their cognitive maps, but they do have significant diffi-
culty specifying the set of possible locations they could be at
given their previous actions and observations (i.e., generat-
ing and updating their belief vector). In this case, we would
expectno difference in efficiency between the No-Map and
Map conditions, but a significant increase in efficiency be-
tween the Map and the Map+ Belief Vector conditions.

Finally, if subjects are able to access their cognitive maps

Figure 3:An illustration showing the three condition for
determining which cognitive factor is the limiting factor
for way-finding behavior. In the Map condition subjects
saw an illustration of the map superposed over the dis-
play with a b ox indicating where the target location
is. In the Map + Belief Vector condition an arrow was
placed on the display over every location and direction
that the subject could be given their current view, pre-
vious views and actions.

Sub. NoMap x Map Map x Map+BV
AAK t(126)=-1.881; p=0.06 t(127)=-5.79; p<.001
MRJ t(127)=.142;p=0.89 t(127)=-6.76; p<.001
MURM t(124)=-0.769;p=0.44 t(124)=-6.80; p<.001
RAL t(125)=0.463; p=0.64 t(127)=-5.85; p<.001

Table 1: T-tests comparing planned comparisons be-
tween conditions for each of the subjects.

and accurately generate and update their belief vectors, but
have poor strategies for deciding the optimal action, then
we should find no differences in efficiency across all three
conditions.

We computed a planned comparison t-test between the
No-Map and Map conditions in addition to a planned com-
parison between the Map and the Map+BV conditions. The
results of these comparisons can be seen in Table 1. There
were no significant differences across each subject between
the No-Map and Map conditions. However, every sub-
ject showed a significant improvement in performance in
the Map+Belief Vector condition over the Map condition.
These results strongly suggest that the inefficiencies in sub-
ject’s localization and wayfinding behavior can be attributed
to their inability to accurately generate and update the set of
possible locations in the environment while they were navi-
gating.



Figure 4: Way-finding efficiencies for the three condi-
tions. There was no significant difference between the
No Map and Map condition, but subjects were signifi-
cantly better in the Map + Belief Vector condition.

Summary Using the ideal navigator model, we were able
to conduct a series of studies to investigate human localiza-
tion and way-finding behavior in large-scale virtual environ-
ments. We were able to localize the inefficiency in way-
finding to generating and updating one’s belief vector given
the current observation and action. That is, one of the major
problems that humans seem to have in efficiently navigating
when their is state uncertainty is to integrate the collection
of actions and observations with their current belief about
where they could be located.

The Role of Memory These results suggest that subjects
are inefficient at integrating their prior actions and observa-
tions into their current belief vectors. This brings up a num-
ber of issues, such as what are subjectsactually doingwhen
they are completing this task. Because the problem can be
modeled as a Markov Decision Process, it is unnecessary
to keep track of the prior actions and observations, but one
simply needs to integrate the current action and observation
into the estimation of the current belief vector. However, hu-
mans may not work this way. Instead, humans may attempt
to keep track of an explicit history of the actions and obser-
vations as they move through the environment. If this is the
procedure that subjects are using, memory may become an
issue. Previous research has repeatedly shown that humans
have limited working memory (Miller 1956). Furthermore,
others have suggested that humans make use of routes to
learn an environment (Siegel & White 1975). Thus, one of
the reasons for this finding might be one of memory.

One can test this hypothesis by aiding subjects memory
with an external display of the previousN actions and ob-
servations while they are navigating. If subjects are using
this approach to solve the problem, but they are simply hav-
ing a difficult time remembering all of the observations and
actions, this type of display should improve their navigation
efficiency.

Applications The current studies were conducted as a spa-
tial navigation task, but we believe that the findings here
have wider implications in the field of human cognition.
Specifically, the task that the subjects are engaging in can
be described as a special task ofdecision making with un-
certainty. There are many tasks that require decision mak-
ing with uncertainty. One area isFault Detection Identifi-
cation(i.e., troubleshooting). When troubleshooting a com-
plex system one must have a mental model of the system
(similar to a cognitive map of a large-scale space). Given
the initial observation, the human needs to generate hypothe-
ses about what has failed (their initial belief vector). Given
this belief vector, the human then may make some additional
observations that will reduce the entropy of the belief vector
until they ultimately make a decision on what action to make
to fix the problem. The current studies suggest that humans
may be inefficient at integrating the collection of observa-
tions and actions that they make into an accurate belief vec-
tor. However, given an accurate belief vector, these studies
suggest that human observers may act near optimally.

It is well understood in the area of POMDPs that com-
puting the optimal action given a belief vector is difficult to
compute (Kaelbling, Littman, & Cassandra 1998). However,
generating and updating a belief vector is relatively simple
(given a model of the task). Given the data presented here,
one is prone to speculate on an interesting relationship that
the POMDP architecture and the human cognitive system
might have for developing fast and efficient troubleshooting
system. One can imagine a system in which the computer
computes and displays the current belief vector given the
prior actions and observations. The human observer then
uses this information to generate the appropriate action. The
action and the corresponding observation is then fed back
to the computer to update the current belief vector until a
diagnosis is reached.

Caveats Although the data presented here are both sur-
prising and encouraging there are a few caveats that one
should be aware of when interpreting this data. First, with
respect to the implications that these results have on our un-
derstanding of human way-finding, one needs to be aware of
the fact that these data were collected using desktop VR. In
desktop VR the human observer does not have access to the
vestibular and proprioceptive cues that are typically avail-
able when navigating in real environments. It is possible
that these cues may improve subject’s efficiencies by aiding
in their ability to generate and update their internal belief
vector. We are currently investigating this question in our
immersive VR arena and it appears that adding these signals
does not improve human efficiencies.
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