
Cache Performance of Priority Metrics for MDP Solvers

David Wingate and Kevin D. Seppi
Computer Science Department

Brigham Young University
Provo, UT 84602

Abstract

As algorithms scale to solve larger and larger MDPs, it be-
comes impossible to store all of the model information of the
MDP and the supporting data structures of the algorithm in
RAM. This motivates the study of the disk-based-cache ef-
ficiency of solution algorithms. We contrast the cache effi-
ciency of normal value iteration with that of the P-EVA algo-
rithm, and introduce the concept of “intrinsic cacheability.”
We concentrate on prioritized solution methods, and demon-
strate that the choice of priority metric greatly affects cache
behavior. Experimental results indicate that the best prior-
ity metric allows problems which are four times larger than
available RAM to be solved effectively.

Introduction
Value iteration is a well-known technique for solving MDPs,
but can converge slowly when applied naively. The per-
formance of value iteration (VI) can be improved by sev-
eral orders of magnitude by avoiding redundant or useless
backups, and by performing backups in the “correct” or-
der. Both improvements can be accomplished simultane-
ously through prioritized computation: instead of naively
sweeping through the state space and backing up every state
at every iteration, a prioritized method executes each backup
in priority order. This has the effect of dramatically accel-
erating convergence by focusing computational effort on re-
gions of the problem that are maximally productive.

Wingate and Seppi (Wingate & Seppi 2003) demon-
strated that demanding perfect prioritization of backups is
prohibitively expensive due to priority queue overhead, but
also noted that this overhead can be all but eliminated
through approximate prioritization. Their algorithm approx-
imated a perfectly prioritized backup ordering through the
use of partitions, which are simply sets of states. Instead of
constructing a priority queue over states, the queue is con-
structed over partitions. When a partition p is processed,
their algorithm value iterates normally over the states within
p until they converge. It then reprioritizes p and any other
partitions containing states that depend on any state in p.
The resulting algorithm is named P-EVA, which is short for
“Partitioned Efficient Value Iterator.”

Experimentally, the P-EVA algorithm is so effective at
quickly solving large MDPs that the factor limiting the size
of problem which can be solved is no longer time, but RAM.

In order to solve problems that do not fit into available RAM,
two options are possible: since not all data is in use at all
times, some of it may be cached to disk. Or, if the data was
derived from a system model (perhaps through discretiza-
tion of a continuous problem like Mountain Car or Acrobot),
it may be recomputed. Naturally, not all MDPs are de-
rived from system models, so the only generally applicable
method is to write unused data to disk.

These observations motivate the study of cache efficiency
as an additional consideration when designing algorithms to
solve very large MDPs. If an algorithm accesses informa-
tion in a way that is not amenable to good cache behavior, it
severely limits the size of problems that can be considered
for solution. In addition, if an algorithm is accessing infor-
mation in a way that is not good for a cache, it is probably
inefficient from the standpoint of information propagation.

Since prioritized methods are among the most efficient in-
formation propagators, it is reasonable to examine them as
candidates for good cache behavior. This paper therefore fo-
cuses on the P-EVA algorithm, and examines the two differ-
ent priority metrics it employs. It also discusses the ways in
which its cache behavior compares to that of normal value
iteration. An important perspective this paper takes is that
of implicit cache management: we examine the emergent
caching properties of the solution algorithms with respect
to a given priority metric, as opposed to developing explicit
cache management strategies.

Prioritized, Partitioned Value Iteration
This section briefly reviews the P-EVA algorithm and the
definitions of the H1 and H2 priority metrics. It also re-
views the semantics of each priority metric, which is impor-
tant when considering their cache behavior.

Normal VI is defined in terms of the value function, which
is typically expressed as

Vt(s) = max
a∈A

{

R(s, a) + γ
∑

s′

Pr(s′|s, a)Vt−1(s
′)

}

where R(s, a) is the reward for executing action a in state
s, Pr(s′|s, a) is the probability of transitioning to state s′

given (s, a), and γ∈[0, 1) is the discount factor.
Prioritizing backups necessitates additional information,

the most important of which is the Bellman error of a state:

Bt(s) = max
a∈A

{

R(s, a) + γ
∑

s′

Pr(s′|s, a)Vt(s
′)

}

−Vt(s)

P-EVA builds two different prioritization metrics upon the
Bellman error function. The first metric, H1 , is equal to the
Bellman error itself:

H1 t(s) = Bt(s)

This is the same priority metric used by Moore
and Atkeson in their work on Prioritized Sweeping
(Moore & Atkeson 1993), although their work was done in
a very different context. The second metric is:

H2 t(s) =

{

Bt(s) + Vt(s) Bt(s) > ε
0 otherwise

P-EVA defines the priority of a state s is defined as either
H1 t(s) or H2 t(s), depending on which priority metric is
being used. The priority of a partition is defined as the max-
imum priority of any state within the partition. We say that a
state s is dependent on state s′ if ∃a∈A s.t. Pr(s′|s, a) 6= 0.
We say that a partition p depends on another partition p′ if
∃s, s′ s.t. s ∈ p, s′ ∈ p′ and s is dependent on s′.

The P-EVA algorithm begins by constructing a priority
queue over partitions using either H1 or H2 . Partitions are
then processed in priority order by selecting the highest pri-
ority partition p. States within p are value iterated until con-
vergence. The priorities of any partitions depending on p are
then recomputed, and the priority queue is updated. The pro-
cess repeats until termination, which typically occurs when
an ε-optimality test is passed.

The H1 and H2 priority metrics generate very different
backup orderings. Using H1 , P-EVA can be thought of as
a greedy reduction in the error of the value function esti-
mate. P-EVA-H1 therefore tends to propagate value func-
tion information quickly throughout the state space, but typ-
ically must process regions multiple times. P-EVA-H2 tends
to process loops repeatedly, which ensures that regions are
fully converged before moving on to other regions of the
problem. This minimizes the amount of reprocessing neces-
sary, and helps explain why P-EVA-H2 exhibits much better
cache behavior than P-EVA-H1 .

Later in the paper, we will talk about an “information
frontier.” By this, we are referring to the places in the value
function estimate which are between regions of the prob-
lem which have not yet been processed, and regions which
are fully converged. Formally, these are the states with the
highest Bellman error.

Normal VI and Predictive Caches
As a baseline, it is important to consider the cache behav-
ior of normal VI, using a disk-based cache. To compare
standard VI to P-EVA, we consider a hypothetical VI vari-
ant which iterates over partitions, backing up states within
each partition. This algorithm exhibits pessimal behavior
for non-predictive caches, because as it iterates over a prob-
lem, it touches each partition once, and then moves on to the

next partition. It never revisits a partition until it has vis-
ited every other partition in the problem. Assuming a cache
strategy that kicks out the least-recently-used element, any
cache smaller than the entire problem will always yield a hit
ratio of zero.

It is possible to improve this performance through the use
of a predictive cache, since the order in which partitions will
be accessed is known a priori. However, such a predictive
cache will not be explored further, either for normal VI or
for P-EVA. Such a study would detract from the goal of the
paper, which is to evaluate the intrinsic cache behavior of the
algorithms. The many issues surrounding predictive caches
represents an excellent research space that we leave for fu-
ture work.

Information-Frontier-Only Statistics
The final observation we make relative to cache behavior in-
volves the intrinsic cacheability of a problem. In the P-EVA
algorithm, there are two different times that partitions are
needed. The first happens when a partition p is extracted
from the priority queue as having the highest priority. p be-
comes the working partition, and if it is not in cache, it must
be retrieved from disk. We term these the “information-
frontier-only” partition accesses, for reasons explained be-
low. However, there is a second time that partitions are
needed: when we have finished processing p, we must re-
compute the priority of any partition d that depends upon p,
meaning that the transition information for certain states in
d will be needed. This in turn means that if d is not in cache,
it must be read from disk. We term these “auxiliary partition
accesses.”

Currently, the P-EVA algorithm pulls the entire contents
of d out of the cache for each auxiliary access, but this is
not strictly necessary. It is possible (and even probable) that
not all states in d depend upon some state in p, so it may be
possible to pull out only the necessary states. Although disk
latency may still be a factor, this may be reduce the time
needed by the disk read. Or, it may be feasible to recom-
pute the transition information for just the states in d that
depend on some state in p, instead of recomputing the entire
partition.

The distinction between “information-frontier-only” and
“auxiliary” partition accesses is significant for another rea-
son. Although we do not pursue this idea in this paper, it
may be possible to approximate the priorities between parti-
tions, instead of recomputing them exactly. Such an approx-
imation may not require all of the transition information in
the d partition, which means that an auxiliary partition ac-
cess may not be necessary at all.

Therefore, there are two different measures of cache per-
formance: first, there is the cache performance of the al-
gorithms as they stand, and second, there is the intrinsic
cacheability of the problem itself. Of course, both mea-
sures must be taken with respect to a given priority metric.
Counting auxiliary partition accesses dramatically changes
the cache performance characteristics of our algorithms. For
that reason, the results section reports two sets of cache effi-
ciencies.

Experimental Results

Two traditional reinforcement learning problems were se-
lected to quantify P-EVA’s cache efficiency: Mountain Car
(MCAR), and Double-Arm Pendulum (DAP). These were
discretized using a procedure similar to that described by
Munos and Moore (Muños & Moore 2002) to generate sev-
eral large, discrete MDPs. For all experiments, the optimal
value function was computed to within ε = 0.0001 with
γ = 0.6 and V0 = 0. Both states and partitions were gen-
erated with regularly spaced grids in the problem space. We
note here that all of the experiments are cache simulations,
which is why actual wallclock times are not discussed.

The experiments yielded striking results. On the positive
side, every experiment indicated that the H2 metric greatly
outperforms the H1 metric, sometimes by as much as a
factor of two. Additionally, reasonable cache efficiencies
(above 80%) can be achieved using a cache capacity of only
20%. On the negative side, we note that auxiliary partition
accesses are expensive vis-a-vis partition caching, and that
the information-frontier-only cache performances could be
improved.

All of the experiments yielded very consistent results.
Figures 1, 2, 3, and 4 all show that the H2 metric dramat-
ically outperformed the H1 metric in terms of cache per-
formance. These efficiencies directly affect the number of
misses per partition. For example, at a capacity of 22%, and
counting both information-frontier and auxiliary accesses,
the H2 metric generates an average of 3.08 misses per par-
tition. The H1 metric, on the other hand, generates 22.02
misses. For information-frontier accesses only, H2 gener-
ates 2.13 misses, while H1 generates 10.37.

This general pattern of results holds for all problems, for
cache sizes from 0% capacity to about 80% capacity. After
about 80% capacity, the H1 metric sometimes yielded better
cache efficiency, but not by much. At 100% capacity, both
algorithms yielded a 100% cache hit ratio, as expected.

We also note that the marginal cache efficiency equals
one at a cache capacity of about 22%. This is the point
of diminishing returns, where one must add more than one
unit of cache capacity to increase the cache hit rate by one
unit. However, at 22% capacity, the H2 metric yields a
90.92% hit rate on Mountain Car and 86.03% on Double-
Arm-Pendulum. This is quite good, and implies that prob-
lems which are four times larger than available RAM can be
efficiently solved.

There are two negative items of note on the “information-
frontier-only” series of graphs (Figures 3 and 4). First,
we note that the scale of the “Average cache misses per
partition” axis is consistently an order of magnitude less
for the information-frontier-plus-auxiliary-accesses experi-
ments! This implies that auxiliary partition accesses are
expensive vis-a-vis cache efficiency. Although we can still
achieve a good percentage cache hit rate, the absolute value
of misses is very high. Additionally, the cache hit rate in
the information-frontier-only series of experiments is much
lower than is desirable. More sophisticated caching strate-
gies may alleviate this.

Conclusions and Future Research
Based on our results, several conclusions are possible. The
first conclusion treats the cache performance of the H2 pri-
ority metric compared to the H1 metric. Other research
(which is in submission) has thoroughly examined the rel-
ative wallclock performances of the H1 and H2 metrics.
Generally, the H2 metric outperforms the H1 metric. In
terms of cache efficiency, however, H2 always bested H1 .
For a general problem, therefore, whose characteristics are
not known beforehand, it makes sense to select the safest
option, which appears to be H2 . The performance benefits
of the H2 metric, combined with its cache efficiency, so-
lidify H2 as the priority metric of choice for solving very
large MDPs. Of course, our experimental domain is fairly
limited; experimentation on more problems is necessary to
truly justify this claim.

As mentioned previously, the idea of approximate inter-
partition priorities could have profound benefits. Experi-
mentally, the average number of cache misses per partition
increased by an order of magnitude when auxiliary partition
accesses were considered, which is quite expensive. Exam-
ining approximate inter-partition priorities could therefore
be very fruitful. Another direction for future research is to
benchmark different types of caches. As noted previously,
normal VI can greatly benefit from an intelligent predictive
cache, due to the regularity of partition accesses. It seems
clear that partition accesses are also quite regular for P-EVA,
although they are regular in a more complicated way. A
more sophisticated predictive cache that leveraged this reg-
ularlity would further improve performance.

The most significant result of the paper is of a holistic
nature. Not only do prioritization and partitioning acceler-
ate convergence, but we discover that the combination of the
two ideas makes efficient non-predictive caching viable. In
addition, as explored in other research, partitioning and pri-
oritization enable efficient parallel implementations of ef-
ficient MDP solvers. Thus, the ideas of prioritization and
partitioning are complementary, and even synergistic. Addi-
tionally, the H2 metric not only yields superior times to con-
vergence, but it also exhibits outstanding cache efficiency.
The combination of these results solidify the choice of par-
titioned, prioritized value iteration, using the H2 priority
metric, as the algorithm of choice when solving very large
MDPs.

References
[Moore & Atkeson 1993] Moore, A. W., and Atkeson,
C. G. 1993. Prioritized sweeping: Reinforcement learning
with less data and less time. Machine Learning 13:103–
130.

[Muños & Moore 2002] Muños, R., and Moore, A. W.
2002. Variable resolution discretization in optimal control.
Machine Learning 49 (2-3):291–323.

[Wingate & Seppi 2003] Wingate, D., and Seppi, K. D.
2003. Efficient value iteration using partitioned models. In
Proceedings of the International Conference on Machine
Learning and Applications, 53–59.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70
C

ac
he

 h
it

ra
te

 (
pe

rc
en

ta
ge

 o
f

hi
ts

)

A
ve

ra
ge

 c
ac

he
 m

is
se

s
pe

r
pa

rt
iti

on
Cache size (percentage of total partitions)

H1 Cache hit rate
H2 Cache hit rate

H1 Avg. cache misses
H2 Avg. cache misses

Figure 1: On the left axis, cache performance for the H1

and H2 metrics on the MCAR problem. On the right axis,
the average number of cache misses per partition. A higher
cache hit ratio is better, but a lower number of misses is bet-
ter. For this problem, a 300x300 state discretization was
used, and a 30x30 partition discretization was used.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

 120

 140

 160

C
ac

he
 h

it
ra

te
 (

pe
rc

en
ta

ge
 o

f
hi

ts
)

A
ve

ra
ge

 c
ac

he
 m

is
se

s
pe

r
pa

rt
iti

on

Cache size (percentage of total partitions)

H1 Cache hit rate
H2 Cache hit rate

H1 Avg. cache misses
H2 Avg. cache misses

Figure 2: Cache performance results for the DAP
problem, using a 30x30x30x30 state discretization and a
10x10x10x10 partition discretization.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100
 0

 2

 4

 6

 8

 10

 12

 14

 16

C
ac

he
 h

it
ra

te
 (

pe
rc

en
ta

ge
 o

f
hi

ts
)

A
ve

ra
ge

 c
ac

he
 m

is
se

s
pe

r
pa

rt
iti

on

Cache size (percentage of total partitions)

H1 IFO Cache hit rate
H2 IFO Cache hit rate

H1 IFO Avg. cache misses
H2 IFO Avg. cache misses

Figure 3: Information-frontier-only cache performance for
the MCAR problem, using a 300x300 state discretization
and a 30x30 partition discretization.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100
 0

 2

 4

 6

 8

 10

 12

C
ac

he
 h

it
ra

te
 (

pe
rc

en
ta

ge
 o

f
hi

ts
)

A
ve

ra
ge

 c
ac

he
 m

is
se

s
pe

r
pa

rt
iti

on

Cache size (percentage of total partitions)

H1 IFO Cache hit rate
H2 IFO Cache hit rate

H1 IFO Avg. cache misses
H2 IFO Avg. cache misses

Figure 4: Information-frontier-only cache performance for
the DAP problem, using a 30x30x30x30 state discretization
and a 10x10x10x10 partition discretization.

	Introduction
	Prioritized, Partitioned Value Iteration
	Normal VI and Predictive Caches
	Information-Frontier-Only Statistics
	Experimental Results
	Conclusions and Future Research

