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Abstract

We present the generalized semi-Markov decision process
(GSMDP) as a natural model for stochastic decision pro-
cesses with asynchronous events in hope to spur interest in
asynchronous models, often overlooked in AI literature.

Introduction
Stochastic processes withasynchronousevents and actions
have received little attention in the AI literature despite there
being an abundance of asynchronous systems in the real
world. The canonical example of an asynchronous process
is a simple queuing system with a single service station,
for example modeling your local post office. Customers
arrive at the post office, wait in line until the service sta-
tion is vacant, spend some time being serviced by the clerk,
and finally leave. We can think of the arrival and departure
(due to service completion) of a customer as two separate
events. There is no synchronization between the arrival and
departure of customers, i.e. the two events just introduced
areasynchronous, so this is clearly an example of an asyn-
chronous system.

Some attention has recently been given to planning with
concurrentactions. Guestrin, Koller, & Parr (2002) and
Mausam & Weld (2004) use discrete-timeMarkov decision
processes(MDPs) to model and solve planning problems
with concurrent actions, but the approach is restricted to in-
stantaneous actions executed in synchrony. Rohanimanesh
& Mahadevan (2001) consider planning problems with tem-
porally extended actions that can be executed in parallel. By
restricting the temporally extended actions toMarkov op-
tions, the resulting planning problems can be modeled as
discrete-timesemi-Markov decision processes (SMDPs).

All three of the approaches cited above model time as a
discrete quantity. This is a natural model of time for syn-
chronous systems driven by a global clock. Asynchronous
systems, on the other hand, are best represented using a
dense (continuous) model of time (Alur, Courcoubetis, &
Dill 1993). Continuous-time MDPs (Howard 1960) can
be used to model asynchronous systems, but are restricted
to events and actions with exponential trigger time distri-
butions. Continuous-time SMDPs (Howard 1971) lift the
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restriction on trigger time distributions, but cannot model
asynchrony.

We therefore propose thegeneralizedsemi-Markov de-
cision process (GSMDP), based on the GSMP model of
discrete event systems (Glynn 1989), as a model for asyn-
chronous stochastic decision processes. A GSMDP, unlike
an SMDP, remembers if an event enabled in the current state
has been continuously enabled in previous states without
triggering. This is key in modeling asynchronous processes,
which typically involve events that race to trigger first in a
state, but the event that triggers first does not necessarily
disable the competing events. For example, if a customer is
currently being serviced at the post office, the fact that an-
other customer arrives does not mean that the service of the
first customer has to start over from scratch. Rohanimanesh
& Mahadevan (2001) note that if they were to allow semi-
Markov options in their models, the resulting global models
would no longer be SMDPs for the same reason. It should
therefore be clear to the reader that the GSMDP formalism is
a true generalization of the SMDP formalism. Intuitively, a
GSMDP can be viewed as the composition of asynchronous
SMDPs.

Generalized Semi-Markov Decision Processes
The generalized semi-Markov process (GSMP), first intro-
duced by Matthes (1962), is an established formalism in
queuing theory for modeling continuous-time stochastic dis-
crete event systems (Glynn 1989). We add a decision di-
mension to the formalism by distinguishing a subset of the
events as controllable and adding rewards, thereby obtaining
the generalized semi-Markovdecisionprocess (GSMDP).

A Model of Stochastic Discrete Event Systems
A GSMP consists of a countable set of statesS and a finite
set of eventsE. At any point in time, the process occupies
some states ∈ S in which a subsetEs of the events are
enabled. With each evente ∈ E is associated a positive
distributionGe governing the timee must remain enabled
before it triggers, and a next-state probability distribution
pe(s′|s). The enabled events in a state race to trigger first,
and the event that triggers causes a transition to a states′ ∈
S according to the next-state probability distribution for the
triggering event. The time we spend in a specific states
before an event occurs is a random variableTs. A GSMP is



a semi-Markov process only if the distribution ofTs, for all
s ∈ S, is independent of history.

As an example of a GSMP, consider the post office “sys-
tem” mentioned in the introduction. The state of this simple
queuing system is the number of customers currently in the
post office. There are two events representing customer ar-
rival and customer departure, respectively. The arrival event
is always enabled and the distribution associated with this
event represents the inter-arrival time for customers. The
departure event is only enabled when there are customers in
the post office. The distribution associated with the depar-
ture event represents the time it takes to service a single cus-
tomer. When the departure event triggers, the state changes
from n to n − 1. The arrival event causes a transition from
staten to n + 1, unless the post office is full in which case
the state does not change.

Formal Semantics. To formally define the semantics of a
GSMP model, we associate a real-valued clockte with each
event that indicates the time remaining untile is scheduled
to trigger in the current state. The process starts in some ini-
tial states with eventsEs enabled. For each enabled event
e ∈ Es, we sample a trigger time according to the distri-
bution Ge and sette to the sampled value. For disabled
events, we sette = ∞. Let e∗ be the event inEs with the
smallest clock value, i.e.e∗ = arg mine∈Es

te. The event
e∗ becomes the triggering event ins. Provided that all trig-
ger time distributions are continuous, the probability of two
events triggering at exactly the same time is zero soe∗ is
uniquely defined. Whene∗ triggers afterte∗ time units ins,
we sample a next states′ according tope∗(s′|s) and update
each clockte as follows:

1. if e ∈ Es′ ∩ ({e∗} ∪ (E \ Es

))
, thent′e is sampled from

Ge;

2. if e ∈ Es′ ∩ (Es \ {e∗}
)
, thent′e = te − te∗ ;

3. otherwise, ife 6∈ Es′ thent′e = ∞.

The first rule covers events that are enabled ins′ and ei-
ther triggered or were not enabled ins. All such events are
rescheduled. Events that remain enabled across state transi-
tions without triggering are not rescheduled (rule 2). It is this
rule that introduces history dependence and therefore breaks
the semi-Markov property, thus a GSMP is not necessarily
a semi-Markov process. The third and final rule states that
events disabled ins′ are scheduled not to trigger. Given a
new states′ and new clock valuest′e for eache ∈ E, we
repeat the procedure just specified withs = s′ andte = t′e
so long asEs 6= ∅.

By adding the clocks to the description of states we ob-
tain an extended state-spaceX ⊂ S × R

|E|
≥0 . Given an

extended statex ∈ X, the next-state distribution overX
is well-defined, which means that we can define a Markov
chain with state-spaceX that corresponds to a GSMP with
state-spaceS. This will be ageneral state-spaceMarkov
chain (GSSMC; Shedler 1993) because the state-space has
both discrete and continuous components. Letfe(t) be the
probability density function for the distributionGe associ-
ated with evente. The next-state distribution for the GSSMC

is defined asf(x′|x) = pe∗(s′|s)∏e∈E f̃e(t′e|s′, x), where
f̃e(t′e|s′, x) is

1. fe(t′e), if e ∈ Es′ ∩ ({e∗} ∪ (E \ Es

))
;

2. δ(t′e − (te − te∗)), if e ∈ Es′ ∩ (Es \ {e∗}
)
;

3. δ(t′e −∞), if e 6∈ Es′ .

Here,δ(t − t0) is the Dirac delta function (Dirac 1927, p.
625) with the property that

∫ x

−∞ δ(t − t0)dt is 0 for x < t0
and1 for x ≥ t0. In particular,

∫ x

−∞ δ(t−∞)dt is 0 for any
finite x and1 for x = ∞.

Observation Model. In general, the future trigger times of
enabled events are not known to an observer of the process.
Only the discrete part of the state-space is fully observable.
However, the time that an event has been enabled is know to
an observer, and this information is sufficient to provide the
observer with a probability distribution over extended states.

Let O ⊂ S × R
|E|
≥0 be the set of observations. An obser-

vationo = 〈s, ~u〉 ∈ O consists ofs, the observed discrete
part of the current extended state, and a vector~u with ele-
mentsue for eache ∈ E being the time that evente has
been enabled (ue = 0 if e 6∈ Es). Given an observation
o = 〈s, ~u〉, a probability density functionf(x|o) overX is
defined asf(x|o) =

∏
e∈E f̃e(te|te > ue, s) if x = 〈s,~t〉

and f(x|o) = 0 otherwise, wheref̃e(te|te > ue, s) is
fe(te|te > ue) if e ∈ Es andδ(te −∞) otherwise.

Clearly,ue is only significant fore ∈ Es. Furthermore,
if the distributionGe associated withe is memoryless, i.e.
fe(t|t > t0) = fe(t) as is the case for the exponential dis-
tribution, we do not need to know for how longe has been
enabled. Thus, an observation only needs to consist ofs and
ue for all e ∈ Es such thatGe is not a memoryless distribu-
tion. A GSMP with all events associated with an exponen-
tial distribution is simply a continuous-time Markov chain
(Glynn 1989).

We define a functionobs : X × O × S → O that given
an extended statex, an observation ofx, and the observable
part s′ of a successorx′ of x, provides the observation of
x′. We haveobs(x, o, s′) = 〈s′, ~u′〉, where~u′ consists of
elementsu′

e for eache ∈ E, with u′
e being

1. ue + te∗ , if e ∈ Es′ ∩ (Es \ {e∗}
)
;

2. 0 otherwise.

The first case covers events that remain enabled across state
transitions without triggering. The time thate has remained
enabled is simply the time it had remained enabled when en-
tering states (ue) plus the time spent ins (te∗ ). The second
case covers events that were not previously enabled or just
triggered. Clearly, these events have not been enabled with-
out triggering so the observation is0 in this case. Note that
the continuous component ofx′ is irrelevant to the observa-
tion of x′.

We could of course record the time an event has been en-
abled in the extended state rather than the trigger time of
the event. An extended state would in that case be fully ob-
servable, but the result would be a general state-spacesemi-
Markov process instead of a Markov chain.



vπ
α(o) =

∫
X

f(x|o)
( te∗∫

0

e−αtc(s, π(o))dt + e−αte∗
∫
X

f(x′|x, o)
(
k(s, e∗, s′) + vπ

α(obs(x, o, s′))
)
dx ′
)

dx

=
∫
X

f(x|o)
(

1
α

(
1 − e−αte∗

)
c(s, π(o)) + e−αte∗

(
k̂(s, e∗) +

∑
s′∈S

pe∗(s′|s)vπ
α(obs(x, o, s′))

))
dx

(1)

vπ
α(s) =

∞∫
0

λπ
s e−λπ

s t
∑

e∈Eπ
s

λe

λπ
s

(
1
α

(
1 − e−αt

)
c(s, π(s)) + e−αt

(
k̂(s, e) +

∑
s′∈S

pe(s′|s)vπ
α(obs(s′))

))
dt

=
1

λπ
s + α

(
c(s, π(s)) +

∑
e∈Eπ

s

λe

(
k̂(s, e) +

∑
s′∈S

pe(s′|s)vπ
α(obs(s′))

)) (2)

Actions, Policies, and Rewards
Given a GSMP with event setE, we identify a setA ⊂ E
of controllable events, oractions. The remaining events
are calledexogenous events. Actions differ from exoge-
nous events in that they can be disabled at will in a state,
while an exogenous evente always remains enabled in a
states if e ∈ Es. A control policy π determines which
actions should be enabled at a given time in a state. We
allow the action choice to depend on the entire execution
history of the process, which can be captured in an obser-
vationo ∈ O as described above. Thus, a policy is a map-
ping from observations to sets of actions:π : O → 2A. A
GSMDP controlled by a policyπ is a GSSMC withEs re-
placed byEπ(o) = π(o) ∪ (Es \ A

)
in the definition ofe∗,

f(x|o), andobs(x, o, s′). The next-state distribution is rede-
fined asf(x′|x, o) = pe∗(s′|s)∏e∈E f̃e(t′e|s′, x, o), where
f̃e(t′e|s′, x, o) is defined as̃fe(t′e|s′, x) with Eπ(o) replacing
Es andEπ

obs(x,o,s′) replacingEs′ .
For the post office example, we could make the departure

event into an action. This would signify that we can open
and close the service station at will. If we close the service
station (i.e. disable the departure event) while a customer is
being serviced, the time we have spent with the customer
is forgotten and the customer must be serviced from scratch
if we reopen the service station (i.e. enable the departure
event).

In addition to actions, we specify a reward structure to
obtain a GSMDP. We assume a traditional reward structure
with a lump sum rewardk(s, e, s′) associated with the tran-
sition from states to s′ caused by the triggering of evente,
and a continuous reward ratec(s, A′) associated with set of
actionsA′ ⊂ A being enabled ins (cf. Puterman 1994). The
expected lump sum reward if evente triggers in states is
k̂(s, e) =

∑
s′∈S pe(s′|s)k(s, e, s′).

The expected infinite-horizon discounted value of an ob-
servationo for a policy π is given by (1). The parameter
α is thediscount rate, which can be interpreted as the rate
of a termination event with exponential trigger time distri-
bution (Howard 1960). It means that a unit reward earnedt
time units into the future counts as ae−αt reward at present
time. Note that if rewards were allowed to depend on the ex-

tended statex of the process, and not only on the real state
s, we would not be able to get rid of the nested integrations
in (1).

Now, let s be a state such that each evente ∈ Eπ
s is

associated with an exponential distribution having rateλe:
Ge = Exp(λe). Let λπ

s =
∑

e∈Eπ
s

λe. The time spent ins
before an event triggers is then a random variable with dis-
tribution Exp(λπ

s ) and the probability that a specific event
e triggers first isλe/λπ

s . These nice properties of the expo-
nential distribution allows us to write the expected infinite-
horizon discounted value ofs as (2). We writeobs(s′) for
the observation of the next state because it is independent
of the current state. If all events are associated with mem-
oryless distributions, thenobs(s′) can be replaced withs′
in (2), which then represents an alternative formulation for
continuous-time Markov decision processes.

Discussion
Unless we make limiting assumptions regarding a GSMDP
model, for example that all distributions are memoryless,
then we most likely have to resort to approximation schemes
in order to solve the GSMDP. A straightforward approach
would be to discretize time, however, we will suffer greatly
from the curse of dimensionality if we do so naively.

Younes & Simmons (2004) present a technique for ap-
proximating a GSMDP with a continuous-time MDP by ap-
proximating each distributionGe with a continuousphase-
type distribution(Neuts 1981). The continuous-time MDP
can then be solved using standard techniques. The approxi-
mation essentially amounts to a discretization into random-
length intervals of the observation for how long an event has
been enabled. The length of an interval is a random variable
with an exponential distribution.

Alternatively, we could usediscretephase-type distribu-
tions (Neuts 1975) to obtain a discrete-time MDP that ap-
proximates our GSMDP. Bobbioet al. (2003) describe an al-
gorithm for approximating an arbitrary positive distribution
with a discrete phase-type distribution, which could be used
for the purpose of approximating a GSMDP with a discrete-
time MDP. One clear advantage with this approach over us-
ing continuous phase-type distributions is that determinis-



tic distributions can be represented exactly. A disadvantage
with approximating a GSMDP with a discrete-time model
is that we would have to take into account the possibility of
two events triggering at the same time, and it may not be
immediately obvious what to do in such a case.

A third possibility is of course to use a function approxi-
mator, for examplek-nearest neighbor, to represent the value
function of a GSMDP. The GSMDP could then be solved us-
ing fitted value iteration (Gordon 1995).

Even if we cannot hope to find optimal policies for
GSMDPs, it may still be worthwhile trying to determine
characteristics of optimal policies. We have defined a policy
as a mapping from observations to sets of actions, where an
observation includes a clock value for each enabled event.
This means that actions can be enabled and disabled at any
point in time while in a specific state and not only at the
triggering of an event or action. If all trigger time distri-
butions are exponential, i.e. if the GSMDP is a continuous-
time MDP, then we do not need to take into consideration
the time that events have been enabled in order to maximize
the expected infinite-horizon discounted reward. The SMDP
case, when the action choice can change between transition,
has been analyzed by Chitgopekar (1969), Stone (1973), and
Cantaluppi (1984) under various assumptions. An analysis
of this sort would be valuable for the general case with asyn-
chronous events as well, and would ideally provide us with
conditions for the trigger time distributions under which the
optimal policy has a certain structure (for example piecewise
constant).
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