Lewis, an Entry in the 2004 Robot Challenge

Michael Dixon and William D. Smart
Department of Computer Science and Engineering
Washington University in St. Louis
St. Louis, MO 63130
United States
{msd2,wds}@cse.wustl.edu

Abstract

This paper describes Lewis, the Washington University
entry in the 2004 Robot Challenge event. We describe
the new control architecture implemented for the 2004
competition, our high-level behavior-sequencing mech-
anism, and discuss our performance during the Chal-
lenge event.

Introduction

This paper describes the Washington University entry
in the 2004 Robot Challenge event. The robot, Lewis,
shown in figure 1 is an iRobot B21r mobile robot. It
carries all the usual sensors, but relies primarily on the
SICK laser range-finder, and a pair of stereo cameras
on a pan-tilt mount.

Our entry this year builds on our successful system
from the 2003 competition. however, almost all of the
software was rewritten to incorporate lessons learned
from last year. In particular, we have focused on fault-
tolerance in our architecture, to enable hardware and
software failures to be dealt with gracefully without in-
terruption to the task being performed.

In this paper, we describe this fault-tolerant archi-
tecture, the task-sequencing system, and discuss our
experiences at the competition. We conclude by offer-
ing some thoughts on the performance of our system,
and where our research is heading now.

Our Approach

The AAAI Robot Challenge is a problem which requires
the demonstration of a broad set of capabilities, and
thus requires the development a set of general tools
for operating in complex environments and interact-
ing with people. Based on our experiences in the 2003
event, we decided to focus our efforts on designing a
modular control architecture, with built-in fault toler-
ant features. The modular system allows great flexibil-
ity on-site, since pre-coded modules can be combined
using a simple scripting language, reducing the need
for (possibly error-prone) on-site programming. The
emphasis on fault-tolerance acknowledges that failures
will happen, and that the best we can do is to reduce
their severity and duration when they do.

"A technique I

is a trick you
can Use more =+ <o
than once:
Jim BIY

Figure 1: Our robot, Lewis.

Our aim was to improve the manageability and reli-
ability of our system by compartmentalizing function-
ality into modular services that could be combined to
create greater complexity, but could be individually de-
bugged and tested with greater ease than an integrated
system. This would also improve the system’s flexibil-
ity, giving us the ability to go into a previously unknown
environment and assemble existing modules to perform
a specific set of tasks in a short amount of time. To
that end, our goal was to develop a useful set of general-
purpose components, and to solve the challenge tasks
using these pieces. To sequence these sub-tasks, we de-
veloped a simple FSM-based system, controlled using a
scripting language.

Because of the complexity of robot systems, and the
unpredictability of real-world environments, fault toler-
ance is another important concern. For instance, a fail-



ure in the laser rangefinder hardware or software could
result in a robot blindly colliding with an obstacle, re-
sulting in possible damage or injury. Thus the system
must have the capability to automatically detect fail-
ures of components and respond appropriately. One
such response would be to completely shut down the
system, preventing risk of damage; however, in many
cases, redundant components may make it possible to
cope more gracefully with failure. For instance, if one
of the system’s two cameras fails, the most desirable re-
sponse is to use the second camera as a back-up and to
continue functioning instead of simply shutting down.
Thus a focus of our approach was to design redundant
components for our critical systems and develop the
architecture to support graceful degradation of system
performance in the event of failure.

The Control Framework

Our goals of modularity and fault tolerance drove the
development of a new framework for creating and man-
aging the components of our system. This framework
allows us to define a set of generalized, abstract inter-
faces, implemented by service processes. These services
are managed by a central control processes known as
the MCP.

Interfaces

Interfaces define an object-like functional unit. They
are defined by an XML-based format which specifies the
data a given unit makes available and the commands it
responds to (as shown in figure 2). The interface itself
is purely abstract and is independent of any implemen-
tation. These interfaces define the data that applica-
tions can work with. For example, range sensors might
provide a Distance interface (in addition to their raw
readings). As we will show below, these abstractions
allow us to provide a level of fault-tolerance not possi-
ble if we deal directly with the output of any particular
device.

Services

A service is a separate process that contains the imple-
mentation of one or more interfaces. Services are writ-
ten in C++4 and extend from a parent Service class.
Though services are a stand-alone process, they make
data available to other processes by publishing it in
blocks of shared memory and receive messages via com-
mand pipes. The details of this inter-process commu-
nication are abstracted from the user by a client class
which allows a user to interact with a service via an
object-like interface. These IPC mechanisms give us
a very low-overhead communication between processes,
allowing us to have strong encapsulation at almost no
additional cost.

As an example, a camera service implements an
ImageSource interface for accessing the image the cam-
era sees and a CameraControl interface for controlling
zoom and exposure. An ImageSource client that con-
nected to this service would be able to read the image

<?xml version="1.0"7>
<!DOCTYPE interface SYSTEM "interface.dtd">
<interface name="RangeFinder" version="1.0">
<description>
Generic range-finder for laser, sonar, etc.
</description>
<types filename="types.xml"/>

<comment>
If uniform is true, the offsets and
separations can be used by client code
to easily iterate through each element
of the range sensor (e.g. laser). For
more exotic devices (e.g. sonar), set
uniform to false, and publish a Pose3D
for each element.

</comment>

<publish>
<data name="range_count" type="Integer"/>
<data name='"ranges" type="Float"
array_size="range_count"/>
<data name="max_range" type="Float"/>
<data name="uniform" type="Boolean"/>
<data name="sensor_positions" type="Pose3D"
array_size="range_count"/>
<data name="x_offset" type="Float"/>
<data name="y_offset" type="Float"/>
<data name="z_offset" type="Float"/>
<data name="theta_offset" type="Float"/>
<data name="phi_offset" type="Float"/>
<data name="psi_offset" type="Float"/>
<data name="x_separation" type="Float"/>
<data name="y_separation" type="Float"/>
<data name="z_separation" type="Float"/>
<data name="theta_separation" type="Float"/>
<data name="phi_separation" type="Float"/>
<data name="psi_separation" type="Float"/>
</publish>
</interface>

Figure 2: The XML interface description language.



data from shared memory via a call to get_image (),
and a CameraControl client connected to this service
could pass command messages to the service via func-
tions such as set_zoom().

The Service Broker

The service broker keeps track of all the interfaces avail-
able, and which services implement them. When an ap-
plication requests a service, this request goes through
the broker, which chooses the most appropriate service
to provide the interface. The requester and service are
then connected directly. This function of the broker is
very similar to that performed by a CORBA ORB.

The broker allows us to centralize policy for service
selection, and isolates the application from the need to
know where services are actually implemented. It also
allows us to perform optimizations by cleverly select-
ing services to provide the requested interfaces. Any
particular application will request a set of interfaces
which will, in general, be satisfiable using several sets
of services. The broker can select services to optimize
a number of criteria (quality, data rate, computational
cost, etc.). The system deployed at the 2004 competi-
tion did not perform such an optimization, but we are
currently working on this feature.

In addition to service selection, the broker monitors
services to detect unexpected termination. In the event
of such a failure, the broker attempts to restart the
service and reconnect its clients. If the service repeat-
edly fails, or identifies itself as being out-of-service (see
below), the broker will select another service to pro-
vide the requested interfaces, and automatically recon-
nect all affected clients. This gives a measure of fault-
tolerance to the system, which we discuss in more depth
below.

Example Services

Our implementation involved a large network of ser-
vices ranging from low-level components for interfacing
with hardware, like the laser range-finder, to higher-
level components, such as sign detection. This section
describes some of the services used in our system.

RFlexBase The RFlex hardware provides access to our
robot’s motor velocities, odometry, sonar, and power
level. The RFlexBase service communicates with
this hardware over the serial port, implementing the
Synchrodrive, Egomotion, RangeFinder, and Power
interfaces.

SICKLaser This service continually reads the data pro-
vided by the SICK PLS laser rangefinder over the se-
rial port and makes it available via the RangeFinder
interface.

VectorMover VectorMover smoothly moves the robot
directly to a given goal point. It computes the veloc-
ities needed to move the robot to the goal and sends
the appropriate commands to its Synchrodrive
client. While still a very low level interface, it exposes
a set of functions that allow application developers to

rotate or translate the robot specific amounts with-
out worrying about wheel velocities.

ObstacleAvoider ObstacleAvoider implements the
same interface as VectorMover, but uses a
RangeFinder, such as the laser, to detect the pres-
ence of obstacles and chooses a path which avoids
them. It uses a greedy strategy, continually comput-
ing the set of all points accessible via straight-line
paths and approaching the point from this set which
is closest to the goal. Rather than sending its com-
mands through the Synchrodrive, it moves using the
higher-level interface provided by VectorMover.

IEEE1394Camera This service is another hardware in-
terface, which communicates with all cameras on the
Firewire bus and makes available their image data
and allows control of zoom, focus, iris, shutter, and
gain.

BlobFinder This service takes in data from the camera
service and uses an adaptation of the CMVision blob
detection algorithm to find contiguous regions of cer-
tain colors in the image and publishes their sizes and
positions.

BlobFinder3D This service takes the output of
BlobFinder and attempts to use the laser to mea-
sure the distance to each. Given this distance, it
computes and publishes the 3D position and abso-
lute size of each blob.

SignDetector SignDetector is used to look for spe-
cific signs placed to guide the robot through unknown
environments. Since the signs it is trying to find are
white with black arrows, it uses BlobFinder3D to find
white and black blobs and searches for white blobs
with black blobs nested inside them. When nested
blobs of the right size and position are found, it tests
the original image to measure the arrow direction,
and publishes the 3D coordinates of the sign and the
direction of its arrow.

The Sequencer

In the spirit of modularity, we organize our applica-
tions as sequences of independent task-achieving mod-
ules. For example, the first part of the challenge event,
to get from the door of the conference center to the reg-
istration desk would be handled by sub-task modules
for navigating doorways, finding and following signs,
navigating elevators, standing in line at the desk, and
interacting with the registrar. Each of these sub-task
applications must be sequenced correctly for the over-
all application to succeed. We accomplish this through
the use of a simple finite state machine-based sequencer,
controlled by a scripting language.

An example of the scripting language is shown in fig-
ure 3. Each sub-task corresponds to a state in the FSM,
with the transitions between states controlled by the
exit codes of these applications. The script defines sym-
bolic names for each state, along with the executable for
the application. It also enumerates all of the expected



start door
restart 3
recovery oops
use gui

state door /usr/bin/DoorNavigator
action O trans sign

state sign /usr/bin/SignFollower
action O trans sign
action 1 trans queue

state queue /usr/bin/QueueStander
action O trans register

state register /usr/bin/Register
action O trans stop

state oops /usr/bin/Recovery
action O trans stop

Figure 3: A sample sequencer script.

return codes, and which transitions should be made on
them. The start state is also given (door).

The sequencer monitors these sub-task applications
for failure. If a process terminates unexpectedly, it will
be restarted up to a limit (specified by the argument
to restart in the script). If this limit is exceeded, or
if an unexpected return code is encountered, a special
recovery state is entered. This allows the robot to enter
a safe, known state if something goes wrong. For the
competition, this was a state where the robot looked for
and followed a red baseball cap. Once the cap vanishes
from sight, a graphical interface is shown on the robot’s
touch screen (specified by use gui in the script), allow-
ing the human supervisor to select the state that the
robot should start off from.

In the example script shown in figure 3, the robot
starts out in the door state, transitioning to the sign
state once it is through. This state looks for a direc-
tional sign, drives to it, and follows it. It terminates un-
der two conditions. If another directional sign is seen,
it terminates and returns 0. If the registration desk is
seen, it terminates with a 1.

Although this sequencing system is quite simple, we
have found it to be sufficient for the challenge tasks.
It’s main advantage, however, is that it allows us to
sequence together pre-written applications easily, with
recompilation. This greatly reduces the amount of time
needed to assemble and deploy an application while at
the event. The inherent modularity also allows us to
develop the sub-tasks independently, as long as the pre-
and post-conditions are well specified.

Fault-Tolerance

The fault tolerance in the system is implemented in a
number of ways.

Strong Modularity

The entire framework is organized in a strongly modular
fashion. In particular, most elements of the framework
run as seperate processes under the linux operating sys-
tem. This gives us protection from software errors and
unexpected terminations. If something goes wrong with
a piece of code, the fault is isolated to the module that
it occurs in. This modularity also makes finding and de-
bugging problems easier, since each module is typically
a small amount of code.

Sequencer Monitoring

Each of the sub-tasks controlled by the sequencer is
monitored for unexpected termination or return codes.
Since it is impossible to write completely error-free
code, this allows us to deal with software problems when
they occur. The main advantage of this is that it lets
us continue with the deployment, keeping the robot op-
erating, in the face of occasional software failures.

In the case of failures that the sequencer cannot deal
with, such as repeated abnormal terminations, a human
supervisor is asked for help. This is a simple form of
shared-initiative control, where the robot asks for help
when it deems it to be needed, rather than needing the
supervisor to constantly monitor the system.

Service Broker Monitoring

Similarly to the sequencer, the service broker mon-
itors the status of services, and can restart them
when needed. More importantly, however, is the
ability to substitute in working services for failed
ones. For example, RangeFinder is a generic inter-
face for LaserRangeFinder, SonarRangeFinder, and
StereoRangeFinder. By default, an application pro-
gram which asks for a RangeFinder will be connected
to the LaserRangeFinder because of its greater accu-
racy. But if the laser malfunctions, the service broker
can recognize this and switch the application program
over to SonarRangeFinder, without any explicit action
by the application. Although this will result in differ-
ent behavior, since a sonar is not the same as a laser,
it should provide a graceful degradation in the face of
failures. If we depend on the laser for input, as many
current applications do, we are tied to that device. If
it fails, the application fails. However, if we are willing
to work with an abstraction, we can gain some robust-
ness.

Deployment Experiences

Our performance this year was not as good as last year
(at IJCAT in Acapulco, Mexico). We completely re-
wrote the control framework in the intervening year,
and there were some bugs that had not been completely
worked out by the time of the competition. More of a
problem, however, was our lack of a library of robust
services. Our intention was to compose a solution to
the challenge task using pre-build services, sequenced
by the sequencing script. However, we found that our



Figure 4: Lewis talks to Grace.

existing services were not adequate for the task, and
we had to rewite several of them on-site, under time
pressure. This led to a poor performance on the overall
challenge task.

However, we did successfully demonstrate the fault-
tolerance of the framework in a demonstration dur-
ing the robot exhibition. While performing a simple
obstacle-avoidance task, the laser device was disabled.
The failure was recognized by the system, and the ser-
vice broker started up the sonar sensors to provide the
Distance interface to the application. This allowed the
application to continue seamlessly under the failure of
the laser.

During the event, we also interacted with GRACE,
acting as a robotic receptionist (see figure 4). Although
much of the interaction was performed using the wire-
less network, synchronized speech output was added to
give the illusion of human-like communication. While
not the most technical of our achievements, it was one of
the most crowd-pleasing moments of the competition.

Conclusions and Current Work

Although our control framework performed well, our
overall performance was less compelling. We attribute
this to our lack of well-tested services at the time of
the event. Our experience confirmed what we already
knew: It is not possible to implement a working solu-
tion in the field. Such a solution must be composed of
pre-written and pre-tested modules, sequenced together
appropriately. In preparation for next year, we have be-
gun implementing a wider variety of services on which
to base our entry.



