

Abstract

This paper describes the Swarthmore College entry in the
2004 Urban Search and Rescue [USAR] Event at the 2004
American Association for Artificial Intelligence Robot
Competition. The primary focus of Swarthmore’s entry was
the development of a fast, responsive user interface for
effectively tele-operating a robot with some autonomous
capability. This interface was inspired by first-person video
game interfaces, and enabled Swarthmore to place first in
the 2004 USAR competition.

Introduction

The Urban Search and Rescue [USAR] event at the Ameri-
can Association for Artificial Intelligence [AAAI] Robot
Competition challenges robot teams to find victims in a
simulated urban environment. In order to be successful at
this task, the robot must answer three questions:

1. Where should it search?
2. How should it get there?
3. How does it identify victims?

The most successful teams so far answer these questions
by providing a human operator with as much information as
possible about the situation so that they can answer the
questions accurately. Currently, the second question--
regarding local navigation--is the only one of the three for
which teams have attempted to give the robots autonomy.

It is our belief that the eventual solution to this problem
will be a combination of effective user interfaces and robust
autonomy on the part of the robot in answering the ques-
tions above. In other words, it is important to have a human
in the loop, but the human should be processing and
answering the most difficult questions encountered in the
search, not providing input about basic search patterns or
navigation except in difficult circumstances.

Since robust autonomous systems are still a difficult
research problem, effective user interfaces are critical.
Thus, the focus of our 2004 USR entry was to develop an
effective, responsive user interface that permitted the opera-
tor to use a range of autonomy in navigation, and provide
the greatest flexibility in the use of the robot’s hardware. As
a result of the effective interface and the robot’s semi-
autonomous navigational capability, Swarthmore placed
first in the 2004 competition.

Robot Hardware/Software Overview

Swarthmore’s robots in the USR competition were two iRo-
bot/RWI Magellan Pro’s with onboard 850MHz Pentium III
computers running Linux. Figure 1 shows one of the robots
entering the USR arena. The Magellans come with 16 sen-
sor panels, each containing a bump sensor, an IR sensor,
and a sonar. In addition, each Magellan has a Canon pan-
tilt-zoom [PTZ] camera mounted on top, near the front,
with a pan range of -100º to 100º, a tilt range of -30º to 90º,
and a 16X optical zoom. This year, one of the cameras was
a VC-C4, the other a VC-C50i with infrared night-mode
capability for enhanced vision in dark areas. The camera
video is connected to a bt848-based PCI framegrabber, and
it receives pan-tilt-zoom commands via the serial port.

Because the robots are wheeled, and do not have a high
clearance, they are only able to enter the yellow area of the
arena, or parts of the orange that are clear of debris more
than 2cm high. So the focus of the interface is on making
the operator more productive, providing a large quantity of
accurate information about the environment, and enabling
the robot to traverse the area safely and quickly.

The software used locally on the robot to manage the
robot’s navigation and sensors in the 2003 contest was
based on the REAPER concept (Maxwell

et. al.

 2001).
Since then, we have upgraded the vision system (Maxwell

et. al.

 2003), switched to using the Inter-Process Communi-
cation [IPC] package for all communication between pro-
cesses (Simmons and James, 2001), and this year upgraded
the navigation component and added a software monitoring
program for managing the various software modules.

.Copyright 2004. American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Figure 1: One of the Magellans entering the USR arena.

A Configurable Interface and Software Architecture for Robot Rescue

Bruce A. Maxwell, Nicolas Ward, and Frederick Heckel

Swarthmore College
Swarthmore, PA 19081

{maxwell, nward2, fheckel1}@swarthmore.edu

Human-Robot Interface

The primary focus of our work for the 2004 contest was the
interface for managing the robot during the Urban Search
and Rescue [USR] task.

Motivation

Early in the course of this design project, it was realized
that the greatest advances in user interfaces [UI] in the past
ten years have been made in the realm of video games.
Computer and console games alike must have clear inter-
faces which provide the player with both controls and infor-
mational displays that allow for very fast response times to
situations in a dynamic environment. These interfaces have
developed at an incredibly rapid pace, with perhaps the pin-
nacle of UI design being that of so-called First-Person
Shooter [FPS] games (Unreal Tournament, 1999). FPS
games are the most appropriate interface paradigm for a
project such as USR, as they represent a three dimensional
world with which the player can interact. Navigating a
three-dimensional game world in search of computer-gen-
erated enemies is analogous to the task of finding injured
and/or trapped victims in a USR scenario. Mapping that
three-dimensional environment down to a two-dimensional
computer display is simple enough using a live video feed,
but making it intelligible, informative, and useful for the
robot operator is far more difficult.

Design

The most successful FPS games have very simple inter-
faces: the main portion of the interface is dedicated to a
large viewing area that contains the game world. Small sta-
tus areas around the perimeter are allocated for information
regarding the player’s health and equipment. Most games
also have a radar mini-map showing the direction to ene-
mies or other players, as well as a separate screen contain-
ing a map of the current game level. The interface we
ultimately used followed this format closely. However, the
design of the interface module permits simple rearrange-
ment of the visual items on the screen to enable testing dif-
ferent interface configurations and looks.

Interface

The interface’s viewable layout and internal structure are
defined by the relationships between a small set of config-
ured objects, consisting of a

view

,

viewports

,

visualizers

,
and

widgets

. The parameters for each type of object are
specified in a configuration file, which allows the interface
to be quickly reconfigured at run-time. The arrangement of
these objects in the interface’s view tree determines how
user interaction events and messages broadcast by one of
the robots are handled. This philosophy of highly generic
code is maintained throughout the interface, which allows

for operational flexibility as well as easy expansion of func-
tionality in future updates to the interface’s capabilities.

As show in Figure 2, the

view

 defines the screen for the
entire interface, as well as global parameters that apply to
all viewports. The view contains some number of config-
ured viewports and widgets, determined by the contents of
the configuration file. The global view widgets are always
active, and their scope is the entire interface. An example
global view widget would be the keyboard shortcut for quit-
ting the interface. No widgets are hard-coded, so even a
widget as basic as quit must be specified in the configura-
tion file.

A

viewport

 is the display for a single visualizer, so each
viewport provides some sort of information to the user. A
given viewport has a defined position and dimension in the
on-screen view, and each is associated with a single visual-
izer. A given viewport’s visibility can be toggled, so the
information currently displayed in the view is contextual
and dependent on the current state of the robot and/or the
interface. Each viewport contains a single visualizer for
converting some information into a displayable format, as
well as some number of widgets. These local viewport wid-
gets are only active when the viewport is visible, and their
scope is confined to the viewport.

A

visualizer

 converts incoming data from a robot into a
visual representation that is meaningful to the user, such as
text output, an image, a status icon, or a graph. Each visual-
izer is associated with a message broadcast by a module on
one of the configured robots. Multiple visualizers can pro-
cess a given message, for example if the message contains
different data types that need to be displayed separately.
When a message is received, it is processed by all of the
visualizers in visible viewports that are associated with the
message’s originating module and robot.

A

widget

 responds to an input event from the user, such
as a mouse click, key-press, or joystick movement, and

Figure 2 Relationship of interface screen elements.

takes action based on that input. The action taken could be
an internal status change, or a message that is generated and
passed to a robot. Widgets that respond to a mouse click
have a defined area within their parent view or viewport.

Configuration

Nearly every aspect of the interface is defined in a single
XML configuration file (Goldfarb, 2003). This includes the
network connection information and metadata for each
robot, the modules that should be started on each robot, the
configurations for external USB controllers, such as joy-
sticks or game-pads, as well as the layout of viewports
within the view and the message and control bindings for
visualizers and widgets.

While allowing all of these interface parameters to be
configurable makes the configuration file large, it allows
each user to have their own custom (and potentially com-
pletely different) version of the interface. This is important
from an HRI perspective, because different users may have
different preferred interface layouts. Also, the interface can
be quickly reconfigured to run on different computers with
different available control peripherals. Since changing con-
figurations is just a matter of restarting the interface with a
different configuration file, it would be most efficient to
have several configurations available to swap in as needed.

The XML format was selected because it is an open for-
mat that is easily human readable and familiar to many peo-
ple due to its wide use and similarity to HTML. In addition,
easily obtained open source XML parsing libraries made it
easy to make the configuration process an important part of
the interface. In fact, the parsing and setup code makes up
over 20% of the entire code for the interface software.

Example Configuration

The example interface configuration in Figure 3 was used
by an operator during the AAAI 2004 USR competition. It
features a centered video feed, emphasizing the primary
method by which most users receive their situational aware-
ness. Superimposed on the camera image are the pan-tilt-
zoom indicators for the camera, which prevents the user
from confusing straight ahead in the image with straight
ahead on the robot. The two displays in the lower right of
the view are the range sensors, which show obstacles within
a meter of the cylindrical robot that was used, and the map
that is generated over the course of a run. The interface is
run full-screen to avoid background clutter that might dis-
tract the operator. The green bars in the video display indi-
cate half-meter distances on the ground place, with the first
bar a meter away from the camera lens. These provide nec-
essary scale information since the viewpoint of the robot is
substantially different from that of an adult human. The
user can switch between robots by using the space bar on a
keyboard, which switches all of the visualizers.

Changes

Figure 4 shows the previous Swarthmore interface used
in the 2003 competition. The differences between the two
versions of the interface are obvious at first glance. The old
version--Figure 4--used a small window, with many on-
screen controls that had to be used with the mouse. There
was a set of keyboard bindings that could be used more effi-
ciently by an experienced user, but the learning curve was
steep, making the interface difficult to use for a beginner.

In contrast, on the new interface almost all of the controls
are on a single joystick, a more intuitive control method
used in many video games and in many real-world control
applications. Furthermore, in the new interface all of the
information needed by an operator is shown together in a
single unified display instead of in separate windows.

The impetus for these changes came out of the results of
watching inexperienced users attempting to drive the robots
using the old interface, which highlighted its complexity.
The significant improvements in this version have enhanced
the ability of a single operator--novice or experienced--to
remotely control one or two robots in a serial fashion.

Figure 3 top) Description of screen items, bottom) screen
shot from the 2004 AAAI Robot Rescue Competition.

Robot Capabilities

In addition to changes in the interface, we upgraded the
robot’s navigational and visual capabilities for 2004. We
had two goals in making the upgrades, 1) to make control of
the robot smoother and more natural, while maintaining the
robot’s ability to react autonomously to perceived obstacles,
and 2) to speed up the frame rate of the video stream com-
ing from the camera.

Video Frame Rate Improvement

The vision system for the robots is the Swarthmore Vision
Module [SVM] (Maxwell, Fairfield,

et. al.

, 2003). In order
to speed up the frame rate of the video we made two
changes to the robot system, one involving software, one
involving hardware.

For the hardware upgrade we switched from 802.11, to
802.11b wireless, which increased the network bandwidth
from 1Mbps to 5Mbps (in actual practice). However, a
medium size (320 x 240) color image is 1.8 Mbits, which
means that the maximum frame rate even on the new hard-
ware is less than 3fps, which is insufficient for driving
quickly even in a fairly open environment.

In order to reduce the frame rate we integrated a sliding
level of image quality into SVM. When requesting an
image from SVM, the interface can request any one of 12
different levels of image quality, depending upon the situa-
tion. We obtain the twelve levels of image quality by using
three different levels of compression {none, medium, high}
two image sizes {small, medium}, and two image types
{color, greyscale}.

While driving, a small (160 x 120) greyscale, highly
compressed image is sufficient to avoid obstacles and packs
each image into less than 80kbits, enabling a frame rate of
better than 5Hz with minimal lag. When searching an area
for victims, a medium size, medium compressed image, at
1.2Mbits per image, is a good compromise between frame
rate and frame quality.

The compression is based on run-length encoding after
reducing the number of bits per color band to increase the
average length of runs. The compression scheme is guaran-
teed to reduce the size of the original image.

For greyscale images, the original full-color image is first
scaled to the appropriate size and converted to greyscale by
grabbing just the green band, which is the most sensitive
(hence, least noise) color band in most CCD cameras, and it
does not involve a linear transformation or averaging of the
color bands. The medium level of compression then repre-
sents a run using 8-bits per run, with 2 bits of run length
information and 6 bits of intensity information. In the worst
case--all runs are of length 1--the image does not compress
at all and reduces to 6 bits of intensity information per
pixel. In the best case--all runs are of length 4--the image
size is reduced by a factor of four. Typical performance was
reduction by a factor < 2.

The low level of compression uses 3 bits of run-length
information and 5 bits of intensity information per run, with
a potential best-case reduction by a factor of 8. Typical per-
formance was reduction by a factor of about 2 because of
the relatively complex scenery in the robot arena. The com-
pression algorithm can compress the image in place in a
single pass, simplifying memory requirements and mini-
mizing the computational load on the robots.

For color images, SVM uses a similar scheme. The
medium level compression replaces every 24-bit pixel (8-
bits per color channel) with a 16-bit pixel using a 5/6/5 bit
representation for red/green/blue. with no RLE compres-
sion. The low level compression uses a 4/4/4 red/green/blue
representation and uses 4 bits to encode run-length. Like

Figure 4 Interface windows for the 2003 version. Each
robot used three windows to display the information.

the greyscale images, the algorithm works in place in a sin-
gle pass.

It is likely we could achieve higher compression rates by
further reducing the number of buckets per pixel, which
would result in longer runs. However, the complex nature of
the images severely limited the average length of the runs
even with reduction to 16 or 32 buckets per color band/
intensity. We chose not to implement more complex com-
pression methods because we could not devote more CPU
time to compression on-board the robots, and the RLE com-
pression works in place in a single pass.

The current implementation provides a 12-step sliding
compression scale. While using the more highly com-
pressed video stream the limitation on the frame rate is not
the compression time or network bandwidth, but the display
time required by the user-interface to scale and place the
uncompressed video image on the full-screen display.

Robot Navigation

The Navigation module is based upon velocity space, using
the dynamic window approach (Fox

et al

, 1997). As our
major concern with the competition this year was not with
autonomy, but rather human control, we found it more use-
ful to focus on finding safe preferred velocities rather than
achieving goals.

The original velocity space implementation used three
parameters to manage the speed and clearances within the
system: alpha, beta, and speed. The alpha parameter scaled
the progress towards the goal, the beta parameter scaled the
clearance factor, and the speed parameter scaled the speed
score (Fox

et al

, 1997). Because of our focus on safe trajec-
tories rather than goal achievement, we were able to reduce
the parameters of the velocity space to two.

The first parameter is a general sensor growth parameter
applied to each sensor before processing the velocity space.
One advantage to a round robot is that a single growth
parameter is often as effective as different values for each
sensor--though we are also experimenting with a two
parameter elliptical growth approach which would be more
appropriate for moving through tight doorways. The second
parameter provides the navigation module with some flexi-
bility, defining how far off the preferred heading the robot is
allowed to move, enabling it to choose a course around an
obstacle in its path rather than merely stopping. This effec-
tively creates a dynamic window by defining a limited por-
tion of the velocity space which we are willing to examine.

The value used for growth in the competition was 1.4--
the sensor grown by 40% of the robot's radius--a value at
which arrived after empirical testing. Outside of a cluttered
environment such as USAR, a larger value such as 1.7 is
more appropriate, especially in environments with moving
obstacles such as people.

The second parameter is “autonomy”, which is a real
value in the 0-1.0 range. During velocity selection, this
value is used to scale possible velocities. In the case of 0,
the rotational velocity is limited to that requested by the
control interface, and the navigation module will move as
quickly as possible. As autonomy increases to one, the
range of rotational velocities that will be considered by the
module increases. The module will still prefer velocities
that are closer to the requested velocity, by scaling the
velocity score (based on distance until a collision along the
path) according to its distance from the requested velocity.
The scaling factor is

(1)

where is the current velocity, is the requested veloc-
ity, and is the maximum allowed velocity distance
(how far the robot can travel safely at that velocity).

We call it the autonomy parameter because, as it
increases, the robot will take more control over the path it
follows. When directly tele-operating the robot, it should be
set to 0 to provide maximum human control. When using
shared or fully autonomous control, it should be set to a
higher value. When compared to the original velocity space
method, this parameter approximates “alpha”.

For the USAR competition, we used a value of zero to
provide maximum operator control and because the current
sensor growth implementation is not yet sufficiently tested.

Robot Monitoring Module

When developing long-term robot systems, it is imperative
to use a modular architecture for the robot systems. This
enables us to reuse code and develop new capabilities
quickly--an important feature with a small number of
undergraduate researchers working in a limited time-frame.
We have divided our robot systems into a number of differ-
ent module domains which fall along fairly natural divi-
sions of labor: vision, navigation, mapping, control, and
communication. For the 2004 competition, we were able to
completely rewrite our navigation and control modules with
only very minor changes to vision and mapping.

The major disadvantage to using a modular architecture
composed of multiple threads is that sharing information
between different sensor domains becomes much more dif-
ficult as they do not necessarily share access to the same
memory structures. To solve this problem, we make use of
Carnegie Mellon University's Inter-Process Communication
system (Simmons and James, 2001). CMU IPC allows us to
easily pass even very complex data structures over TCP/IP
within robots, between robots, and to other connected sys-
tems all within the same software framework.

SA

Sa 1.0
vc vr–
dmax

 –=

vc vr
dmax

As the robots use multiple modules, sometimes different
sets of modules for different tasks, module management is a
major concern in this sort of system. We addressed this
problem, and that of consistent communication between
modules, by making two major upgrades to our system.

The two major new additions to the software architecture
in 2004 are GCM and Robomon. The General Communica-
tions Module [GCM] is a message framework designed to
be a centrally defined API for robot control. On the most
basic level, it is little more than a set of message definitions
for use with CMU IPC, and a collection of useful common
utilities that each robot module needs. Considered from a
more abstract standpoint, GCM actually defines the capa-
bilities of our modules by defining the messages and the
expected reaction to each message. A navigation module is
expected to implement actions to respond to “move”,
“achieve”, and “override” messages, while a vision module
is expected to be capable of providing images of the world
on demand. GCM has further streamlined the coding and
design process by defining the required behavior for each
type of action, thereby speeding integration.

Robomon is a separate module--run as a daemon--which
runs on each robot to insure module availability and sim-
plify robot startup. In previous years, it has been necessary
to open multiple windows to start each robot module and
monitor its current state. This year we took a different
approach by creating a monitor program which starts when
the robot boots up. Robomon is defined by an XML file
containing information about each different module avail-
able to the system. When the outside control module con-
nects to the communications server on the robot, it can then
tell Robomon what modules it requires. Each module will
then be started and monitored. In the case of a module
crash, Robomon will restart the module; this feature was of
critical importance in our final USAR runs, when a bug
emerged that caused our mapping module to crash repeat-
edly. While this did impact our ability to create consistent,
complete maps, it did not impact the overall system as
Robomon would restart the map module, making it possible
to continue using the robots effectively.

Summary

The robots performed well in the USAR task, scoring over
7 points per round, on average, and having no rounds with a
score of zero or less. The robots drove safely in the arena at
speeds higher than we have been able to achieve previously
because of both the velocity space navigation and autono-
mous reactivity and the faster frame rate due to the video
compression. The interface also provided good situational
awareness to the operator, and, unlike previous years, there
were no significant operator errors--such as driving with the
camera sideways--due to lack of information about the
robot’s environment or status. Because of these improve-

ments we were able to place first in the 2004 USAR compe-
tition at AAAI.

The primary future work on the robot systems is
improved mapping and implementation of a localization
scheme based either on visual input or using some form of
SLAM with the sonar and IR data (Montemerlo

et al

,
2003). An improved map, and good localization will make
it possible to manage multiple robots simultaneously, and to
give the robots the ability to undertake more autonomous
search with less human oversight.

Acknowledgements

This work was supported in part by NSF IIS-0308186, and
the American Association for Artificial Intelligence.

References

[1] Dieter Fox, Wolfram Burgard, and Sebastian Thrun,
“The Dynamic Window Approach to Collision Avoid-
ance”,

IEEE Robotics & Automation Magazine

, 4(1),
March 1997.

[2] C. Goldfarb,

XML Handbook, 5th ed

, Prentice-Hall,
2003.

[3] T. W. Malone, “Heuristics for Designing Enjoyable
User Interfaces: Lessons from Computer Games”, In

Proc. of Conf. on Human Factors and Computing Sys-
tems

, pp 63 - 68, 1982.
[4] B. A. Maxwell, L. A. Meeden, N. S. Addo, P. Dickson,

N. Fairfield, N. Johnson, E. G. Jones, S. Kim, P. Malla,
M. Murphy, B. Rutter, E. Silk, 2001, “REAPER: A
Reflexive Architecture for Perceptive Agents”,

AI Mag-
azine

, American Association for Artificial Intelligence,
22(1): 53-66.

[5] B. A. Maxwell, N. Fairfield, N. Johnson, P. Malla, P.
Dickson, S. Kim, S. Wojtkowski, T. Stepleton, “A
Real-Time Vision Module for Interactive Perceptual
Agents”,

Machine Vision and Applications

, 14, pp. 72-
82, 2003.

[6] B. A. Maxwell, N. Ward, and F. Heckel, “A Human-
Robot Interface for Urban Search and Rescue”, in

Proc. of AAAI Mobile Robot Competition and Exhibi-
tion Workshop

, Acapulco, pp. 7-12, August 2003.
[7] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit,

“FastSLAM 2.0: An Improved Particle Filtering Algo-
rithm for Simultaneous Localization and Mapping that
Provably Converges”, in

Proc. of IJCAI 2003

, Acap-
ulco, MX, 2003.

[8] Reid Simmons and Dale James,

Inter-Process Commu-
nication: A Reference Manual

, Carnegie Mellon Uni-
versity, March 2001.

[9]

Unreal Tournament

, Epic Games Inc, 1999.

