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Abstract

This paper will describe the current research and tech-
nology that is implemented the Keystone rescue team.

Introduction
This year will be the third year that we have competed at
the AAAI USAR competition. Our research focus is on de-
veloping fully autonomous robots that can maneuver in un-
structured environments. All of the work that is being done
by our group is computer vision based, utilizing low level
image processing (edges, skeletons, regions, etc...) to per-
form ego-motion estimation, stereo matching and VSLAM
(Visual simultaneous localization and mapping).

In order to keep our research purely in the computer vi-
sion domain, we use cameras as the sole sensor (e.g., no
LADAR, shaft encoders, etc...). This allows us to develop
robust algorithms using inexpensive (noisy) platforms.

Section describes the robots used in the research. Section
provides background information on previously approaches
to stereo vision, ego-motion and SLAM . Section describes
the design and implement of our system . Section explains
our approach to ego-motion estimation and section will de-
tail our stereo vision work. A brief discussion of the results
as well as directions for future research are in Sec.

Robot platforms
This section describes the hardware of our robots. As men-
tioned previously, one of our main goals is the development
of robust systems. Furthermore, we believe that through the
use of cheap hardware with noisy sensors and inaccurate ac-
cuators requires fundamentally more robust systems than ap-
proaches that rely on highly accurate sensors and actuators.

So, similar to our previous robot designs, the 2004 Key-
stone Rescue team uses cheap components. However, based
on our experiences in previous years’ competition, we de-
veloped two new platforms: (a) ZaurusBot and (b) Spike.
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The ZaurusBot is a fully autonomous approach based on a
commonly available Sharp Zaurus PDA. Since the problem
of finding victims and generating a map using visual feed-
back alone is a very difficult one, we decided this year to
also include a tele-operated robot, Spike, in the competition.

ZaurusBot
The ZaurusBot is a simple design that is loosely inspired
from a scorpion. The chassis is constructed out of aluminum
and plastic. The main electrical and computation compo-
nents that are used are two modified standard RC servos
that act as left and right motor of a differential drive setup,
a CMU cerebellum microcontroller for servo control/host
communication and a Sharp Zaurus PDA. The PDA provides
powerful processing for complex computer vision and map-
ping algorithms.

Figure 1: ZaurusBot platform in the red arena

Spike
Spike is our first low cost stereo vision system. The chassis
is based on an off the shelf 1:6 scale RC PT Cruiser and
uses a 533MHz Via Mini-itx board for processing. Two USB
web cameras provide vision input. To increase the versatility
of the system, the two cameras are mounted on a pan unit,
which is controlled by a RC servo. Spike uses a Linux kernel



with hard real-time extensions. This allows us to control the
pan servo as well as the control of the drive motors without
additional hardware.

Figure 2: Spike in the red arena

Although these two robotic platforms seem simple, they
provide robust vehicles for deploying a mobile platform with
vision in the yellow arena. ZaurusBot and Spike also pro-
vide sufficient processing power for on-board vision pro-
cessing.

Currently, the main focus of our research is to estimate the
motion of robots with very poor odometry using the change
in vision sequences from on-board cameras. The idea is that
by watching how a single image (in the case of the Zaurus-
Bot) or from a stereo image pair (in case of Spike) changes,
one can deduce the motion of the robot. Estimating a robot’s
motion presents a first step. This information can then be
used to create maps and localize the robot within an unstruc-
tured environment.

Related Work
Ego-motion estimation, the problem of determining the mo-
tion of a robot from a given a sequence of images taken dur-
ing the motion, is a very popular research area in computer
vision. Detecting motion across a series of images is a useful
task in many applications beyond its use in ego-motion de-
tection, from manufacturing to security, for example. While
this is easy for a human to do, it is a difficult problem to
approach from the standpoint of a computer program.

More formally, ego-motion estimation can be defined as
determining the translation and rotation parameters of a
camera view given two different views of a scene. This es-
timate is usually based on unconstrained motion of a cali-
brated camera with respect to a plane. In this case, there are
eight parameters to be determined.

Most approaches use therigid world assumption where
the scene is considered static and all movement in the image
is due to the motion of the robot. In multi-agent domains
such as robotic soccer, this assumption does not hold true
very often. For a local vision robot, large movements in the
image may be due to other robots moving in the image as
well.

Previous work in ego-motion estimation in computer vi-
sion can be divided into two categories: those that pre-

suppose structuring (e.g. lines) in the image to use as a basis
for detecting movement, and those that do not. As an exam-
ple of the latter method, Stein et al propose a method that
takes a region of an image, and uses all pixels in the region
to provide support for a particular motion (Stein, Mano, &
Shashua 2000). Their method computes a global probability
distribution function for the whole image, and is robust in
the presence of many outliers. Stein reduces the number of
parameters to three: translation, pitch, and yaw.

As an example of a method attempting to exploit structure
in the image, Zhang (Zhang 1995)describes a methodology
for estimating motion and structure using line segments in
an image . This approach is based on the assumption that
line segments overlap in 3D space, which allows a reduction
in the number of motion parameters.

Szeliski andTorr (Richard Szeliski )introduce geometric
constraints early in the structure reconstruction phase to im-
prove the overall 3D reconstruction results. This method
takes advantage of the fact that, the real world has many
planer structures such as vertical walls and flat ground
planes and uses external geometric constraints such as plane
parallelism to reduce reconstruction errors.

Sim and Dudek (Robert Sim 1998) utilize learned land-
marks to estimate a robot’s position. Their method first at-
tempts to visually detect possible landmarks by looking for
image features and then matches these detected landmarks
against a predefined landmark database. The robot’s posi-
tion can be determined if sufficient landmarks are found and
matched.

Another example of exploiting structure for an image is
from Se, Lowe and Little (Stephen Se ) who developed a lo-
cal vision based SLAM algorithm by following visual scale
invariant feature transform (SIFT) landmarks in an unstruc-
tured environment. To estimate the ego-motion of the robot
they match SIFT features between frames and perform a
least squares minimization of the match errors. This yields
a better 6 DOF ego-motion and localization estimate than
previous approaches.

Approaches in both categories have strong theoretical
foundations, but there are also practical issues to be consid-
ered when deploying these methods on real mobile robots.
In spite of today’s embedded systems becoming more pow-
erful, they are still much more limited than the workstations
on which many of these approaches have been implemented
and evaluated. Consequently, most existing approaches are
computationally too expensive to be implemented on an em-
bedded controller with real-time constraints.

The approach described in this paper uses a two parame-
ter model appropriate for today’s embedded systems. Given
a fast camera calibration routine and a fast wall detection
method, we are able to estimate the motion using only a
cheap, common, off-the shelf embedded system. The model
used in our work is described in section , followed by the two
specific methodologies we combine in our implementation.

System Design
Figure 3 shows a block diagram of our system. The mobile
robot interacts with the environment using actuators and re-
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Figure 3: System Design of our Localization Method

Figure 4: A simple example where it is impossible to de-
termine the angular, but not the linear velocity of a mobile
robot. Since the relative orientation and position of the line
has not changed, the robot was moving in a straight line.

ceives feedback from the environment via its sensors — in
our case, visual feedback from a CMOS camera.

The sensors are used to update the world model of the
robot — in our case, its orientation and position. However,
not all sensor feedback is useful to update the world model
uniquely. For example, assume that a robot tracks parallel
to a line as shown in Fig. 4. Given the image sequence, it
is clear that the mobile robot has traveled in a straight line,
but it is not possible to determine how far it has traveled.
Therefore, only information about the angular velocity and
position can be determined uniquely.

Most other systems use dead reckoning to supplement the
localization in this situation. In our case, we wish to avoid
relying upon methods that can only be assumed to be cor-
rect under restricted conditions (such as the use of shaft en-
coders). As an alternative, our system maintains an internal
model of the robot to support dead-reckoning style naviga-
tion.

In this approach, sensor feedback is used to update an in-
ternal robot model, which models the behavior of the robot
to the motor commands. This relationship changes drasti-
cally over time: for example, since the batteries begin to
lose their charge after only a few minutes, the robot moves a
much shorter distance per unit time with a given motor set-
ting as time passes. The robot model allows the system to
consider the current reactions of the robot to different mo-
tion commands, and is adapted when new location informa-
tion becomes available.

As stated in Section , our approach to ego-motion estima-
tion is based on two coordinating methods: one that does
not assume any structure in the image, and the other that
does. We will describe these two methods in the following

Figure 5: Ego Motion Estimation Using Optical Flow

sections.

Ego-motion estimation
Ego-motion estimation is a interesting problem in robotics.
Current techniques of estimating a robots self motion (Eg
shaft encoders) have a problem of producing inaccurate data
in situations where wheel slip is predominate (Eg rubble
piles, sand / gravel surfaces). We are purposing two tech-
nique that would be immune to such problems and that gives
accurate ego-motion estimation or can be fused with other
sensors to provide a highly accurate and robust ego-motion
estimation sensor toolkit. The first approach uses the optical
flow of small patches in the view of the camera to deter-
mine translation and rotation from the previous to the cur-
rent view. This approach is general in nature and does not
rely on any specific features of the image itself. The second
approach uses real or virtual lines to determine translation
and rotation by measuring how the robot moves in relation
to lines detected in the image. Since these two approaches
rely on different information in the image, they are compli-
mentary.

Ego Motion Estimation Using Lines
This method as described in the previous section is general-
purpose, in that it does not assume any specific structuring of
the scene in the images. However, there is information that
can be obtained from a scene that can be used to supplement
the performance of a general method such as this one. One
of the most obvious and striking features that appears in a
wide variety of environments are lines. For example, the
edges between a wall and the floor form lines in an image,
as do the edges between walls themselves. While in many
cases walls are the most predominant source of lines, lines
also exist in terms of patterns on floors or walls (such as the
many lines shown in Figure 5).

Lines are thus a natural choice for a reasonably general
feature to attempt to take advantage of in order to improve
general-purpose ego-motion detection approaches such as
those presented above.

We explain this approach using the kinematics of a differ-
ential drive robot (summarized in Figure 6). Our approach
depends on the assumption that the velocities of the right and
the left wheel are constant during the time period for which
the velocities are to be estimated. This is necessary since
the approach uses the differences between the start and end
locations of the robot motions to derive values for the wheel
velocities. This is impossible if the wheel velocities are not
constant during the time period in question. If this restric-



v

x

v

l

y

θc

c c

r

=
v r lv−

w

v r + v l

2
=v

v

w

X

Y

x = cos

θ

θ * v

y = sin *θ v

Figure 6: Kinematic Model of a Differential Drive Robot
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Figure 7: Kinematic Model of a Differential Drive Robot

tion was not made, the robot could perform any one of an
infinite number of possible movements and return to the end
location.

In order to motivate the analysis, consider the example
depicted in Figure 7. At timet0, the robot is at position
Pt0 = (xt0, yt0, θt0), and a straight line (formed by a wall)
is in front of the robot. LetWti

be the point on the wall in
the center of the camera view of the robot at timeti and let
dti

be the distance betweenPti
andWti

. Letθ′ti
be the angle

between the orientation of the robotθti
and the angle of the

wall θw.
At time t1, the robot is at positionPt1 = (xt1, yt1, θt1).

The distanced of the robot to the wall as well as the angle
θ′ between the robot and the wall will have changed.

The problem is to derive from this information the cur-
rent wheel velocitiesvr andvl for the right and left wheel
respectively.

Given the kinematic model of the differential drive robot
(Figure 6), it is easy to see that:

θ̇′ = θ̇ =
vr − vl

w
Since the widthw of the robot is known, this allows us

to compute the difference in velocities for the two wheels.
However, there is not sufficient information in the turn rate
alone to determine the average velocity.

We assign a coordinate systemX ′ with the origin atP
and the x-axis parallel to the line or wall. In this coordinate
system, the robot is at the origin and its orientation isθ′.

We can then derive the distance from the robot to the clos-
est point on the walldW = sin θ′∗d, allowing us to compute:
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Figure 8: Determination of the linear velocityv of a differ-
ential drive robot facing a wall
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Figure 9: Determination of the linear velocityv of a differ-
ential drive robot with an arbitrary angle to the wall

∆y = −(dW (t1)− dW (t0))

As can seen in Figure 8, the linear velocity of the robot
can be computed from its rate of turn and the offset in the
direction of the robot’s∆y′.

From a simple geometric relationship, we can compute
the radius of the circler:

r =
∆y′

sin(θ′2 − θ′1
The linear velocity is then equal to the length of the circle

segment(r ∗∆θ) divided by the time to cover this distance:

v =
r ∗ (θ′2 − θ′1)

∆t

In case the robot is facing the wall directly (i.e.,θ′ = 90o),
and the above equation yields the correct solution for the
linear velocity of the robot.

As can be seen in Figure 9, similar reasoning allows us to
compute the circle distance∆y′ from a given wall distance.

From the figure, one can derive that:

c

dy
= sin θ′1 −

θ′2 − θ1

2



In this case:

∆y = ∆y′ ∗
sin θ2−θ1

2

cos θ2+θ1
2

The right and left wheel velocities can then be calculated
as:

vr =
2v + θ′ ∗ w

2
vl =

2v − θ′ ∗ w

2
As stated earlier, any straight line segment in the im-

age can be used as a guideline, allowing this method to be
broadly applicable. While source of lines were hypothe-
sized as walls in a typical indoor environment in the analysis
above, lines are present in many important environments. In
robotic soccer (and indeed, most human sports) lines are an
important element of play. Even in less structured exam-
ples, lines are still present. In robotic rescue environments,
for example, even though most of a structure may be col-
lapsed, lines still exist in any remnant of standing wall, in
debris with straight edges (e.g. strewn papers, lumber or
other structural components), and in decorative patterns used
in indoor environments. All of these provide line segments
that can be used to compute the incremental location of the
robot.

Implementation
The following algorithm description goes into detail about
practical aspects of the ego-motion estimation on the Zau-
rusBot.

First, Sobel edge detection is applied to the raw input
image. Strong edge pixels are extracted from the image
through thresholding. Strong lines in the image are extracted
by using a Hough transform. To speed up the Hough trans-
form, we only look for lines with orientations that allow us
to distinguish changes in a line’s orientation and distance to
the robot. In our case, this means we are limiting ourselves
to approximately horizontal lines (70 to 110 degrees). We
also extract vertical lines since they occur often and allow
us to calculate accurate orientation estimates.

Since the Hough transform only detects the existence of
possible infinite lines in an image, we post-process the lines
suggested by the Hough transform to find line segments.

To calculate the ego-motion we compare the classified
lines that are found in two consecutive frames and if there
is a match of one or more classified lines we then measure
changes in gradiant and the distance from the robot to de-
tected, classified lines. This yields a change in angle and
distance from the robot, which is translated to robot move-
ment and position information.

Figure 10) shows a acquired and processed image in the
red arena. These images would correspond to frame1. Fig-
ure 10 a) Is the raw image b) is the edge detected image and
c) is the result of the hough transform. Figure 10 d) shows
the extracted line segments.

Figure 11 corresponds to frame2 after the robot has
moved forward by a small amount. One can see that there
is a change in the location of the detected lines in the im-
age. This change is then translated into robot ego-motion
and robot pose.

Figure 10: a) Raw image frame1 b) Edge detected image
frame1 c) Lines extracted using hough transform d) Line
segments extracted from hough space and edge detected im-
age frame1

Figure 11: a) Raw image frame2 b) Edge detected image
frame2 c) Lines extracted using hough transform d) Line
segments extracted from hough space and edge detected im-
age frame2



Ego Motion Estimation Using Optical Flow

The second part to our ego-motion measurement uses the
optical flow of small patches in the view of the camera to
determine translation and rotation from the previous to the
current view. This approach is general in nature and does
not rely on any specific features of the image itself.

In order to make ego-motion detection through visual
feedback efficient for deployment on an embedded system,
we begin by considering pixels in only a limited range of the
image. We track small windows (8*8 to 16*16) in the im-
age, and compute the optical flow within these windows to
calculate the ego motion.

When analyzing the differences between images to deter-
mine optical flow, the approach begins by using the current
model of the robot’s motion to determine the most likely di-
rection of the optical flow. The current motion of the robot is
classified into four classes: straight forward, straight back,
turn left, or turn right. Seven candidate patterns are gener-
ated that favor detection in the estimated direction of motion.

For example, consider the two images depicted in Fig-
ure 5. In this situation, commands recently sent to the robot
were intended to cause it to drive in a straight line. The sys-
tem therefore assumes that the scene depicted in the later
(rightmost) image in the Figure should be shifted down rel-
ative to the scene depicted in the earlier (leftmost) image
in the Figure. The system selects seven candidate patches
to track which are arranged above the center of the image.
Here, these regions have a good chance of appearing in the
next image as patches close to the bottom of the image. Con-
versely, choosing patches on the bottom of the earlier image
to track would not likely be helpful, as there is a strong like-
lihood that those patches would drop out of view. The can-
didate patches chosen for movement intended to be straight
back, turning left, and turning right are similar to the ones
shown in the example, but rotated by the obvious angle (90
or 180 degrees).

After selecting the patches to examine, the candidate
patch with the largest cross-correlation difference is se-
lected. The motivation is that this patch is most easily dis-
tinguished from the surrounding patches and thus the chance
that it is tracked successfully is increased.

We use a Mini-max search method to find the patch with
the largest cross-correlation difference. This is a useful and
efficient technique. Once the first minimum has been estab-
lished, the remaining candidate patches can be rejected even
if only one of the cross correlations is larger than the cur-
rent minimum. This is because the maximum of all cross
correlations for a single patch is used. In the theoretical
worst case, selecting the patch requires the computation of
30 cross-correlations. In practice, however, we found that
this is rarely necessary and that the Mini-max selection fin-
ishes quickly. In the example, the red patch has the max-
imum minimum cross correlation to the other six patches
and is therefore selected.

Having found the patch with the greatest cross-correlation
difference, the system then finds a patch with a small cross
correlation in the next image. This is done by estimating
the optical flow and starting a search for the patch in the

neighborhood of the predicted position of the patch in the
new image.

The robustness of this method can be improved by track-
ing more than one patch and by computing a best esti-
mate given the optical flow information for multiple patches.
However, this would greatly increase the computational cost
of the algorithm and its associated viability on small embed-
ded systems. Therefore, we limited ourselves to tracking a
single patch.

Stereo Vision
Our stereo vision system takes a new approach to determin-
ing how far away objects are to the robot.

The standard approach of stereo distance measurement is
to identify featurepointsin the left and right image (Eg cor-
ners, start of line segments). This is problematic in the fact
that these points are hard to identify and provide a weak
match because they are highly susceptible to noise. Fur-
thermore, the approach is computationally expensive since
many possible point occurrences have to be considered.

The technique that we are currently working on is based
on region identification. First regions are extracted sepa-
rately from each image by growing regions based on de-
tected edges, average colour and variance of neighbouring
pixels in scanned lines. The scanned lines are then merged
to create the individual regions. The regions are then filtered
based on size (too small or too large) and shape (too thin)
to yield candidate regions. Figure 12 shows the grown can-
didate regions of the left and right images. The regions are
displayed by coloured boxes in each of the images, with dif-
ferent colours representing different regions. Regions in the
separate images that have the same colour identify regions
that have been found in both images simultaneously.

To calculate the robot’s distance from objects we stereo
match and calculate the disparity of regions based on similar
shape and size, colour and variance. This yields a computa-
tionally cheap (fast) algorithm because there is usually only
a couple of regions. It also provides robust regions matches,
since regions are made up of a large number of individual
pixels.

Conclusion
We have shown the overall system design of our robots that
are involved in the USAR competitions ( ZaurusBot and
Spike) and have given a general overview of their system
design.

We have also shown that ego-motion estimation for mo-
bile robots using line tracking and optical-flow techniques
has a great potential of reducing the error generated and in-
crease the robustness of using classical sensing techniques
or reduce the the number of sensors that are needed.

We have introduced a region-based stereo matching algo-
rithm. The detected correspondences are more robust and
the algorithm is computationally more efficient since it only
considers matches between regions as opposed to feature
points. In an average image, there are many more feature
points than regions.



Figure 12: User interface displaying grown candidate regions in the left and right images

In the future we plan on combining the two ego-motion
technique to finalize our ego-motion estimation toolkit and
to also integrate the stereo depth information to develop a
visual SLAM system that would localize a mobile robot in
a structured or unstructured environment and produce an ac-
curate three dimensional map.
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