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Abstract 

In this paper, we describe a sketch-based interface 
to control a team of mobile robots. The sketch 
interface uses a PDA platform and incorporates 
editing commands and an HMM recognizer for 
classifying sketched symbols. In the paper, we 
describe the recognizer and report classification 
results on twelve sketched symbols. To control the 
robot team, a user sketches a configuration that 
represents a multi-robot formation, such as follow 
the leader or march side by side. A team of small 
mobile robots has been built to test the PDA 
interface. The robots achieve the formations through 
simple behaviors that use local color tracking. Each 
robot is fitted with brightly colored side panels to 
facilitate the formations. In the paper, we report 
observers’ comments from the AAAI Conference 
and Robotics Competition. 

Introduction 

We have been investigating sketch-based interfaces in 
an effort to achieve intuitive interaction for controlling and 
communicating with one or more robots.  Sketching is a 
natural medium for spatially-oriented applications, and 
directing mobile robot navigation is inherently spatially 
oriented. A handheld Personal Digital Assistant (PDA) is a 
convenient platform for in-the-field collaboration with 
mobile robots and especially when the user must change 
locations and thus, cannot be confined to a desk. Here, we 
have combined a sketch-based interface with a handheld 
PDA. We report our experience with a prototype 
implementation of a sketch-based interface to control a 
team of mobile robots. 

PDA interfaces have been proposed previously for 
controlling mobile robots.  Fong has used a PDA as an 
intelligent teleoperation interface (Fong, 2001). Basic 
controls are included for commanding the robot velocity. 
In addition, the user can select a live image of the scene 
and can designate via points on the scene to specify a robot 
path.  The interface has been applied to a team of 2 robots, 
although each robot is controlled individually (Fong, 
Thorpe & Baur, 2003). 

A PDA can also be used with a map of the 
environment. Perzanowski et al. (2001) and Lundberg et 
al. (2003) have developed such interfaces in which a user 
can sketch moves on top of a map, which has been 

acquired using the robot’s sensors.  Kawamura et al. 
(2002) have developed a PDA interface in which the user 
sketches a map of the environment and places artificial 
landmarks on the sketch to represent artificial landmarks in 
the physical environment. The user then sketches a route 
with respect to the artificial landmarks. 

In our previous PDA work, the user sketches a route 
map that is an approximate representation of the 
environment (qualitatively accurate but not quantitatively 
accurate) and then sketches a route through the sketched 
map. Landmarks are automatically extracted from the 
sketched environment for key turning points, and a 
topological route representation is sent to the robot for 
navigation (Skubic, Bailey & Chronis, 2003; Chronis & 
Skubic, 2004). 

In contrast, the work reported here uses a PDA sketch-
based interface to send formation commands to a team of 
mobile robots. Example PDA sketches are shown in Figure 
1. The sketch in Figure 1(a) is translated into a march side 
by side formation, as depicted by the arrows drawn 
perpendicular to the row of robot icons (shown as solid 
black circles). The sketch in Figure 1(b) is translated into a 
follow the leader formation, as the arrow is parallel to the 
robot row. In each case, the sketch is translated into a 
command that is transmitted to the robot team. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              (a)                                            (b) 
 
Figure 1. Example sketches (a) Three robots in a 

march side by side formation (b) Robots in a follow the 
leader formation. 
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In this paper, we discuss the sketch understanding 
interface and the robot design used to achieve these 
formations. In Section 2, we discuss methods used to 
process the PDA sketch. Section 3 includes a discussion of 
the robot design, as well as the method for achieving 
formations using local sensory information. In Section 4, 
we discuss the performance of the system and audience 
response at the AAAI 2004 Conference and Robotics 
Competition. Concluding remarks are given in Section 5. 

Sketch Understanding Methods 

The sketch interface described here is based partially 
on our previous sketch interface (Skubic, Bailey & 
Chronis, 2003; Bailey, 2003) but also incorporates a new 
symbol recognizer based on Hidden Markov Models 
(HMM). The symbol recognizer is described briefly 
below; see also (Anderson, Bailey & Skubic, 2004) for 
more detail. 

HMM Symbol Recognizer 

As a symbol is sketched, the sequence of pixel 
coordinates, which correspond to the two dimensional 
locations of the pen over time, are recorded.  This temporal 
unfolding of the symbol in terms of pixel coordinates can 
be viewed as a form of gesture recognition.  The goal of 
the system is to learn a set of model parameters that 
encapsulate discriminate temporal features.  These trained 
models are finite and can be transferred to a PDA to 
generate the online likelihood that some future 
observation, a new sequence of pixels, was generated from 
some particular known model. 

The steps of the sketch-based symbol recognition 
include (1) the capture of pixel coordinates, (2) pre-
processing of pixel data, (3) the extraction of features from 
the temporal pixel observations, (4) the application of 
HMMs to classify the symbol, (5) post-processing to 
reduce false alarms, and (6) the final classification of a 
symbol into one of a known finite set.  These steps are 
described below. 

In order to reduce processing time, we perform 
minimal pre-processing. The first step involves the 
removal of consecutive identical points.  The next step is a 
method of minimum distance pixel sampling (to down-
sample), which can be done quickly as the points are being 
captured, illustrated in Figure 2. 

Figure 2 illustrates one additional artifact that can 
reduce the recognition rate.  As a user sketches symbols on 
a PDA screen, he can generate a “hook” at the beginning 
of the symbol1. The majority of our hooks were removed 
simply through the sequential removal of pixels within a 
fixed distance.  The remainder of hooks were recognized 

                                                 
1 A hook may also be generated at the end of the symbol; 
however, we did not observe this in our samples. 

and removed by identifying regions of large angular 
change at the beginning of a sketch. 

 
 
 
 
 
 
 
 
 

 
(a) (b) 

Figure 2. Fixed distance pre-processing (a) Sketched 
symbol before fixed distance point removal (b) Same 
symbol after fixed distance point removal. 

 
Figure 3 illustrates our feature extraction procedure.  If 

there are N observations in the symbol, then the algorithm 
will compute (N-6) features.  For every observation after 
the 3rd step and before the (N-3) step, the angle between a 
forward and a back vector is computed, where the forward 
and back vectors are computed averages as shown in 
Figure 3.  The averaging effectively smoothes the curve 
and minimizes sketching differences due to distortion, 
sketching style, and pixelization.  The pixel that the feature 
is being computed for is not actually used in determining 
the angle, which has helped to maintain important 
information such as sharp turns. 

 
 

 
 
 
 
 

 
 
 

Figure 3. Seven-step, sliding window feature 
extraction procedure. The red pixel represents the 
observation step for which we are computing the 
present feature. The blue arrow represents the average 
back vector and gold arrow represents the average 
forward vector. The feature computed is the angle 
between the back and forward vectors. 

 
Many symbols can be drawn in a variety of gesture 

specific sequences (e.g., clockwise vs. counterclockwise 
directions).  Thus, each symbol may require multiple 
HMM models in order to capture the different gesture 
specific ways in which the symbol can be sketched.  In the 
case of the arrow, a clockwise or counterclockwise 
sketched symbol is represented as one HMM model by 
computing the absolute value of the angle and restricting 
the feature to be within the range of –180 to 180 degrees.  
For the ellipse and the rectangle, we use two models each 
to determine a clockwise or counterclockwise gesture. 



We have applied the traditional Baum-Welch algorithm 
to iteratively re-estimate the parameters for a discrete 
observation HMM.  Model verification can be done using 
the conventional forward and backward procedure with 
appropriate scaling (Rabiner, 1989).  A discrete model has 
limitations and can induce problems into the learning 
process.  Discretization of the features always results in 
some form of information loss, but it appears to be 
acceptable in this application.  We discuss methods to 
compensate for these problems by a careful selection of 
HMM parameters. 

The angular features that we generate are mapped into 
20 different discrete symbols.  Note that the first symbol 
does not start at 0 degrees, but rather the symbol ranges 
from 0 - (360/N)/2 to 0 + (360/N)/2 degrees, where N=20, 
the number of discrete symbols as depicted in Figure 4.  
This strategy was used so that an approximately straight 
line segment would not span multiple discrete symbols. 
 
 

 
 
 
 
 
 
 

 
Figure 4. Discrete mapping of the angular features 

computed from the domain [0°, 360°] into (1 … N) 
discrete symbols.  The numbers (3... N-1) have 
pictorially been left out. 

 
We compensate for variation in the sketched symbols 

through selection of enough discrete observation symbols, 
an adequate number of training data, and an over 
specification in the number of HMM hidden states,.  The 
over specification in the number of hidden states has 
proven to handle slight inaccuracies that can arise in the 
local feature extraction procedure and also help to capture 
reoccurring symbol variation inherent in some symbols, 
such as not straight but slightly curved.   

For example, with little symbol variation and perfect 
features, there may be only two distributions (i.e. two 
hidden states) for an arrow symbol.  One distribution 
represents the straight line feature, while the other 
corresponds to the sharp turns.  We tried a two-state model 
initially, but the trained HMM did not yield adequate 
classification rates.  However, we found that we could 
learn a model to represent this symbol if we over specified 
the number of hidden states.  Figure 5 demonstrates our 
trained HMM for the arrow.  We over specified the model 
by an additional two states.  In Figure 5, the state 
probability density functions are depicted graphically for 
each state.  State 1 appears to learn the straight line feature, 
while state 3 appears to capture the sharp angle feature.  
States 2 and 4 appear to learn features that correspond to 

subtle changes in a straight line direction, which might 
relate to slightly curved regions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. The trained HMM for the arrow gesture.  

Rectangular regions represent the state pdf’s of the 
discrete symbols. 

 
 
Finally, for post-processing, we distinguish between 

open and closed gestures based on the relative location of 
the starting and ending points. (See Figure 6 for examples 
of closed and open symbols.)  Partially sketching a symbol 
can generate a likelihood value that results in a false alarm 
(e.g., a “c” vs. a circle). We address this problem by using 
the closed or open gesture criterion as a global feature.   

 
 
 
 
 

(a) 
 

 
 

 
 
 
 

 
(b) 

 
Figure 6. (a) Closed symbols: Ellipse, Triangle, 

Rectangle, Pentagon and Star; (b) Open symbols: Line, 
Check, Cross, Delete, Arrow and Round Arrows. 

 
The symbol recognition system has been implemented 

in PalmOS using C++.  The HMM is trained offline using 
Matlab and then integrated into the PDA sketch interface. 

 The symbol recognizer was tested on the 12 symbols 
shown in Figure 6. Ten training samples of each symbol 
were collected from each of three users. One user was very 
familiar with a PDA, the other had used a PDA before and 
the last user had never used a PDA.  These samples varied 
in the size, relative starting point for the gesture, 



orientation, and style.  The recognizer was then tested 
using twenty separate examples from each user.  
Therefore, classification results are generated from 60 
testing samples for each symbol. The classification results 
are shown in Table 1. Each classification result in Table 1 
reflects the average of all models that are used to represent 
that one symbol.  For example, the ellipse classification 
results are the combination of both the clockwise and 
counterclockwise models.   

 
Table 1. Classification Results 

 
Symbols Results 

Ellipse 92% 
Triangle 95% 
Rectangle 93% 
Pentagon 93% 
Star 97% 
Line 98% 
Check 93% 
Cross 92% 
Delete 89% 
Arrow 98% 
Round Arrow 96% 

Interpreting Formations 

The HMM symbol recognizer is used to identify a 
fixed set of control symbols which are sketched to create 
multi-robot formations (Figure 1).  The four symbols used 
in the system were the ellipse, rectangle, line and arrow.  A 
user can also sketch “blobs”, which represent robots. 
When a robot blob is recognized, the robot icon is 
displayed on the PDA screen as a solid black circle.   

Based on our previous work, we have also supported a 
set of editing capabilities to move elements (by dragging)  
and delete elements (by sketching an “X”).  A single 
HMM was not used to recognize the delete command 
because it is the combination of two separate strokes.  For 
the moment, our techniques can only handle the 
recognition of single stroke symbols.  We perform the 
check for a delete command through the search for two 
consecutive lines being sketched, each one independently 
recognized by an HMM, and then perform a check for an 
intersection point.  The blob, also based on previous work, 
is sketched as a circular “squiggle” (Skubic, Bailey, & 
Chronis, 2003). 

The user can move and align the robot icons into 
configurations such as “follow the leader” and “march side 
by side” formations.  While there are robot icons on the 
screen, a user can sketch an arrow; the orientation of the 
arrow with respect to the sketched robot icons is used to 
identify the robot formation.  Follow the leader is 
identified when the robot icons are aligned in a linear 
formation parallel to the arrow.  The march side by side 
formation is identified when the robot formation is 
perpendicular to the sketched arrow direction.  Note that 

the row of robot icons need not be placed vertically or 
horizontally on the PDA screen. The sketch understanding 
system supports any orientation of the row and arrow and 
examines their relative placement to determine a formation 
command. 

After the command to march or follow the leader has 
been given, there is an option to sketch additional symbols 
such as ellipses, rectangles, or lines to change the 
geometric path of the robots. For example, a sketched 
clockwise ellipse after a follow the leader formation 
(Figure 7(a)) will result in the robot leader moving in a 
clockwise circular path with the remaining robot team 
following behind. If the user then sketches a line, the 
robots are sent a command to follow the leader in a straight 
line. A sketched rectangle (Figure 7(b)) generates the 
square formation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              (a)                                           (b) 
Figure 7.  (a) Follow the leader in a circular 

formation (b) The square formation. 
 

A Prototype for Sketch-Driven Formations 

Robot Design 

To illustrate the proof of concept in sketch-driven 
formations, we designed and built a team of small, mobile 
robots using components from Botball kits2. Components 
included lego pieces, sensors, motors, the handyboard3 as 
the micro-controller, and the CMUcam4 for color tracking. 
In all, seven identical robots were built, to make two teams 
of three robots with one spare. 

The robots have a differential drive design, with two 
active wheels, each controlled by a DC motor, and a third 
passive wheel (an omnidirectional wheel which functions 
                                                 
2 www.kipr.org/products 
3 handyboard.com 
4 www-2.cs.cmu.edu/~cmucam/ 



as a caster wheel). Wheel encoders are included for each 
active wheel. With this design, the robot can be 
programmed to move straight ahead, straight back or turn 
in place by a specified number of degrees.  

With a compact design, each robot measures 
approximately 19 cm long by 14 cm wide by 15 cm tall. 
As shown in Figure 8, each robot was fitted with brightly 
colored side panels. Each robot has an orange panel in the 
rear, a green panel on the right, and a blue panel on the 
left.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. The robot design. Note that the 

handyboard is oriented vertically to make the IR 
receiver accessible. 

 
Each robot is equipped with a set of sensors. There are 

three front infrared (IR) sensors (left-front, right-front, and 
directly in front) and one rear IR sensor. A CMUcam is 
mounted on a servo motor such that it can be rotated 180 
degrees in the front for color tracking.  

We also use the analog knob on each handyboard to 
define a default identifier (ID) number. For each team of 
three robots, one robot is defined with ID 1, another with 
ID 2, and the third with ID 3. Commands are sent to the 
robot team to designate the motion of one, two, or three 
robots, depending on the number of robot icons sketched 
on the PDA. A robot’s response to the commands is based 
on its ID number. For example, if two robot icons are 
sketched, then robots with ID’s 1 and 2 will respond; the 
robot with ID 3 will not move.  

PDA to Robot Communication 

Communication between the PDA and the robots is 
achieved using IR transmission. The OmniRemoteTM 
library5 is used on the PDA to broadcast IR commands 
which are received by the handyboard controlling each 
robot. The handyboard has an IR receiver and can be 
programmed to receive the equivalent IR signal from a 
                                                 
5 www.pacificneotek.com/omnisw.htm 

remote control device. With the OmniRemote library, the 
PDA is programmed to output IR signals, as if from a 
remote control device. To establish this communication 
link, we defined a set of unique codes, one for each of the 
commands listed in Table 2 and trained each command on 
the PDA using a standard remote control device. 

Commands are broadcast to all robots as a result of 
three processing mechanisms. First, any of the commands 
can be sent via a menu selection on the PDA. Second, each 
command can be generated using a short-cut graffiti 
command (or the keypad on the Tungsten PDA, shown in 
Figure 1). In addition, a subset of the commands can be 
generated whenever a sketch is interpreted; these include 
all of the Formation commands, as well as all of the 
Control commands except Stop.  

 
Table 2. PDA to Robot Commands 

 
Command type Command 
Control Forward 
 Reverse 
 Right turn 
 Left turn 
 Turn around 
 Stop 
Initialization Set ID from sensors  
 Reset ID 
Formations Follow 2 robots  
 Follow 3 robots 
 March 2 robots 
 March 3 robots 
 Left circle 
 Right circle 
 Left square 
 Right square 

 
To test the sketching interface and the effective IR 

range for communication, the PDA software was installed 
on three different PDA platforms: the Handspring Visor, 
the Palm m505, and the Palm Tungsten. Although the 
Tungsten was the best to use for the sketching component 
due to processing speed and screen resolution, the Palm 
m505 had the best IR range with more than adequate 
processing speed. 

The use of IR transmission as a communication 
mechanism between the PDA and the robots was 
undoubtedly the weakest part of the system, as direct line 
of sight was required and the range was limited. However, 
this was done for the prototype only and was not intended 
as a long-term solution. 

Robot Actions 

The robots execute specific actions in response to the 
commands listed in Table 2. In all cases, obstacle 
avoidance is incorporated as a low-level behavior, based 
on the four IR sensor readings. A generally forward 



moving robot will avoid an obstacle by moving around it. 
A robot backing up will avoid hitting an obstacle by 
stopping. 

The robots are programmed to respond uniquely to 
each of the commands listed in Table 2, based on their ID 
numbers. Upon receiving the Control commands, robots of 
all ID numbers will respond appropriately to the Right turn 
(turn right 90 degrees), Left turn (turn left 90 degrees), 
Turn around (180 degrees), and Stop. However, the 
forward and reverse commands are reserved for the robot 
with ID 1, which is considered to be the leader in a 
formation.  

Although the analog knob on the handyboard defines a 
default ID, the ID numbers can also be inferred from the 
IR sensor readings. The Set ID command can be used to 
override the default ID settings when the robots are 
positioned in a follow the leader formation. Robot of ID l 
is defined as the leader; therefore, if the front IR sensors 
show nothing in front and the rear IR sensor shows 
something in the rear, the ID is set to number 1.  If both 
the front and rear sensors indicate presence, the ID is set to 
2. If the front sensors indicate presence and the rear sensor 
does not, then the robot is at the end of the formation, and 
the ID is set to 3. In addition, the Reset ID command can 
be used to revert back to the default ID settings.  

Formations were achieved using local sensory 
information from the color CMUcam and the IR sensors. 
For example, the Follow 2 and Follow 3 commands result 
in the follow the leader formation shown in Figure 9. This 
formation was achieved by programming the follower 
robots (ID 2 and 3) to simply track and follow the color 
orange. The leader (ID 1) was programmed to move 
straight ahead. The front sensors on the follower robots 
were also used to adjust the distance between robots in the 
follow the leader formation, either to wait for the robot in 
front or to speed up.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Two robots in a follow the leader 
formation. 

 
The March 2 and March 3 commands result in the 

march side by side formation, shown in Figure 10. This 
was achieved by turning the CMUcam servo to the left on 
the follower robots and tracking the color green on the 
neighbor’s side panel. The leader robot (the left-most robot 
in the formation) is programmed to make short “steps” 
forward in a march-like fashion.  If a follower robot sees 

green, it also makes a short step forward, pausing after 
each step. Thus, the robot formation appears to march 
forward.  

The follow the leader formation can be modified by the 
addition of a sketched ellipse symbol (Figure 7(a)), which 
sends the Right circle or Left circle command, depending 
on whether the ellipse was sketched in a clockwise or 
counterclockwise fashion.  The leader robot will begin a 
right circle or left circle pattern as specified by the 
command. The follower robots continue to track and 
follow the color orange and thus follow the leader in the 
circular path.  

 

 
Figure 10. Two robots in a march side by side 

formation. 
 
The Left square and Right square commands are 

generated when the rectangle symbol is sketched after 
either the follow the leader formation or the march side by 
side formation (Figure 7(b)). In either case, the robots 
move in a square pattern of varying sizes, based on the 
robot ID numbers.  

A formation can be modified by sending the Turn 
around command. This has the effect of reversing the robot 
ID numbers. That is, the leader robot will become the last 
robot, and the last robot will become the leader. 
Subsequent follow or march sketches will result in the 
appropriate formation with the new leader. It is also 
possible to switch between formations, i.e., from the march 
formation, the robots can change to the follow the leader 
formation. In fact, it is possible to form a follow the leader 
formation from arbitrary positions, as the follower robots 
will search for the orange target, although the follower 
robots must be able to see the orange panel. 

Exhibition and Interaction Results 

The PDA sketch interface and robot team were 
demonstrated at the 2004 AAAI Conference and Robotics 
Competition as part of the Exhibition and Interaction 
events. Figure 11 shows one of the authors demonstrating 
the follow the leader formation. The comments and 
suggestions reported below are from AAAI conference 



attendees, as well as from Botball participants (mostly 
students in grades 6-12), their coaches, and their family 
members. The National Botball Competition was co-
located with the AAAI Conference; many of the 
participants were especially interested in our robots, as 
they were built with Botball kits. 
 
 

 
Figure 11. One of the authors demonstrates the 

follow the leader formation with two robots. This 
illustrates the typical range available for IR 
transmission between the PDA and the robots. 

 
 
The sketch interface and robot team performed well 

during live demonstrations.  Set up on-site was minimal; 
however, the local color-based behaviors required re-
initialization of the color parameters at the conference site. 
Initially, we had made the color target range for green and 
orange quite broad to account for a variety of lighting 
conditions, but found that environment structures 
interfered, such as the color of the table drapes, the wall, 
and the neighboring yellow tent structure used by another 
robot team.  These temporary problems were fixed by 
adjusting the color parameters for the orange and green 
targets. 

We asked attendees to try the sketch interface, in an 
effort to (1) test the robustness of the recognizer with 
different users, and (2) get the general opinion of using a 
sketch interface, especially as a control mechanism for a 
team of mobile robots.  Many other observers commented 
on the sketch-based robot system or offered suggestions. 

About 18 users tried the sketch interface. Generally, 
the users liked the idea of sketching and wanted to do 
more. The recognizer robustly classified the symbols 
drawn. Several users wanted to draw more symbols and 
more complex symbols. Users also noted they would like 
the ability to draw symbols in a more flexible way. One 
user asked whether a triangle pattern could be drawn to 

generate a triangular follow the leader path. Another user 
asked whether the sketch interface would recognize an 
elephant and then make the robots move in an elephant-
shaped path. Another user wanted to know whether the 
sketch interface would recognize false patterns. The issue 
of false alarms is important. During the exhibition, the 
false alarm rate was quite low. If the recognizer does not 
identify a stroke mark (i.e., none of the models fit), the 
stroke will be discarded. 

Many questions and comments focused on application 
issues. The most asked questions were the following: 
“What are you going to use this for?”  What do you see as 
applications?”  “How is it useful to society?” Observers 
noted the potential for military applications, such as in 
specifying military search patterns. An observer noted that 
the sketch platform was a more natural method for military 
leaders to receive and provide war information. Observers 
suggested strategic applications such as planning and 
coordination between two or more teams. One observer 
suggested improving the follow the leader formation for 
use in a military application. Observers also noted that the 
sketch-based interface could be used for (non-military) 
search and rescue coordination. Finally, several observers 
suggested using the sketch interface for video games, e.g., 
as an interface for strategic multi-player games. 

Observers also offered suggestions for improving the 
system.  Some noted that higher performance could be 
achieved by using better hardware, e.g., bigger and more 
capable robots, and a Tablet PC instead of a PDA. The 
weakness of the IR communication was noted as well.  The 
IR transmission did represent a limitation in demonstrating 
the system, as a result of the range and line of sight 
requirements. With a better communication system, more 
formations and more complex formations could have been 
included. In particular, the IR transmission scheme limited 
the number of robots that could reliably receive commands 
from the sketch interface. 

Observers also commented on extending the 
communication capabilities, such as designating a robot to 
receive a command (i.e., sending commands to specified 
robots individually), or circling a group of robots as a way 
to designate the robot receivers of a command. It was also 
suggested that robot-to-robot communication be added, 
such as communication between the leader and a follower.  

Observers had suggestions for extending the 
functionality in other ways, such as sketching a map and 
then incorporating the formation control with respect to the 
map. Another observer asked whether we had plans for 
more tightly coupling information which the robots receive 
over time, such as updating the sketch.  

Finally, the most unexpected comment was from an 
observer that spent several minutes watching a team of two 
robots in a circular follow the leader formation. After 
observing for some time, he noted that the robots looked as 
if they were alive, especially in the way the follower robot 
searched and tracked the leader. Figure 12 shows two 
robots in this formation. 

 



 

 
 

Figure 12. Observers watching two robots move in a 
circular follow the leader formation. 

 
 

Concluding Remarks 

In this paper, we have described a prototype 
implementation of a sketch-based interface for generating 
multi-robot formations.  The interface is built on a PDA 
platform and allows the user to sketch desired formation 
configurations such as follow the leader or march side by 
side.  The user sketches the position of robot icons and can 
use editing strokes to move or delete symbols. An HMM 
symbol recognizer is used to classify strokes.  In the paper, 
we have reported classification results on twelve symbols 
using the HMM recognizer.  

The sketch-based interface was demonstrated at the 
AAAI Conference and Robotics Competition as part of the 
Exhibition and Interaction events. In the paper, we report 
the performance, as well as comments and suggestions 
offered by observers.  

In the future, we plan to extend the system by porting 
the sketch interface to a Tablet PC and using larger robots 
such as the Pioneer from ActivMedia. The wireless 
communication capabilities of these platforms will 
facilitate a larger robot team and more complex 
formations.  We also plan to extend the interface to support 
more symbols, more complex symbols (including multi-
stroke symbols), and more complex robot coordination and 
control. We agree with observers that the system is 
suitable for military and non-military applications 
involving search and coordination activities and will work 
towards these applications in future work. 
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