
A Sketch-Based Interface for Multi-Robot Formations

Marjorie Skubic, Derek Anderson, Mohammed Khalilia and Srikanth Kavirayani

Computational Intelligence Research Laboratory
University of Missouri-Columbia, Columbia, MO 65211

skubicm@missouri.edu

Abstract

In this paper, we describe a sketch-based interface
to control a team of mobile robots. The sketch
interface uses a PDA platform and incorporates
editing commands and an HMM recognizer for
classifying sketched symbols. In the paper, we
describe the recognizer and report classification
results on twelve sketched symbols. To control the
robot team, a user sketches a configuration that
represents a multi-robot formation, such as follow
the leader or march side by side. A team of small
mobile robots has been built to test the PDA
interface. The robots achieve the formations through
simple behaviors that use local color tracking. Each
robot is fitted with brightly colored side panels to
facilitate the formations. In the paper, we report
observers’ comments from the AAAI Conference
and Robotics Competition.

Introduction

We have been investigating sketch-based interfaces in
an effort to achieve intuitive interaction for controlling and
communicating with one or more robots. Sketching is a
natural medium for spatially-oriented applications, and
directing mobile robot navigation is inherently spatially
oriented. A handheld Personal Digital Assistant (PDA) is a
convenient platform for in-the-field collaboration with
mobile robots and especially when the user must change
locations and thus, cannot be confined to a desk. Here, we
have combined a sketch-based interface with a handheld
PDA. We report our experience with a prototype
implementation of a sketch-based interface to control a
team of mobile robots.

PDA interfaces have been proposed previously for
controlling mobile robots. Fong has used a PDA as an
intelligent teleoperation interface (Fong, 2001). Basic
controls are included for commanding the robot velocity.
In addition, the user can select a live image of the scene
and can designate via points on the scene to specify a robot
path. The interface has been applied to a team of 2 robots,
although each robot is controlled individually (Fong,
Thorpe & Baur, 2003).

A PDA can also be used with a map of the
environment. Perzanowski et al. (2001) and Lundberg et
al. (2003) have developed such interfaces in which a user
can sketch moves on top of a map, which has been

acquired using the robot’s sensors. Kawamura et al.
(2002) have developed a PDA interface in which the user
sketches a map of the environment and places artificial
landmarks on the sketch to represent artificial landmarks in
the physical environment. The user then sketches a route
with respect to the artificial landmarks.

In our previous PDA work, the user sketches a route
map that is an approximate representation of the
environment (qualitatively accurate but not quantitatively
accurate) and then sketches a route through the sketched
map. Landmarks are automatically extracted from the
sketched environment for key turning points, and a
topological route representation is sent to the robot for
navigation (Skubic, Bailey & Chronis, 2003; Chronis &
Skubic, 2004).

In contrast, the work reported here uses a PDA sketch-
based interface to send formation commands to a team of
mobile robots. Example PDA sketches are shown in Figure
1. The sketch in Figure 1(a) is translated into a march side
by side formation, as depicted by the arrows drawn
perpendicular to the row of robot icons (shown as solid
black circles). The sketch in Figure 1(b) is translated into a
follow the leader formation, as the arrow is parallel to the
robot row. In each case, the sketch is translated into a
command that is transmitted to the robot team.

 (a) (b)

Figure 1. Example sketches (a) Three robots in a

march side by side formation (b) Robots in a follow the
leader formation.

mailto:skubicm@missouri.edu

In this paper, we discuss the sketch understanding
interface and the robot design used to achieve these
formations. In Section 2, we discuss methods used to
process the PDA sketch. Section 3 includes a discussion of
the robot design, as well as the method for achieving
formations using local sensory information. In Section 4,
we discuss the performance of the system and audience
response at the AAAI 2004 Conference and Robotics
Competition. Concluding remarks are given in Section 5.

Sketch Understanding Methods

The sketch interface described here is based partially
on our previous sketch interface (Skubic, Bailey &
Chronis, 2003; Bailey, 2003) but also incorporates a new
symbol recognizer based on Hidden Markov Models
(HMM). The symbol recognizer is described briefly
below; see also (Anderson, Bailey & Skubic, 2004) for
more detail.

HMM Symbol Recognizer

As a symbol is sketched, the sequence of pixel
coordinates, which correspond to the two dimensional
locations of the pen over time, are recorded. This temporal
unfolding of the symbol in terms of pixel coordinates can
be viewed as a form of gesture recognition. The goal of
the system is to learn a set of model parameters that
encapsulate discriminate temporal features. These trained
models are finite and can be transferred to a PDA to
generate the online likelihood that some future
observation, a new sequence of pixels, was generated from
some particular known model.

The steps of the sketch-based symbol recognition
include (1) the capture of pixel coordinates, (2) pre-
processing of pixel data, (3) the extraction of features from
the temporal pixel observations, (4) the application of
HMMs to classify the symbol, (5) post-processing to
reduce false alarms, and (6) the final classification of a
symbol into one of a known finite set. These steps are
described below.

In order to reduce processing time, we perform
minimal pre-processing. The first step involves the
removal of consecutive identical points. The next step is a
method of minimum distance pixel sampling (to down-
sample), which can be done quickly as the points are being
captured, illustrated in Figure 2.

Figure 2 illustrates one additional artifact that can
reduce the recognition rate. As a user sketches symbols on
a PDA screen, he can generate a “hook” at the beginning
of the symbol1. The majority of our hooks were removed
simply through the sequential removal of pixels within a
fixed distance. The remainder of hooks were recognized

1 A hook may also be generated at the end of the symbol;
however, we did not observe this in our samples.

and removed by identifying regions of large angular
change at the beginning of a sketch.

(a) (b)

Figure 2. Fixed distance pre-processing (a) Sketched
symbol before fixed distance point removal (b) Same
symbol after fixed distance point removal.

Figure 3 illustrates our feature extraction procedure. If

there are N observations in the symbol, then the algorithm
will compute (N-6) features. For every observation after
the 3rd step and before the (N-3) step, the angle between a
forward and a back vector is computed, where the forward
and back vectors are computed averages as shown in
Figure 3. The averaging effectively smoothes the curve
and minimizes sketching differences due to distortion,
sketching style, and pixelization. The pixel that the feature
is being computed for is not actually used in determining
the angle, which has helped to maintain important
information such as sharp turns.

Figure 3. Seven-step, sliding window feature
extraction procedure. The red pixel represents the
observation step for which we are computing the
present feature. The blue arrow represents the average
back vector and gold arrow represents the average
forward vector. The feature computed is the angle
between the back and forward vectors.

Many symbols can be drawn in a variety of gesture

specific sequences (e.g., clockwise vs. counterclockwise
directions). Thus, each symbol may require multiple
HMM models in order to capture the different gesture
specific ways in which the symbol can be sketched. In the
case of the arrow, a clockwise or counterclockwise
sketched symbol is represented as one HMM model by
computing the absolute value of the angle and restricting
the feature to be within the range of –180 to 180 degrees.
For the ellipse and the rectangle, we use two models each
to determine a clockwise or counterclockwise gesture.

We have applied the traditional Baum-Welch algorithm
to iteratively re-estimate the parameters for a discrete
observation HMM. Model verification can be done using
the conventional forward and backward procedure with
appropriate scaling (Rabiner, 1989). A discrete model has
limitations and can induce problems into the learning
process. Discretization of the features always results in
some form of information loss, but it appears to be
acceptable in this application. We discuss methods to
compensate for these problems by a careful selection of
HMM parameters.

The angular features that we generate are mapped into
20 different discrete symbols. Note that the first symbol
does not start at 0 degrees, but rather the symbol ranges
from 0 - (360/N)/2 to 0 + (360/N)/2 degrees, where N=20,
the number of discrete symbols as depicted in Figure 4.
This strategy was used so that an approximately straight
line segment would not span multiple discrete symbols.

Figure 4. Discrete mapping of the angular features

computed from the domain [0°, 360°] into (1 … N)
discrete symbols. The numbers (3... N-1) have
pictorially been left out.

We compensate for variation in the sketched symbols

through selection of enough discrete observation symbols,
an adequate number of training data, and an over
specification in the number of HMM hidden states,. The
over specification in the number of hidden states has
proven to handle slight inaccuracies that can arise in the
local feature extraction procedure and also help to capture
reoccurring symbol variation inherent in some symbols,
such as not straight but slightly curved.

For example, with little symbol variation and perfect
features, there may be only two distributions (i.e. two
hidden states) for an arrow symbol. One distribution
represents the straight line feature, while the other
corresponds to the sharp turns. We tried a two-state model
initially, but the trained HMM did not yield adequate
classification rates. However, we found that we could
learn a model to represent this symbol if we over specified
the number of hidden states. Figure 5 demonstrates our
trained HMM for the arrow. We over specified the model
by an additional two states. In Figure 5, the state
probability density functions are depicted graphically for
each state. State 1 appears to learn the straight line feature,
while state 3 appears to capture the sharp angle feature.
States 2 and 4 appear to learn features that correspond to

subtle changes in a straight line direction, which might
relate to slightly curved regions.

Figure 5. The trained HMM for the arrow gesture.

Rectangular regions represent the state pdf’s of the
discrete symbols.

Finally, for post-processing, we distinguish between

open and closed gestures based on the relative location of
the starting and ending points. (See Figure 6 for examples
of closed and open symbols.) Partially sketching a symbol
can generate a likelihood value that results in a false alarm
(e.g., a “c” vs. a circle). We address this problem by using
the closed or open gesture criterion as a global feature.

(a)

(b)

Figure 6. (a) Closed symbols: Ellipse, Triangle,

Rectangle, Pentagon and Star; (b) Open symbols: Line,
Check, Cross, Delete, Arrow and Round Arrows.

The symbol recognition system has been implemented

in PalmOS using C++. The HMM is trained offline using
Matlab and then integrated into the PDA sketch interface.

 The symbol recognizer was tested on the 12 symbols
shown in Figure 6. Ten training samples of each symbol
were collected from each of three users. One user was very
familiar with a PDA, the other had used a PDA before and
the last user had never used a PDA. These samples varied
in the size, relative starting point for the gesture,

orientation, and style. The recognizer was then tested
using twenty separate examples from each user.
Therefore, classification results are generated from 60
testing samples for each symbol. The classification results
are shown in Table 1. Each classification result in Table 1
reflects the average of all models that are used to represent
that one symbol. For example, the ellipse classification
results are the combination of both the clockwise and
counterclockwise models.

Table 1. Classification Results

Symbols Results

Ellipse 92%
Triangle 95%
Rectangle 93%
Pentagon 93%
Star 97%
Line 98%
Check 93%
Cross 92%
Delete 89%
Arrow 98%
Round Arrow 96%

Interpreting Formations

The HMM symbol recognizer is used to identify a
fixed set of control symbols which are sketched to create
multi-robot formations (Figure 1). The four symbols used
in the system were the ellipse, rectangle, line and arrow. A
user can also sketch “blobs”, which represent robots.
When a robot blob is recognized, the robot icon is
displayed on the PDA screen as a solid black circle.

Based on our previous work, we have also supported a
set of editing capabilities to move elements (by dragging)
and delete elements (by sketching an “X”). A single
HMM was not used to recognize the delete command
because it is the combination of two separate strokes. For
the moment, our techniques can only handle the
recognition of single stroke symbols. We perform the
check for a delete command through the search for two
consecutive lines being sketched, each one independently
recognized by an HMM, and then perform a check for an
intersection point. The blob, also based on previous work,
is sketched as a circular “squiggle” (Skubic, Bailey, &
Chronis, 2003).

The user can move and align the robot icons into
configurations such as “follow the leader” and “march side
by side” formations. While there are robot icons on the
screen, a user can sketch an arrow; the orientation of the
arrow with respect to the sketched robot icons is used to
identify the robot formation. Follow the leader is
identified when the robot icons are aligned in a linear
formation parallel to the arrow. The march side by side
formation is identified when the robot formation is
perpendicular to the sketched arrow direction. Note that

the row of robot icons need not be placed vertically or
horizontally on the PDA screen. The sketch understanding
system supports any orientation of the row and arrow and
examines their relative placement to determine a formation
command.

After the command to march or follow the leader has
been given, there is an option to sketch additional symbols
such as ellipses, rectangles, or lines to change the
geometric path of the robots. For example, a sketched
clockwise ellipse after a follow the leader formation
(Figure 7(a)) will result in the robot leader moving in a
clockwise circular path with the remaining robot team
following behind. If the user then sketches a line, the
robots are sent a command to follow the leader in a straight
line. A sketched rectangle (Figure 7(b)) generates the
square formation.

 (a) (b)
Figure 7. (a) Follow the leader in a circular

formation (b) The square formation.

A Prototype for Sketch-Driven Formations

Robot Design

To illustrate the proof of concept in sketch-driven
formations, we designed and built a team of small, mobile
robots using components from Botball kits2. Components
included lego pieces, sensors, motors, the handyboard3 as
the micro-controller, and the CMUcam4 for color tracking.
In all, seven identical robots were built, to make two teams
of three robots with one spare.

The robots have a differential drive design, with two
active wheels, each controlled by a DC motor, and a third
passive wheel (an omnidirectional wheel which functions

2 www.kipr.org/products
3 handyboard.com
4 www-2.cs.cmu.edu/~cmucam/

as a caster wheel). Wheel encoders are included for each
active wheel. With this design, the robot can be
programmed to move straight ahead, straight back or turn
in place by a specified number of degrees.

With a compact design, each robot measures
approximately 19 cm long by 14 cm wide by 15 cm tall.
As shown in Figure 8, each robot was fitted with brightly
colored side panels. Each robot has an orange panel in the
rear, a green panel on the right, and a blue panel on the
left.

Figure 8. The robot design. Note that the

handyboard is oriented vertically to make the IR
receiver accessible.

Each robot is equipped with a set of sensors. There are

three front infrared (IR) sensors (left-front, right-front, and
directly in front) and one rear IR sensor. A CMUcam is
mounted on a servo motor such that it can be rotated 180
degrees in the front for color tracking.

We also use the analog knob on each handyboard to
define a default identifier (ID) number. For each team of
three robots, one robot is defined with ID 1, another with
ID 2, and the third with ID 3. Commands are sent to the
robot team to designate the motion of one, two, or three
robots, depending on the number of robot icons sketched
on the PDA. A robot’s response to the commands is based
on its ID number. For example, if two robot icons are
sketched, then robots with ID’s 1 and 2 will respond; the
robot with ID 3 will not move.

PDA to Robot Communication

Communication between the PDA and the robots is
achieved using IR transmission. The OmniRemoteTM
library5 is used on the PDA to broadcast IR commands
which are received by the handyboard controlling each
robot. The handyboard has an IR receiver and can be
programmed to receive the equivalent IR signal from a

5 www.pacificneotek.com/omnisw.htm

remote control device. With the OmniRemote library, the
PDA is programmed to output IR signals, as if from a
remote control device. To establish this communication
link, we defined a set of unique codes, one for each of the
commands listed in Table 2 and trained each command on
the PDA using a standard remote control device.

Commands are broadcast to all robots as a result of
three processing mechanisms. First, any of the commands
can be sent via a menu selection on the PDA. Second, each
command can be generated using a short-cut graffiti
command (or the keypad on the Tungsten PDA, shown in
Figure 1). In addition, a subset of the commands can be
generated whenever a sketch is interpreted; these include
all of the Formation commands, as well as all of the
Control commands except Stop.

Table 2. PDA to Robot Commands

Command type Command
Control Forward
 Reverse
 Right turn
 Left turn
 Turn around
 Stop
Initialization Set ID from sensors
 Reset ID
Formations Follow 2 robots
 Follow 3 robots
 March 2 robots
 March 3 robots
 Left circle
 Right circle
 Left square
 Right square

To test the sketching interface and the effective IR

range for communication, the PDA software was installed
on three different PDA platforms: the Handspring Visor,
the Palm m505, and the Palm Tungsten. Although the
Tungsten was the best to use for the sketching component
due to processing speed and screen resolution, the Palm
m505 had the best IR range with more than adequate
processing speed.

The use of IR transmission as a communication
mechanism between the PDA and the robots was
undoubtedly the weakest part of the system, as direct line
of sight was required and the range was limited. However,
this was done for the prototype only and was not intended
as a long-term solution.

Robot Actions

The robots execute specific actions in response to the
commands listed in Table 2. In all cases, obstacle
avoidance is incorporated as a low-level behavior, based
on the four IR sensor readings. A generally forward

moving robot will avoid an obstacle by moving around it.
A robot backing up will avoid hitting an obstacle by
stopping.

The robots are programmed to respond uniquely to
each of the commands listed in Table 2, based on their ID
numbers. Upon receiving the Control commands, robots of
all ID numbers will respond appropriately to the Right turn
(turn right 90 degrees), Left turn (turn left 90 degrees),
Turn around (180 degrees), and Stop. However, the
forward and reverse commands are reserved for the robot
with ID 1, which is considered to be the leader in a
formation.

Although the analog knob on the handyboard defines a
default ID, the ID numbers can also be inferred from the
IR sensor readings. The Set ID command can be used to
override the default ID settings when the robots are
positioned in a follow the leader formation. Robot of ID l
is defined as the leader; therefore, if the front IR sensors
show nothing in front and the rear IR sensor shows
something in the rear, the ID is set to number 1. If both
the front and rear sensors indicate presence, the ID is set to
2. If the front sensors indicate presence and the rear sensor
does not, then the robot is at the end of the formation, and
the ID is set to 3. In addition, the Reset ID command can
be used to revert back to the default ID settings.

Formations were achieved using local sensory
information from the color CMUcam and the IR sensors.
For example, the Follow 2 and Follow 3 commands result
in the follow the leader formation shown in Figure 9. This
formation was achieved by programming the follower
robots (ID 2 and 3) to simply track and follow the color
orange. The leader (ID 1) was programmed to move
straight ahead. The front sensors on the follower robots
were also used to adjust the distance between robots in the
follow the leader formation, either to wait for the robot in
front or to speed up.

Figure 9. Two robots in a follow the leader
formation.

The March 2 and March 3 commands result in the

march side by side formation, shown in Figure 10. This
was achieved by turning the CMUcam servo to the left on
the follower robots and tracking the color green on the
neighbor’s side panel. The leader robot (the left-most robot
in the formation) is programmed to make short “steps”
forward in a march-like fashion. If a follower robot sees

green, it also makes a short step forward, pausing after
each step. Thus, the robot formation appears to march
forward.

The follow the leader formation can be modified by the
addition of a sketched ellipse symbol (Figure 7(a)), which
sends the Right circle or Left circle command, depending
on whether the ellipse was sketched in a clockwise or
counterclockwise fashion. The leader robot will begin a
right circle or left circle pattern as specified by the
command. The follower robots continue to track and
follow the color orange and thus follow the leader in the
circular path.

Figure 10. Two robots in a march side by side

formation.

The Left square and Right square commands are

generated when the rectangle symbol is sketched after
either the follow the leader formation or the march side by
side formation (Figure 7(b)). In either case, the robots
move in a square pattern of varying sizes, based on the
robot ID numbers.

A formation can be modified by sending the Turn
around command. This has the effect of reversing the robot
ID numbers. That is, the leader robot will become the last
robot, and the last robot will become the leader.
Subsequent follow or march sketches will result in the
appropriate formation with the new leader. It is also
possible to switch between formations, i.e., from the march
formation, the robots can change to the follow the leader
formation. In fact, it is possible to form a follow the leader
formation from arbitrary positions, as the follower robots
will search for the orange target, although the follower
robots must be able to see the orange panel.

Exhibition and Interaction Results

The PDA sketch interface and robot team were
demonstrated at the 2004 AAAI Conference and Robotics
Competition as part of the Exhibition and Interaction
events. Figure 11 shows one of the authors demonstrating
the follow the leader formation. The comments and
suggestions reported below are from AAAI conference

attendees, as well as from Botball participants (mostly
students in grades 6-12), their coaches, and their family
members. The National Botball Competition was co-
located with the AAAI Conference; many of the
participants were especially interested in our robots, as
they were built with Botball kits.

Figure 11. One of the authors demonstrates the

follow the leader formation with two robots. This
illustrates the typical range available for IR
transmission between the PDA and the robots.

The sketch interface and robot team performed well

during live demonstrations. Set up on-site was minimal;
however, the local color-based behaviors required re-
initialization of the color parameters at the conference site.
Initially, we had made the color target range for green and
orange quite broad to account for a variety of lighting
conditions, but found that environment structures
interfered, such as the color of the table drapes, the wall,
and the neighboring yellow tent structure used by another
robot team. These temporary problems were fixed by
adjusting the color parameters for the orange and green
targets.

We asked attendees to try the sketch interface, in an
effort to (1) test the robustness of the recognizer with
different users, and (2) get the general opinion of using a
sketch interface, especially as a control mechanism for a
team of mobile robots. Many other observers commented
on the sketch-based robot system or offered suggestions.

About 18 users tried the sketch interface. Generally,
the users liked the idea of sketching and wanted to do
more. The recognizer robustly classified the symbols
drawn. Several users wanted to draw more symbols and
more complex symbols. Users also noted they would like
the ability to draw symbols in a more flexible way. One
user asked whether a triangle pattern could be drawn to

generate a triangular follow the leader path. Another user
asked whether the sketch interface would recognize an
elephant and then make the robots move in an elephant-
shaped path. Another user wanted to know whether the
sketch interface would recognize false patterns. The issue
of false alarms is important. During the exhibition, the
false alarm rate was quite low. If the recognizer does not
identify a stroke mark (i.e., none of the models fit), the
stroke will be discarded.

Many questions and comments focused on application
issues. The most asked questions were the following:
“What are you going to use this for?” What do you see as
applications?” “How is it useful to society?” Observers
noted the potential for military applications, such as in
specifying military search patterns. An observer noted that
the sketch platform was a more natural method for military
leaders to receive and provide war information. Observers
suggested strategic applications such as planning and
coordination between two or more teams. One observer
suggested improving the follow the leader formation for
use in a military application. Observers also noted that the
sketch-based interface could be used for (non-military)
search and rescue coordination. Finally, several observers
suggested using the sketch interface for video games, e.g.,
as an interface for strategic multi-player games.

Observers also offered suggestions for improving the
system. Some noted that higher performance could be
achieved by using better hardware, e.g., bigger and more
capable robots, and a Tablet PC instead of a PDA. The
weakness of the IR communication was noted as well. The
IR transmission did represent a limitation in demonstrating
the system, as a result of the range and line of sight
requirements. With a better communication system, more
formations and more complex formations could have been
included. In particular, the IR transmission scheme limited
the number of robots that could reliably receive commands
from the sketch interface.

Observers also commented on extending the
communication capabilities, such as designating a robot to
receive a command (i.e., sending commands to specified
robots individually), or circling a group of robots as a way
to designate the robot receivers of a command. It was also
suggested that robot-to-robot communication be added,
such as communication between the leader and a follower.

Observers had suggestions for extending the
functionality in other ways, such as sketching a map and
then incorporating the formation control with respect to the
map. Another observer asked whether we had plans for
more tightly coupling information which the robots receive
over time, such as updating the sketch.

Finally, the most unexpected comment was from an
observer that spent several minutes watching a team of two
robots in a circular follow the leader formation. After
observing for some time, he noted that the robots looked as
if they were alive, especially in the way the follower robot
searched and tracked the leader. Figure 12 shows two
robots in this formation.

Figure 12. Observers watching two robots move in a
circular follow the leader formation.

Concluding Remarks

In this paper, we have described a prototype
implementation of a sketch-based interface for generating
multi-robot formations. The interface is built on a PDA
platform and allows the user to sketch desired formation
configurations such as follow the leader or march side by
side. The user sketches the position of robot icons and can
use editing strokes to move or delete symbols. An HMM
symbol recognizer is used to classify strokes. In the paper,
we have reported classification results on twelve symbols
using the HMM recognizer.

The sketch-based interface was demonstrated at the
AAAI Conference and Robotics Competition as part of the
Exhibition and Interaction events. In the paper, we report
the performance, as well as comments and suggestions
offered by observers.

In the future, we plan to extend the system by porting
the sketch interface to a Tablet PC and using larger robots
such as the Pioneer from ActivMedia. The wireless
communication capabilities of these platforms will
facilitate a larger robot team and more complex
formations. We also plan to extend the interface to support
more symbols, more complex symbols (including multi-
stroke symbols), and more complex robot coordination and
control. We agree with observers that the system is
suitable for military and non-military applications
involving search and coordination activities and will work
towards these applications in future work.

Acknowledgements

This work is supported by in part by the Naval
Research Lab under grant N00173-04-1-G005. We would

also like to thank Ben Shelton for his help in building and
testing the robot team.

References

Anderson, D., Bailey, C., and Skubic, M. 2004. Hidden
Markov Model Symbol Recognition for Sketch-Based
Interfaces. AAAI 2004 Fall Symposium, Workshop on
Making Pen-Based Interaction Intelligent and Natural,
Washington, DC, Oct.

Chronis, G. and Skubic, M. 2004. Robot Navigation Using
Qualitative Landmark States from Sketched Route
Maps. In Proc. IEEE. Conf. Robotics and Automation,
New Orleans, LA, May.

Fong, T. 2001. Collaborative control: A robot-centric
model for vehicle teleoperation, Ph.D. dissertation
Pittsburgh, PA: Robotics Inst., Carnegie Mellon Univ.

Fong, T., Thorpe, C. and Baur, C. 2003. Multi-Robot
Remote Driving with Collaborative Control. IEEE
Trans. Industrial Electronics. 50(4):699-704.

Kawamura, K., Koku, A.B., Wilkes, D.M., Peters II, R.A.,
and Sekmen, A. 2002. Toward Egocentric Navigation,
International Journal of Robotics and Automation,
17(4): 135-145.

Lundberg, C., Barck-Holst, C., Folkeson, J., and
Christensen, H.I. 2003. PDA Interface for Field Robot.
In Proc. IEEE/RSJ Intl. Conf. Intelligent Robots and
Systems, Las Vegas, NV, pp. 2882-2888.

Perzanowski, D., Schultz, A., Adams, W., Marsh, E. and
Bugajska, M. 2001. Building a Multimodal Human-
Robot Interface. IEEE Intelligent Systems. 16(1): 16-20.

Rabiner, L. 1989. A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition. In
Proc. IEEE. 77(2).

Skubic, M., Bailey, C. and Chronis, G. 2003. A Sketch
Interface for Mobile Robots, In Proc. IEEE Conf. SMC ,
Washington, D.C., Oct.

	Abstract
	Introduction
	Sketch Understanding Methods
	
	
	
	
	HMM Symbol Recognizer
	Interpreting Formations

	A Prototype for Sketch-Driven Formations
	
	
	
	
	Robot Design
	PDA to Robot Communication
	Robot Actions

	Exhibition and Interaction Results
	Concluding Remarks
	
	
	
	
	Acknowledgements
	References

