
Blue Swarm 3:
Integrating Capabilities for an Autonomous Rescue Robot Swarm

Daniel P. Stormont, Anisha Arora, Madhumita Chandrasekharan, Manasi Datar, Udit Dave,
Chaitanya Gharpure, Juan Jorge, Aliasgar Kutiyanawala, Vinay Patel, Bharath Ramaswamy,

Loren Sackett, and Zhen Song

Departments of Computer Science, Electrical and Computer Engineering, and Mechanical and Aerospace Engineering
Utah State University
Logan, Utah 84322

stormont@cc.usu.edu

Abstract
The robotics team at Utah State University has been
working on incrementally building the capabilities needed
to field an autonomous swarm of rescue robots. We believe
a swarm of small, low-cost robots that can identify areas
needing further investigation would be of great benefit to
first responders to the scene of a disaster. Blue Swarm 3 is
the latest iteration in this development process and is the
first swarm to try to incorporate all of the capabilities
needed for a fieldable rescue robot swarm. This paper
discusses the philosophy behind Blue Swarm 3, the
historical background behind the previous swarms, details
of the design of Blue Swarm 3, the results of our efforts at
this year’s American Association for Artificial Intelligence
Mobile Robot Competition, lessons learned, and plans for
the future development of the Blue Swarm 3 and follow-on
swarms.

Introduction
Autonomous robots are not commonly used in real-world
search and rescue operations today. Given the current
state-of-the-art in autonomous robotics, rescuers will
continue to rely upon tele-operated robots that make use of
the unparalleled processing power of the human brain and
upon trained animals, such as search and rescue dogs.
However, we believe that there is a place for autonomous
robots in search and rescue operations. A swarm of small,
low cost robots could provide an invaluable “force
multiplier” for first responders to a disaster area by
providing them with an overall view of the disaster scene
and highlighting areas that should be the most productive
to begin searching with the other tools at their disposal –
such as tele-operated robots, dogs, and human rescuers.
 To provide this capability, the robotics team at Utah
State University has been attempting to develop a swarm
of autonomous search and rescue robots with the objective

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

of keeping the cost low enough that rescuers wouldn’t feel
the need to recover them from the disaster area, small
enough that they wouldn’t cause harm to victims or
rescuers, and capable enough that they can provide useful
information via robust communications channels to first
responders. To say that this is a challenge would be an
understatement. This paper describes the current status of
our efforts.

Historical Background
The American Association for Artificial Intelligence
(AAAI) introduced the rescue robot competition as part of
their annual mobile robot competition in 2000. This
competition utilizes the standard test course for urban
search and rescue developed by the National Institute for
Standards and Technology (NIST). The NIST test course
provides a variety of simulated disaster situations varying
from minor damage and debris in the yellow arena,
through more extensive debris and multiple levels in the
orange arena, to a rubble pile in the red arena. Utah State
University has been involved with the AAAI rescue robot
competition since it was first introduced. Each year, we
have focused on a different capability that would be
needed to eventually field an effective swarm of
autonomous rescue robots. The following paragraphs
describe these efforts, the capabilities being focused on,
and the results.

Blue Swarm
Our initial effort in 2000 was to modify six remote-
controlled toy cars with a simple analog control circuit to
determine the lower boundary in cost and capability. The
control circuit was the tutebot circuit described in (Jones,
Seiger, and Flynn 1999). This simple analog circuit was
only capable of responding to obstacles in the
environment. It was unable to detect a victim, determine
its position, or report a victim location to a rescuer. Our
objective was limited to determining if this simplest of

robots could fully explore the simplest arena in the urban
search and rescue testbed: the yellow arena.
Unfortunately, the Blue Swarm was hampered by problems
with the control circuitry. The motor speed was too
difficult to control since it was adjusted via a
potentiometer setting prior to deploying the robot in the
arena. The relays that controlled the motor directions also
failed frequently. As a result, the Blue Swarm never ran in
the competition – it was only displayed in the exhibit area,
as shown in figure 1.

Figure 1. The Blue Swarm robots on display at the AAAI 2000
Mobile Robot Exhibition.

Blue Swarm 2
The shortcomings evident with the Blue Swarm led us to
increase the complexity and capability of the robots used
in the 2001 competition. The same type of modified toy
cars were used as the chassis for the robots, but a
microcontroller replaced the analog control circuit. The
objective was to see how much area the six robots in the
swarm could cover in the time allotted for a competition
run. The robots also had an IR-based temperature sensor
to try to detect victims, but they still had no capability to
determine their position or the position of a located victim.
They also were not capable of reporting the position of a
victim to the rescuers. The six robots that comprised the
Blue Swarm 2 were consistently able to explore all of the
accessible areas in the yellow arena. In fact, the area
covered by these six robots using a simple random walk
navigation algorithm frequently was greater than the area
covered by the tele-operated robots that year. The victim
sensor circuit did not work, so the robots were unable to
signal that they had located a victim. The Blue Swarm 2
robot, shown in figure 2, was described in (Boldt and
Stormont 2001).

Figure 2. The Blue Swarm 2 prototype appears to have found a
victim in the yellow arena. It was actually unable to detect
victims because the victim detection sensor did not work.

Blue Swarm Sentinel
In order to address the shortcomings of not being able to
determine the location of a potential victim and not being
able to report that position to the rescuers, the Blue Swarm
Sentinel was designed as an adjunct to the Blue Swarm 2
for the 2002 competition. The Blue Swarm Sentinel was
based on a radio-controlled toy tank. The radio control
circuitry was replaced by a network of three
microcontrollers. The Sentinel had a wireless video
camera to display images on the rescuer graphical user
interface (GUI), an infrared temperature sensor for victim
identification, a compass module and encoder switches on
the treads for pose estimation, collision avoidance sensors,
and an RF transmitter-receiver pair to communicate with
the GUI on the base station. The robot could operate in
both manual mode so the rescuer could drive the robot to a
desired starting location and autonomous mode to explore
the environment. The Sentinel was described in (Bhatt et
al. 2002) and is shown in figure 3.

Figure 3. The Blue Swarm Sentinel and its base station unit.

 The Sentinel was not used in the competition because of
failures in the radio modules and interprocessor
communications. Instead, a second RC tank was converted
into the “breadboard special” by adding two breadboards
and a transceiver module. This robot ran in the
competition, but was very limited in sensor capability and
frequently got stuck on obstacles like chair legs. A picture
of the breadboard special is in figure 4.

Figure 4. The “breadboard special” prepares to enter the yellow
arena.

Blue Swarm 2.5
The swarm for 2003 was intended to test some concepts in
sensor fusion for the rescuer GUI, as described in
(Stormont and Berkemeier 2004), for possible
incorporation into the next iteration of the Blue Swarm.
Since it wasn’t actually an increment in the development of
the Blue Swarm, it was given the designation Blue Swarm
2.5. To collect the sensor data, two Boe-Bots from
Parallax were modified with crawler kits for added
mobility and equipped with a number of victim sensors;
including a CMOS color camera, ultrasonic sensors,
infrared rangers, an infrared temperature sensor, and a
compass module. The Blue Swarm 2.5 was described in
(Stormont and Berkemeier 2003). In the competition, the
microcontrollers kept running up against memory
constraints, which limited the use of the sensors and made
it impossible to transmit data when the robots were
moving, so the desired sensor data was not collected.
Figure 5 shows a Blue Swarm 2.5 robot in the rescue
arena.

Figure 5. A Blue Swarm 2.5 robot approaches a victim in the
yellow arena.

Blue Swarm 3

Conceptual Approach
This year’s entry was the first to try to bring together the
capabilities tested piecemeal in the previous incarnations
of the Blue Swarm. Blue Swarm 3, shown in figure 6,
consists of ten robots with a full suite of sensors for
navigation, localization, and victim detection. The swarm
also has two means of communicating information back to
the rescuer GUI: radio frequency and line-of-sight using
infrared emitters and detectors. As currently implemented,
the robots in the swarm form an ad-hoc sensor network by
maintaining a neighbor relationship with no more and no
less than two other robots in the swarm. Maintaining this
relationship forces the robots to spread out into the rescue
arena, while maintaining line-of-sight contact for
localization and communications. The hardware and
software architecture designed for Blue Swarm 3 is robust
and flexible enough that we expect it to be our platform for
experimenting with autonomous search and rescue
concepts for several years to come. The following
paragraphs provide details about the design of the Blue
Swarm 3.

Figure 6. The Blue Swarm 3 robots being worked on in the pit
area at AAAI 2004.

Hardware Design
The Blue Swarm 3 robots make use of commercially
available parts wherever possible. By necessity, some of
the controller and sensor boards were custom-made, but
everything else was purchased from various robot vendors.
Each subsystem of the robot has its own controller. Figure
7 shows a block diagram of the robot hardware, with
dashed lines separating the subsystems: primary controller,
localization, local mapping, victim detection, and
communications. Figure 8 shows an image of a Blue
Swarm 3 robot.

Figure 7. Hardware block diagram of the Blue Swarm 3 robots.

Figure 8. Two views of one of the Blue Swarm 3 robots showing
the collision avoidance sensors in front, infrared ranging sensors
on the front and back servo motors, and the localization sensors
on the top circuit board.

Robot Chassis. The Blue Swarm 3 robots use the 4WD2
articulated four wheel drive robot chassis from
Lynxmotion. We chose this chassis because the articulated
hulls appeared to provide greater obstacle climbing
capability than a chassis without an articulated hull, as
shown in figure 9. The locomotion for the robot is
provided by four 7.2 VDC motors with 50:1 gearboxes.

Figure 9. The Lynxmotion 4WD2 chassis demonstrating the
articulation of the hulls. (Image courtesy of Lynxmotion.)

Primary Controller and Navigation Sensors. We
selected the OOPic Mark III robot controller board as the
primary controller board for the robots. The OOPic
microcontroller is a good choice for the low-level
functions of the robot because of its event-based multi-
tasking architecture and because it has a number of objects
(called virtual circuits in the OOPic) that support common
sensors, actuators, and communications protocols like RS-
232 serial and Inter-IC (I2C) protocols. The Mark III
controller also has the advantage of being small and
inexpensive. Headers allow access to all of the pins on the
microcontroller, making interfacing peripherals to it much
easier.
 The function of the primary controller is to route all of
the communications between subsystems on the robot and
to move the robot by sending control signals to the motor
driver circuits while the primary controller monitors the
navigation sensors. The navigation sensors consist of six
infrared proximity detectors for collision avoidance (three
facing forward in an arc, two facing down in front of the
front wheels, and one facing down in the back of the
robot), four infrared photodetectors and segmented
encoder disks for wheel velocity measurement, and an 8-
bit compass module for heading determination. The
primary controller also controls the mapping sensors,
which consist of an infrared and an ultrasonic rangefinder
on a servo motor with a 180° range of motion mounted on
either end of the robot.
Localization Sensors. The localization sensors are eight
infrared emitter/detector pairs arranged in a circle so that
they divide the 360° around the robot into eight 45°
sectors. They are controlled by an Atmel ATmega8
microcontroller on a custom-made circuit board. We
selected the ATmega8 because of its low cost, ample
memory, high speed, and sufficient number of I/O pins for
the task, as well as for a wide range of low-cost and open
source development tools. The localization sensors
perform the task of determining the direction of other
robots in the line of sight of the robot and double as a
secondary communications path.
Victim Detection Sensors. The Blue Swarm 3 robots use
three sensors for detecting victims: a CMOS camera, a
microphone, and an infrared temperature sensor. The
CMOS camera is the GameBoy camera made by Nintendo.
The CMOS camera chip inside the camera handles much
of the image processing, such as inverting video and edge
detection, thus limiting the processing required. We
selected an Atmel ATmega16 microcontroller for the
victim detection function. It is fast enough and has enough
memory to handle the nearest object determination task for
the camera and to listen for non-repetitive sounds from the
microphone. It has I2C communications capability, so it
can communicate with the temperature sensor, which
provides ambient temperature and the temperature of any
objects in front of the sensor, up to about a meter away. It
also shares common development tools with the ATmega8
used for the localization sensors. The victim detection

sensors perform the function of identifying objects that
may be victims and then trying to gather enough sensory
data about the objects to determine if they are a victim or
an obstacle.
Local Mapping Controller. Every robot keeps a map of
the path it believes it has followed and any obstacles or
victims encountered, based on its sensor information. This
map is kept on a Palm III Personal Digital Assistant
(PDA). The Palm III was selected because it is
inexpensive, has sufficient memory for building a local
map, and uses a serial interface so it can communicate with
the OOPic microcontroller via the Serial Communications
Protocol (SCP). One advantage of keeping a map on the
PDA is that the local map provides a back-up method of
constructing a global map of the disaster area, if the robot
can be recovered.
Communications. The communications subsystem is
based on the MICA 2 mote board from Crossbow. The
mote boards are based on the Atmel ATmega128
microcontroller and Intel’s smart mote communications
chips. The mote boards use open source software
developed by the University of California at Berkeley
called TinyOS to create an ad-hoc TCP/IP network. The
ATmega128 microcontrollers have plenty of memory
space for buffering processed sensor data, so even
relatively long periods of real or simulated RF signal loss
can be tolerated. The primary responsibility of the
communications subsystem is to provide localization,
victim, and pose information to the rescuer GUI, which
uses data from all of the robots in communications with the
base station to try to build a global map of the rescue
arena.

Software Design
The environment in the urban search and rescue testbed is
highly unstructured and unknown to the robots in advance.
Even a map created in one run in the arena will not be
valid for the next run since even major structures, such as
walls may have been moved. Because of the unknown and
unstructured environment in the competition and in the real
world, we think a reactive behavioral architecture is the
most robust and the most adaptive for this application.
Therefore, we designed our software architecture using the
subsumption architecture first proposed by Brooks (1986).
Our software design is illustrated in figure 10. The
software architecture is composed of the six behaviors
described below, with most of the behaviors being
executed on a processor dedicated to that behavior. The
only exceptions are the two highest-level behaviors, build
map and monitor movement, which both run on the PDA
and the not so easily categorized drivers for processing
sensor inputs, which are divided between the primary
controller (OOPic), and the localization and victim
detection controllers. The rescuer GUI is not shown in
figure 10 since it is a coordinating task that attempts to
disambiguate the data coming from the robot swarm and

produce a coherent global map. It will be described after
the descriptions of the behaviors.

Figure 10. The software architecture for the Blue Swarm 3.
Drive Motors. This behavior receives the requested move
from the monitor movement behavior in the form
(<direction to move>, <number of cells to move>, <final
heading>) and attempts to execute the request. It may be
unable to execute the request if one of the collision
avoidance sensors detects an obstacle that would prevent
carrying out the requested move. The drive motors
behavior uses the compass readings and encoder readings
to determine when it has completed the move request.
Whether or not the requested movement has been
completed, drive motors will return the movement that was
actually completed, in the same message format as the
move request, to the build map and monitor movement
behaviors. The actual move will also be sent to the
communicate behavior for processing by the rescuer GUI.
Track Neighbors. This behavior has the responsibility for
maintaining the neighbor relationships mentioned earlier.
Critical to the search algorithm employed for the Blue
Swarm 3 is the necessity to always keep no more and no
less than two neighboring robots within line of sight. If
more than two neighboring robots are within sight, then
the swarm has not dispersed as far as it possibly can. If
fewer than two robots are in sight, then it will not be
possible to use triangulation to attempt to provide relative
localization for the three robots and ambiguities in the
estimated poses of the robots will be nearly impossible for
the rescuer GUI to resolve. This behavior uses time
slicing, which requires periodic synchronization pulses
from the rescuer GUI to keep the individual robot clocks
from drifting too much. Each robot knows its own ID and
will broadcast a binary representation of that ID during its
broadcast time slice (which is usually on the order of a
second). The other robots are all receiving when it is not
their turn to broadcast, so they will receive the ID
transmission from a broadcasting robot if it is in line of
sight. Thus, they have two methods for determining the ID
of a neighbor: the ID tag and the time it was received. The
signal will be strongest in one sector, so that is the
assumed direction of the neighboring robot. The robots
can also determine distance to the neighboring robot using
the infrared or ultrasonic ranging sensors or a very rough
estimate using the localization infrared pairs as a distance

sensor. Track neighbors maintains a database of the robots
it knows a position for and can communicate this
information by substituting the database contents for the
robot ID, which is an alternative algorithm we have
experimented with. Track neighbors maintains the desired
neighbor relation by sending out a desired move message
to the monitor movement behavior. This request takes the
same form as the move request discussed earlier, except
that a final heading is not requested. Figure 11 shows an
example of the neighbor relationships track neighbors is
responsible for maintaining.

Figure 11. An example of the neighbor relationships maintained
by the behavior track neighbors.

Locate Victims. This behavior uses sensor data from the
CMOS camera, microphone, and infrared temperature
sensor to try to locate and identify victims. It primarily
uses the camera’s edge detection mode to identify objects
larger than a threshold value that are close to the robot.
The size and distance of the object are determined by the
number of horizontal pixels the edge of the object occupies
(size) and the vertical position of the edge of the object
(distance). This simple determination of size and distance
is far from infallible, but it becomes somewhat more
accurate since the robot will usually be moving while
retaining the same viewpoint. The motion of the robot
thus helps to resolve perspective errors. Based on the
location of the object in the field of view, locate victims
will generate a desired move message after every
processing cycle in the form (<direction: left, straight,
right>, <distance: 1 or 2 cells>). The direction request is
based on the location of the center pixel of the closest edge
relative to the horizontal center of the field of view and the
distance request is based on the number of vertical rows
the edge is located above the bottom of the image. If an
object is closer than a threshold value, the locate victims

behavior will take a reading with the infrared temperature
sensor and will listen for a non-repetitive noise source with
the microphone. If either one or both of these sensors
indicate the presence of a victim, the behavior will identify
the object as a victim to the build map and communicate
behaviors.
Build Map. This behavior builds a local map based on the
movements and sensor readings of an individual robot in
the swarm. The map uses an occupancy grid where the
individual map cell sizes and the dimensions of the map
are based on the expected area of the disaster scene,
represented as a two-dimensional array that is twice the
expected length and width to ensure the mapping is
contained within the bounds of the array regardless of
starting position. This somewhat wasteful allocation of
memory is acceptable because each individual location in
the array only holds a nibble of data indicating an
unexplored cell, an obstacle, a victim, or an empty cell.
The occupancy grid is also used to generate a graphical
local map on the screen of the PDA. The contents of the
map array can be downloaded via serial link to the rescuer
GUI to generate a global map if one or more robots are
recovered from the arena.
Monitor Movement. This behavior acts as the arbitrator
of the desired move requests coming from the track
neighbors and locate victims behaviors. It will prioritize
the move requests by giving the periodic desired move
messages from track neighbors the highest priority (to
ensure the robots maintain their line-of-sight relationships
with their neighbors), followed by the constantly generated
desired move messages from locate victims if there are no
requests from track neighbors. However, before
converting either one of the desired move messages into a
requested move message, monitor movement will look at
the local map being generated by build map to ensure the
robot is not stuck in a loop continually exploring the same
area. If the desired move messages would result in
reentering an already explored area, monitor movement
will request a new heading toward an unexplored area and
then allow track neighbors and locate victims to generate
new desired move messages, if appropriate. Thus, the
monitor movement behavior plays a key role in ensuring
the robot explores as much of the area as possible.
Communicate. This behavior performs the task of sending
information about moves made by the robot, obstacles seen
by the sensors, and victims detected to the base station for
processing into a global map by the rescuer GUI. It also
has the ability to pass along data about other robots
contained in the local database generated by the track
neighbors behavior and to process data or movement
requests coming from the rescuer GUI. (This last
capability is not implemented at present, but is a growth
capability for the future.)
Rescuer GUI. The rescuer GUI is not one of the robot
behaviors. It is a stand-alone process that attempts to
collect the data about movements, obstacles observed, and
victims detected sent by all of the robots in the swarm;

correlate that data; detect conflicting data and ambiguities;
and build as accurate a global map as possible. Of course,
a high degree of accuracy is impossible with the resolution
of the sensors used on the robots and given the
unstructured nature of the environment, so the objective of
this process is to generate a rough map that highlights
areas of interest that can be further explored through the
employment of the other tools available to the rescuers,
such as tele-operated robots or search and rescue dogs.
One of the tools for disambiguating the sensor reports is
the localization information provided by the robots. The
triangulation between neighbors can be used to identify
pose and sensor errors being reported by one of the robots.
The resulting global map is displayed to the rescuers using
color coded grid cells for explored areas, obstacles, and
victims. Certainty measurements could also be taken into
account in the color coding of the display, as described in
(Stormont and Berkemeier 2004). Additionally, the
estimated current positions and headings of the robots are
displayed to the rescuers. The GUI has provisions for
requesting a still photograph from one of the robots to
allow for human interpretation of a victim identified by the
locate victims behavior. This capability is still being
developed.

Competition Results
Most of the behaviors described above were developed and
tested to at least a rudimentary extent by the developers
working on the individual subsystems. A number of
factors complicated the integration of the subsystems,
including receiving funding with short deadlines for
committing the funds, leading to insufficient prototyping
and frequent design changes when problems were
identified; delays in organizing the team due to academic
commitments during the school year; and finalizing the
design late in the design cycle. This last factor was
probably the most critical, since it meant some of the most
important hardware, such as the custom printed circuit
boards, was completed just before the team departed for
the AAAI mobile robot competition. Not surprisingly,
problems with the circuit boards were uncovered at the
competition, necessitating some last minute construction of
replacement boards. There were also some unexpected
problems, such as the inability during subsystem
integration to get the OOPic microcontroller to
communicate with the Atmel microcontrollers via the I2C
protocol. Since this was a critical element of the hardware
design and had not been a problem with most of the
sensors, which also communicate via I2C, trying to find
alternative inter-processor communications methods was
essential, but ultimately unsuccessful. Finally, we had
problems with version control, where changes made to
previously working software would result in less
functionality than before the changes were made and the
previous version could not be recovered. This was an
especially common problem with the OOPic development
environment, which acts like an interpreter, allowing

downloads of modified software to the microcontroller
without saving the changes.
 The end result was that we had three opportunities for
scored runs in the preliminary rounds of the rescue robot
competition. For the first run, none of the robots was able
to run. For the second run, we had one robot ready to run,
but the collision avoidance sensors were not responding
properly and the robot would collide with debris at the end
of the entrance hallway and get stuck, as shown in figure
12. For the third run, the problem with the sensors was
fixed but loose connections on one side of a motor driver
board we had built on site caused the motors on the right
side of the robot to shut down intermittently and the robot
to arc into the wall of the arena. In short, we were never
able to demonstrate the capabilities we had been
developing for the Blue Swarm 3 due to a number of
hardware and design issues encountered during the
competition.

Figure 12. A sequence of photographs showing a Blue Swarm 3
robot colliding with debris in the entryway to the yellow arena
during the second preliminary round.

Lessons Learned
The lessons learned from this first attempt at fielding the
Blue Swarm 3 echo the lessons learned from many a
troubled or failed project. We learned that you can never
spend too much time in design and prototyping. We
learned that we should have been doing integration testing
all throughout the development cycle. We learned that we
needed more coordination between team members during
the development of the subsystems and the software.
Finally, we reinforced the common wisdom that the first
version of a circuit board will always contain errors and
that failure to implement good version control will always
cause problems in software development.

Future Work
Although the competition results for the Blue Swarm 3 in
this year’s mobile robot competition were disappointing,
we remain convinced that we have a good platform for
swarm development in the hardware and software designs
described in this paper. For the short term, we intend to
return to the prototyping phase to develop two or three
prototypes for a demonstration at Utah State University in
October. The prototype that performs best in the
demonstration runs will form the basis for the redesign of
the swarm robots. We will then replicate nine more copies
of the successful prototype and complete the software
development and integration. We hope to enter the rebuilt

Blue Swarm 3 in the 2005 RoboCup American Open
Rescue Robot competition and in the AAAI 2005 Rescue
Robot competition.
 Over a longer term, we would like to incorporate some
of the software enhancements that were not a part of this
development. Some examples are a robust sensor fusion
algorithm that provides a degree of confidence measure in
the graphical display on the global map. This could be
displayed in the form of varying levels of shading for the
colors representing obstacles, victims, and open areas
corresponding to the degree of confidence. Another
enhancement to the rescuer GUI would be the
incorporation of views that would be appropriate to the
needs of the rescuer. In other words, a rescue team
preparing to enter the disaster area would probably find a
three-dimensional walkthrough of what they could expect
to find along the path they plan to take more useful than a
two-dimensional global map. The ability to cue regions of
the global map to try to get the robots close to that area to
explore the cued area more thoroughly would also be
useful. Desirable hardware enhancements include more
accurate position sensors, stereo vision, and higher
resolution rangefinders. The Blue Swarm 3 should also
provide a useful platform for experimenting with other
search strategies, such as formation sweeps, varying
numbers of robots comprising a neighbor relationship, and
the return of robots to the starting point for recovery of
their local maps.
 Eventually, it is hoped that the experience gained from
the development of the many iterations of the Blue Swarm
can be put to use in developing a truly fieldable swarm of
autonomous search and rescue robots.

Acknowledgments
We would like to thank the Dean of the College of
Engineering at Utah State University for providing funding
for Blue Swarm 3. We would also like to thank the
Department of Electrical and Computer Engineering for
providing additional funding for robot parts and travel to
San Jose. The Center for Self Organizing and Intelligent
Systems (CSOIS) at Utah State provided workspace and
tools. We are especially grateful to PCBexpress for their
education sponsorship program that enabled us to order
our printed circuit boards for only the cost of shipping.
Finally, the primary author (Dan Stormont) wishes to
thank the Space Dynamics Laboratory at Utah State
University, whose Tomorrow PhD Fellowship has made it
possible for him to be involved with this research.

References
Bhatt, A., Boldt, B., Skousen, S., and Stormont, D. 2002. Blue
Swarm Sentinel and Blue Swarm 2. In AAAI Mobile Robot
Competition & Exhibition, Technical Report WS-02-18, 50-52.
Menlo Park, Calif.: AAAI Press.

Boldt, B. and Stormont, D. 2001. Blue Swarm II. In AAAI
Mobile Robot Competition, Technical Report WS-01-01, 8-9.
Menlo Park, Calif.: AAAI Press.
Brooks, R. 1986. A Robust Layered Control System for a Mobile
Robot. IEEE Journal of Robotics and Automation RA-2 April:
14-23.
Jones, J., Seiger, B., and Flynn, A. 1999. Mobile Robots:
Inspiration to Implementation. Natick, Mass.: A K Peters.
Stormont, D. and Berkemeier, M. 2003. Blue Swarm 2.5: A Step
Toward an Autonomous Swarm of Search and Rescue Robots. In
AAAI Mobile Robot Competition 2003, Technical Report WS-03-
01, 36-40. Menlo Park, Calif.: AAAI Press.
Stormont, D. and Berkemeier, M. 2004. A Robotic Rescue
Graphical User Interface Integrating Multi-Robot Sensor Fusion.
In Engineering, Construction, and Operations in Challenging
Environments: Earth and Space 2004, 153-160. Reston, VA:
American Society of Civil Engineers.

