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Abstract 
The robotics team at Utah State University has been 
working on incrementally building the capabilities needed 
to field an autonomous swarm of rescue robots.  We believe 
a swarm of small, low-cost robots that can identify areas 
needing further investigation would be of great benefit to 
first responders to the scene of a disaster.  Blue Swarm 3 is 
the latest iteration in this development process and is the 
first swarm to try to incorporate all of the capabilities 
needed for a fieldable rescue robot swarm.  This paper 
discusses the philosophy behind Blue Swarm 3, the 
historical background behind the previous swarms, details 
of the design of Blue Swarm 3, the results of our efforts at 
this year’s American Association for Artificial Intelligence 
Mobile Robot Competition, lessons learned, and plans for 
the future development of the Blue Swarm 3 and follow-on 
swarms. 

Introduction   
Autonomous robots are not commonly used in real-world 
search and rescue operations today.  Given the current 
state-of-the-art in autonomous robotics, rescuers will 
continue to rely upon tele-operated robots that make use of 
the unparalleled processing power of the human brain and 
upon trained animals, such as search and rescue dogs.  
However, we believe that there is a place for autonomous 
robots in search and rescue operations.  A swarm of small, 
low cost robots could provide an invaluable “force 
multiplier” for first responders to a disaster area by 
providing them with an overall view of the disaster scene 
and highlighting areas that should be the most productive 
to begin searching with the other tools at their disposal – 
such as tele-operated robots, dogs, and human rescuers. 
 To provide this capability, the robotics team at Utah 
State University has been attempting to develop a swarm 
of autonomous search and rescue robots with the objective 
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of keeping the cost low enough that rescuers wouldn’t feel 
the need to recover them from the disaster area, small 
enough that they wouldn’t cause harm to victims or 
rescuers, and capable enough that they can provide useful 
information via robust communications channels to first 
responders.  To say that this is a challenge would be an 
understatement.  This paper describes the current status of 
our efforts.  

Historical  Background 
The American Association for Artificial Intelligence 
(AAAI) introduced the rescue robot competition as part of 
their annual mobile robot competition in 2000.  This 
competition utilizes the standard test course for urban 
search and rescue developed by the National Institute for 
Standards and Technology (NIST).  The NIST test course 
provides a variety of simulated disaster situations varying 
from minor damage and debris in the yellow arena, 
through more extensive debris and multiple levels in the 
orange arena, to a rubble pile in the red arena.  Utah State 
University has been involved with the AAAI rescue robot 
competition since it was first introduced.  Each year, we 
have focused on a different capability that would be 
needed to eventually field an effective swarm of 
autonomous rescue robots.  The following paragraphs 
describe these efforts, the capabilities being focused on, 
and the results. 

Blue Swarm 
Our initial effort in 2000 was to modify six remote-
controlled toy cars with a simple analog control circuit to 
determine the lower boundary in cost and capability.  The 
control circuit was the tutebot circuit described in (Jones, 
Seiger, and Flynn 1999).  This simple analog circuit was 
only capable of responding to obstacles in the 
environment.  It was unable to detect a victim, determine 
its position, or report a victim location to a rescuer.  Our 
objective was limited to determining if this simplest of 



robots could fully explore the simplest arena in the urban 
search and rescue testbed: the yellow arena.  
Unfortunately, the Blue Swarm was hampered by problems 
with the control circuitry.  The motor speed was too 
difficult to control since it was adjusted via a 
potentiometer setting prior to deploying the robot in the 
arena.  The relays that controlled the motor directions also 
failed frequently.  As a result, the Blue Swarm never ran in 
the competition – it was only displayed in the exhibit area, 
as shown in figure 1. 

Figure 1.  The Blue Swarm robots on display at the AAAI 2000 
Mobile Robot Exhibition. 

Blue Swarm 2 
The shortcomings evident with the Blue Swarm led us to 
increase the complexity and capability of the robots used 
in the 2001 competition.  The same type of modified toy 
cars were used as the chassis for the robots, but a 
microcontroller replaced the analog control circuit.  The 
objective was to see how much area the six robots in the 
swarm could cover in the time allotted for a competition 
run.  The robots also had an IR-based temperature sensor 
to try to detect victims, but they still had no capability to 
determine their position or the position of a located victim.  
They also were not capable of reporting the position of a 
victim to the rescuers.  The six robots that comprised the                        
Blue Swarm 2 were consistently able to explore all of the 
accessible areas in the yellow arena.  In fact, the area 
covered by these six robots using a simple random walk 
navigation algorithm frequently was greater than the area 
covered by the tele-operated robots that year.  The victim 
sensor circuit did not work, so the robots were unable to 
signal that they had located a victim.  The Blue Swarm 2 
robot, shown in figure 2, was described in (Boldt and 
Stormont 2001). 

Figure 2.  The Blue Swarm 2 prototype appears to have found a 
victim in the yellow arena.  It was actually unable to detect 
victims because the victim detection sensor did not work. 

Blue Swarm Sentinel 
In order to address the shortcomings of not being able to 
determine the location of a potential victim and not being 
able to report that position to the rescuers, the Blue Swarm 
Sentinel was designed as an adjunct to the Blue Swarm 2 
for the 2002 competition.  The Blue Swarm Sentinel was 
based on a radio-controlled toy tank.  The radio control 
circuitry was replaced by a network of three 
microcontrollers.  The Sentinel had a wireless video 
camera to display images on the rescuer graphical user 
interface (GUI), an infrared temperature sensor for victim 
identification, a compass module and encoder switches on 
the treads for pose estimation, collision avoidance sensors, 
and an RF transmitter-receiver pair to communicate with 
the GUI on the base station.  The robot could operate in 
both manual mode so the rescuer could drive the robot to a 
desired starting location and autonomous mode to explore 
the environment.  The Sentinel was described in (Bhatt et 
al. 2002) and is shown in figure 3. 

Figure 3.  The Blue Swarm Sentinel and its base station unit. 
 
 The Sentinel was not used in the competition because of 
failures in the radio modules and interprocessor 
communications.  Instead, a second RC tank was converted 
into the “breadboard special” by adding two breadboards 
and a transceiver module.  This robot ran in the 
competition, but was very limited in sensor capability and 
frequently got stuck on obstacles like chair legs.  A picture 
of the breadboard special is in figure 4. 
 



Figure 4.  The “breadboard special” prepares to enter the yellow 
arena. 

Blue Swarm 2.5 
The swarm for 2003 was intended to test some concepts in 
sensor fusion for the rescuer GUI, as described in 
(Stormont and Berkemeier 2004), for possible 
incorporation into the next iteration of the Blue Swarm.  
Since it wasn’t actually an increment in the development of 
the Blue Swarm, it was given the designation Blue Swarm 
2.5.  To collect the sensor data, two Boe-Bots from 
Parallax were modified with crawler kits for added 
mobility and equipped with a number of victim sensors; 
including a CMOS color camera, ultrasonic sensors, 
infrared rangers, an infrared temperature sensor, and a 
compass module.  The Blue Swarm 2.5 was described in 
(Stormont and Berkemeier 2003).  In the competition, the 
microcontrollers kept running up against memory 
constraints, which limited the use of the sensors and made 
it impossible to transmit data when the robots were 
moving, so the desired sensor data was not collected.  
Figure 5 shows a Blue Swarm 2.5 robot in the rescue 
arena. 

Figure 5.  A Blue Swarm 2.5 robot approaches a victim in the 
yellow arena. 

Blue Swarm 3 

Conceptual Approach 
This year’s entry was the first to try to bring together the 
capabilities tested piecemeal in the previous incarnations 
of the Blue Swarm.  Blue Swarm 3, shown in figure 6, 
consists of ten robots with a full suite of sensors for 
navigation, localization, and victim detection.  The swarm 
also has two means of communicating information back to 
the rescuer GUI: radio frequency and line-of-sight using 
infrared emitters and detectors.  As currently implemented, 
the robots in the swarm form an ad-hoc sensor network by 
maintaining a neighbor relationship with no more and no 
less than two other robots in the swarm.  Maintaining this 
relationship forces the robots to spread out into the rescue 
arena, while maintaining line-of-sight contact for 
localization and communications.  The hardware and 
software architecture designed for Blue Swarm 3 is robust 
and flexible enough that we expect it to be our platform for 
experimenting with autonomous search and rescue 
concepts for several years to come.  The following 
paragraphs provide details about the design of the Blue 
Swarm 3. 
 

Figure 6.  The Blue Swarm 3 robots being worked on in the pit 
area at AAAI 2004. 

Hardware Design 
The Blue Swarm 3 robots make use of commercially 
available parts wherever possible.  By necessity, some of 
the controller and sensor boards were custom-made, but 
everything else was purchased from various robot vendors.  
Each subsystem of the robot has its own controller.  Figure 
7 shows a block diagram of the robot hardware, with 
dashed lines separating the subsystems: primary controller, 
localization, local mapping, victim detection, and 
communications.  Figure 8 shows an image of a Blue 
Swarm 3 robot. 
 



Figure 7.  Hardware block diagram of the Blue Swarm 3 robots. 

 
Figure 8.  Two views of one of the Blue Swarm 3 robots showing 
the collision avoidance sensors in front, infrared ranging sensors 
on the front and back servo motors, and the localization sensors 
on the top circuit board. 

 
Robot Chassis. The Blue Swarm 3 robots use the 4WD2 
articulated four wheel drive robot chassis from 
Lynxmotion.  We chose this chassis because the articulated 
hulls appeared to provide greater obstacle climbing 
capability than a chassis without an articulated hull, as 
shown in figure 9.  The locomotion for the robot is 
provided by four 7.2 VDC motors with 50:1 gearboxes. 

 
Figure 9.  The Lynxmotion 4WD2 chassis demonstrating the 
articulation of the hulls.  (Image courtesy of Lynxmotion.) 
 

Primary Controller and Navigation Sensors. We 
selected the OOPic Mark III robot controller board as the 
primary controller board for the robots.  The OOPic 
microcontroller is a good choice for the low-level 
functions of the robot because of its event-based multi-
tasking architecture and because it has a number of objects 
(called virtual circuits in the OOPic) that support common 
sensors, actuators, and communications protocols like RS-
232 serial and Inter-IC (I2C) protocols.  The Mark III 
controller also has the advantage of being small and 
inexpensive.  Headers allow access to all of the pins on the 
microcontroller, making interfacing peripherals to it much 
easier.   
 The function of the primary controller is to route all of 
the communications between subsystems on the robot and 
to move the robot by sending control signals to the motor 
driver circuits while the primary controller monitors the 
navigation sensors.  The navigation sensors consist of six 
infrared proximity detectors for collision avoidance (three 
facing forward in an arc, two facing down in front of the 
front wheels, and one facing down in the back of the 
robot), four infrared photodetectors and segmented 
encoder disks for wheel velocity measurement, and an 8-
bit compass module for heading determination.  The 
primary controller also controls the mapping sensors, 
which consist of an infrared and an ultrasonic rangefinder 
on a servo motor with a 180° range of motion mounted on 
either end of the robot.   
Localization Sensors. The localization sensors are eight 
infrared emitter/detector pairs arranged in a circle so that 
they divide the 360° around the robot into eight 45° 
sectors.  They are controlled by an Atmel ATmega8 
microcontroller on a custom-made circuit board.  We 
selected the ATmega8 because of its low cost, ample 
memory, high speed, and sufficient number of I/O pins for 
the task, as well as for a wide range of low-cost and open 
source development tools.  The localization sensors 
perform the task of determining the direction of other 
robots in the line of sight of the robot and double as a 
secondary communications path. 
Victim Detection Sensors. The Blue Swarm 3 robots use 
three sensors for detecting victims: a CMOS camera, a 
microphone, and an infrared temperature sensor.  The 
CMOS camera is the GameBoy camera made by Nintendo.  
The CMOS camera chip inside the camera handles much 
of the image processing, such as inverting video and edge 
detection, thus limiting the processing required.  We 
selected an Atmel ATmega16 microcontroller for the 
victim detection function.  It is fast enough and has enough 
memory to handle the nearest object determination task for 
the camera and to listen for non-repetitive sounds from the 
microphone.  It has I2C communications capability, so it 
can communicate with the temperature sensor, which 
provides ambient temperature and the temperature of any 
objects in front of the sensor, up to about a meter away.  It 
also shares common development tools with the ATmega8 
used for the localization sensors.  The victim detection 



sensors perform the function of identifying objects that 
may be victims and then trying to gather enough sensory 
data about the objects to determine if they are a victim or 
an obstacle. 
Local Mapping Controller. Every robot keeps a map of 
the path it believes it has followed and any obstacles or 
victims encountered, based on its sensor information.  This 
map is kept on a Palm III Personal Digital Assistant 
(PDA).  The Palm III was selected because it is 
inexpensive, has sufficient memory for building a local 
map, and uses a serial interface so it can communicate with 
the OOPic microcontroller via the Serial Communications 
Protocol (SCP).  One advantage of keeping a map on the 
PDA is that the local map provides a back-up method of 
constructing a global map of the disaster area, if the robot 
can be recovered. 
Communications. The communications subsystem is 
based on the MICA 2 mote board from Crossbow.  The 
mote boards are based on the Atmel ATmega128 
microcontroller and Intel’s smart mote communications 
chips.  The mote boards use open source software 
developed by the University of California at Berkeley 
called TinyOS to create an ad-hoc TCP/IP network.  The 
ATmega128 microcontrollers have plenty of memory 
space for buffering processed sensor data, so even 
relatively long periods of real or simulated RF signal loss 
can be tolerated.  The primary responsibility of the 
communications subsystem is to provide localization, 
victim, and pose information to the rescuer GUI, which 
uses data from all of the robots in communications with the 
base station to try to build a global map of the rescue 
arena. 

Software Design 
The environment in the urban search and rescue testbed is 
highly unstructured and unknown to the robots in advance.  
Even a map created in one run in the arena will not be 
valid for the next run since even major structures, such as 
walls may have been moved.  Because of the unknown and 
unstructured environment in the competition and in the real 
world, we think a reactive behavioral architecture is the 
most robust and the most adaptive for this application.  
Therefore, we designed our software architecture using the 
subsumption architecture first proposed by Brooks (1986).  
Our software design is illustrated in figure 10.  The 
software architecture is composed of the six behaviors 
described below, with most of the behaviors being 
executed on a processor dedicated to that behavior.  The 
only exceptions are the two highest-level behaviors, build 
map and monitor movement, which both run on the PDA 
and the not so easily categorized drivers for processing 
sensor inputs, which are divided between the primary 
controller (OOPic), and the localization and victim 
detection controllers.  The rescuer GUI is not shown in 
figure 10 since it is a coordinating task that attempts to 
disambiguate the data coming from the robot swarm and 

produce a coherent global map.  It will be described after 
the descriptions of the behaviors. 

Figure 10.  The software architecture for the Blue Swarm 3. 
Drive Motors. This behavior receives the requested move 
from the monitor movement behavior in the form 
(<direction to move>, <number of cells to move>, <final 
heading>) and attempts to execute the request.  It may be 
unable to execute the request if one of the collision 
avoidance sensors detects an obstacle that would prevent 
carrying out the requested move.  The drive motors 
behavior uses the compass readings and encoder readings 
to determine when it has completed the move request.  
Whether or not the requested movement has been 
completed, drive motors will return the movement that was 
actually completed, in the same message format as the 
move request, to the build map and monitor movement 
behaviors.  The actual move will also be sent to the 
communicate behavior for processing by the rescuer GUI. 
Track Neighbors. This behavior has the responsibility for 
maintaining the neighbor relationships mentioned earlier.  
Critical to the search algorithm employed for the Blue 
Swarm 3 is the necessity to always keep no more and no 
less than two neighboring robots within line of sight.  If 
more than two neighboring robots are within sight, then 
the swarm has not dispersed as far as it possibly can.  If 
fewer than two robots are in sight, then it will not be 
possible to use triangulation to attempt to provide relative 
localization for the three robots and ambiguities in the 
estimated poses of the robots will be nearly impossible for 
the rescuer GUI to resolve.  This behavior uses time 
slicing, which requires periodic synchronization pulses 
from the rescuer GUI to keep the individual robot clocks 
from drifting too much.  Each robot knows its own ID and 
will broadcast a binary representation of that ID during its 
broadcast time slice (which is usually on the order of a 
second).  The other robots are all receiving when it is not 
their turn to broadcast, so they will receive the ID 
transmission from a broadcasting robot if it is in line of 
sight.  Thus, they have two methods for determining the ID 
of a neighbor: the ID tag and the time it was received.  The 
signal will be strongest in one sector, so that is the 
assumed direction of the neighboring robot.  The robots 
can also determine distance to the neighboring robot using 
the infrared or ultrasonic ranging sensors or a very rough 
estimate using the localization infrared pairs as a distance 



sensor.  Track neighbors maintains a database of the robots 
it knows a position for and can communicate this 
information by substituting the database contents for the 
robot ID, which is an alternative algorithm we have 
experimented with.  Track neighbors maintains the desired 
neighbor relation by sending out a desired move message 
to the monitor movement behavior.  This request takes the 
same form as the move request discussed earlier, except 
that a final heading is not requested.  Figure 11 shows an 
example of the neighbor relationships track neighbors is 
responsible for maintaining. 

Figure 11.  An example of the neighbor relationships maintained 
by the behavior track neighbors. 
 
Locate Victims. This behavior uses sensor data from the 
CMOS camera, microphone, and infrared temperature 
sensor to try to locate and identify victims.  It primarily 
uses the camera’s edge detection mode to identify objects 
larger than a threshold value that are close to the robot.  
The size and distance of the object are determined by the 
number of horizontal pixels the edge of the object occupies 
(size) and the vertical position of the edge of the object 
(distance).  This simple determination of size and distance 
is far from infallible, but it becomes somewhat more 
accurate since the robot will usually be moving while 
retaining the same viewpoint.  The motion of the robot 
thus helps to resolve perspective errors.  Based on the 
location of the object in the field of view, locate victims 
will generate a desired move message after every 
processing cycle in the form (<direction: left, straight, 
right>, <distance: 1 or 2 cells>).  The direction request is 
based on the location of the center pixel of the closest edge 
relative to the horizontal center of the field of view and the 
distance request is based on the number of vertical rows 
the edge is located above the bottom of the image.  If an 
object is closer than a threshold value, the locate victims 

behavior will take a reading with the infrared temperature 
sensor and will listen for a non-repetitive noise source with 
the microphone.  If either one or both of these sensors 
indicate the presence of a victim, the behavior will identify 
the object as a victim to the build map and communicate 
behaviors. 
Build Map. This behavior builds a local map based on the 
movements and sensor readings of an individual robot in 
the swarm.  The map uses an occupancy grid where the 
individual map cell sizes and the dimensions of the map 
are based on the expected area of the disaster scene, 
represented as a two-dimensional array that is twice the 
expected length and width to ensure the mapping is 
contained within the bounds of the array regardless of 
starting position.  This somewhat wasteful allocation of 
memory is acceptable because each individual location in 
the array only holds a nibble of data indicating an 
unexplored cell, an obstacle, a victim, or an empty cell.  
The occupancy grid is also used to generate a graphical 
local map on the screen of the PDA.  The contents of the 
map array can be downloaded via serial link to the rescuer 
GUI to generate a global map if one or more robots are 
recovered from the arena. 
Monitor Movement. This behavior acts as the arbitrator 
of the desired move requests coming from the track 
neighbors and locate victims behaviors.  It will prioritize 
the move requests by giving the periodic desired move 
messages from track neighbors the highest priority (to 
ensure the robots maintain their line-of-sight relationships 
with their neighbors), followed by the constantly generated 
desired move messages from locate victims if there are no 
requests from track neighbors.  However, before 
converting either one of the desired move messages into a 
requested move message, monitor movement will look at 
the local map being generated by build map to ensure the 
robot is not stuck in a loop continually exploring the same 
area.  If the desired move messages would result in 
reentering an already explored area, monitor movement 
will request a new heading toward an unexplored area and 
then allow track neighbors and locate victims to generate 
new desired move messages, if appropriate.  Thus, the 
monitor movement behavior plays a key role in ensuring 
the robot explores as much of the area as possible. 
Communicate. This behavior performs the task of sending 
information about moves made by the robot, obstacles seen 
by the sensors, and victims detected to the base station for 
processing into a global map by the rescuer GUI.  It also 
has the ability to pass along data about other robots 
contained in the local database generated by the track 
neighbors behavior and to process data or movement 
requests coming from the rescuer GUI.  (This last 
capability is not implemented at present, but is a growth 
capability for the future.) 
Rescuer GUI. The rescuer GUI is not one of the robot 
behaviors.  It is a stand-alone process that attempts to 
collect the data about movements, obstacles observed, and 
victims detected sent by all of the robots in the swarm; 



correlate that data; detect conflicting data and ambiguities; 
and build as accurate a global map as possible.  Of course, 
a high degree of accuracy is impossible with the resolution 
of the sensors used on the robots and given the 
unstructured nature of the environment, so the objective of 
this process is to generate a rough map that highlights 
areas of interest that can be further explored through the 
employment of the other tools available to the rescuers, 
such as tele-operated robots or search and rescue dogs.  
One of the tools for disambiguating the sensor reports is 
the localization information provided by the robots.  The 
triangulation between neighbors can be used to identify 
pose and sensor errors being reported by one of the robots.  
The resulting global map is displayed to the rescuers using 
color coded grid cells for explored areas, obstacles, and 
victims.  Certainty measurements could also be taken into 
account in the color coding of the display, as described in 
(Stormont and Berkemeier 2004).  Additionally, the 
estimated current positions and headings of the robots are 
displayed to the rescuers.  The GUI has provisions for 
requesting a still photograph from one of the robots to 
allow for human interpretation of a victim identified by the 
locate victims behavior.  This capability is still being 
developed. 

Competition Results 
Most of the behaviors described above were developed and 
tested to at least a rudimentary extent by the developers 
working on the individual subsystems.  A number of 
factors complicated the integration of the subsystems, 
including receiving funding with short deadlines for 
committing the funds, leading to insufficient prototyping 
and frequent design changes when problems were 
identified; delays in organizing the team due to academic 
commitments during the school year; and finalizing the 
design late in the design cycle.  This last factor was 
probably the most critical, since it meant some of the most 
important hardware, such as the custom printed circuit 
boards, was completed just before the team departed for 
the AAAI mobile robot competition.  Not surprisingly, 
problems with the circuit boards were uncovered at the 
competition, necessitating some last minute construction of 
replacement boards.  There were also some unexpected 
problems, such as the inability during subsystem 
integration to get the OOPic microcontroller to 
communicate with the Atmel microcontrollers via the I2C 
protocol.  Since this was a critical element of the hardware 
design and had not been a problem with most of the 
sensors, which also communicate via I2C, trying to find 
alternative inter-processor communications methods was 
essential, but ultimately unsuccessful.  Finally, we had 
problems with version control, where changes made to 
previously working software would result in less 
functionality than before the changes were made and the 
previous version could not be recovered.  This was an 
especially common problem with the OOPic development 
environment, which acts like an interpreter, allowing 

downloads of modified software to the microcontroller 
without saving the changes. 
 The end result was that we had three opportunities for 
scored runs in the preliminary rounds of the rescue robot 
competition.  For the first run, none of the robots was able 
to run.  For the second run, we had one robot ready to run, 
but the collision avoidance sensors were not responding 
properly and the robot would collide with debris at the end 
of the entrance hallway and get stuck, as shown in figure 
12.  For the third run, the problem with the sensors was 
fixed but loose connections on one side of a motor driver 
board we had built on site caused the motors on the right 
side of the robot to shut down intermittently and the robot 
to arc into the wall of the arena.  In short, we were never 
able to demonstrate the capabilities we had been 
developing for the Blue Swarm 3 due to a number of 
hardware and design issues encountered during the 
competition. 

 
Figure 12.  A sequence of photographs showing a Blue Swarm 3 
robot colliding with debris in the entryway to the yellow arena 
during the second preliminary round. 

Lessons Learned 
The lessons learned from this first attempt at fielding the 
Blue Swarm 3 echo the lessons learned from many a 
troubled or failed project.  We learned that you can never 
spend too much time in design and prototyping.  We 
learned that we should have been doing integration testing 
all throughout the development cycle.  We learned that we 
needed more coordination between team members during 
the development of the subsystems and the software.  
Finally, we reinforced the common wisdom that the first 
version of a circuit board will always contain errors and 
that failure to implement good version control will always 
cause problems in software development. 

Future Work 
Although the competition results for the Blue Swarm 3 in 
this year’s mobile robot competition were disappointing, 
we remain convinced that we have a good platform for 
swarm development in the hardware and software designs 
described in this paper.  For the short term, we intend to 
return to the prototyping phase to develop two or three 
prototypes for a demonstration at Utah State University in 
October.  The prototype that performs best in the 
demonstration runs will form the basis for the redesign of 
the swarm robots.  We will then replicate nine more copies 
of the successful prototype and complete the software 
development and integration.  We hope to enter the rebuilt 



Blue Swarm 3 in the 2005 RoboCup American Open 
Rescue Robot competition and in the AAAI 2005 Rescue 
Robot competition. 
 Over a longer term, we would like to incorporate some 
of the software enhancements that were not a part of this 
development.  Some examples are a robust sensor fusion 
algorithm that provides a degree of confidence measure in 
the graphical display on the global map.  This could be 
displayed in the form of varying levels of shading for the 
colors representing obstacles, victims, and open areas 
corresponding to the degree of confidence.  Another 
enhancement to the rescuer GUI would be the 
incorporation of views that would be appropriate to the 
needs of the rescuer.  In other words, a rescue team 
preparing to enter the disaster area would probably find a 
three-dimensional walkthrough of what they could expect 
to find along the path they plan to take more useful than a 
two-dimensional global map.  The ability to cue regions of 
the global map to try to get the robots close to that area to 
explore the cued area more thoroughly would also be 
useful.  Desirable hardware enhancements include more 
accurate position sensors, stereo vision, and higher 
resolution rangefinders.  The Blue Swarm 3 should also 
provide a useful platform for experimenting with other 
search strategies, such as formation sweeps, varying 
numbers of robots comprising a neighbor relationship, and 
the return of robots to the starting point for recovery of 
their local maps. 
 Eventually, it is hoped that the experience gained from 
the development of the many iterations of the Blue Swarm 
can be put to use in developing a truly fieldable swarm of 
autonomous search and rescue robots. 
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