
A data collection framework for capturing ITS data based on an agent
communication standard

Olga Medvedeva, MS, MS 1, Girish Chavan, MS 1, and Rebecca S. Crowley MD, MS 1,2,3

1 Centers for Oncology and Pathology Informatics, University of Pittsburgh School of Medicine, Pittsburgh PA
2 Center for Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh PA

 3 Intelligent Systems Program, University of Pittsburgh, Pittsburgh PA
medvedevaop@upmc.edu and crowleyrs@upmc.edu

Abstract

We describe our experience developing a flexible
architecture for collecting interaction data for a medical
cognitive tutoring system. The architecture encompasses
(1) an agent-based communications system for passing
messages between all tutor components, as well as
capturing and storing them in relational format, (2) a
schema for managing all system data from low-level
interface events to student-tutor interaction and
experimental variables, and (3) an interface for querying
and retrieving this data. The system has been in use over
the past year, and includes data from one large study and
several smaller studies. We discuss some of the lessons we
have learned over the past year as we strive to achieve a
scalable and maintainable system to support educational
data mining in our domain. We also argue that a standards
based approach to messaging could facilitate development
of shared data sets, and especially shared analytic services
for the next generation of tutoring systems.

Introduction
The purpose of this manuscript is to describe our attempts
to create a flexible data collection framework based on a
known communication standard. What could this possibly
have to do with shared data sets, meta-analysis, or
educational data-mining? We argue that one of the most
significant barriers to educational data mining is the lack
of common resources for analysis and modeling of these
data sets. Typically, the developers of each new system
begin from scratch, creating the system and then all of the
associated user modeling, data-mining, or other analytic
resources to support the research project. This slows
progress and also limits the generality of lessons learned.
An important barrier to sharable resources is the absence
of communication or data standards.

As noted by the workshop organizers, many intelligent
educational systems are based on a common underlying
theory – for example cognitive tutors (Anderson et al.
1995) or constraint-based tutors (Mitrovic et al. 2001).

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

When the paradigm is well established – it is not too
outlandish to envision separate tutoring systems sharing
common services. For example, two tutoring systems in
different domains and different locations could share a
common resource for knowledge tracing, or for evaluating
student help request behavior. What is needed to move us
towards such sharable resources? One important step
would be to advance a standard method for information
exchange. We suggest that the Foundation for Intelligent
Physical Agents (FIPA) (http://www.fipa.org) standard
encompasses many of the features necessary to provide a
lingua franca for educational systems that share a
common underlying theory. We detail our use of the FIPA
standard to develop a framework for data collection, and
suggest how the adoption of a standard might reduce the
barriers to shared data and shared resources.

Background

In the past, most attempts to support distributed ITS were
based on a peer-to-peer model of communication
(Brusilovsky, Ritter, Schwarz 1997, Ritter 1997).
Typically this meant that (1) there was a very strict
communication channel – the server for one system could
not easily communicate with an analytic process for
another system unless the relationship is known in
advance, and (2) there was a 1:1 translation between the
message representation for different systems – therefore
communication among N systems required N(N-1)
translators. Ultimately, the lack of a standard
communication protocol greatly limited the potential for
developing centralized resources (Koedinger, Suthers,
Forbus 1999).

There are few existing, well-documented methods for
inter-system communication and data collection among
ITS (Ritter, Koedinger 1996). The Dormin
communication protocol, developed at CMU, allows for
message exchange between user interface and tutoring
system (http://ctat.pact.cs.cmu.edu/tikiindex.php?page=
DorminMessages). Dormin communication language
elements include: verb, hierarchical description of

receiver, message content, and message id. Dormin
communication language and protocol are used in both
tutoring systems and tutor authoring systems (Ritter,
Blessing, Wheeler 2003). Although Dormin messages
embody many of the characteristics needed in a
messaging standard, they are not widely used.

In agent-based architectures, a society of independent
communicating agents work together to meet a set of
goals. Agent based architectures are now relatively
common among tutoring systems, providing a means for
collaboration in distributed ITS. Emerging agent
standards may provide an opportunity for a more widely
acceptable communication standard. FIPA
(http://www.fipa.org) is a collection of standards for agent
technology, including (1) agent management system, and
(2) communication specifications. The basic message
format for FIPA is shown in Figure 1. FIPA specifies the
minimum required elements but permits introduction of
new elements. For example, the FIPA performatives
(which function much like Dormin verbs) specify a set of
22 common communication acts, such as accept-proposal,
confirm, disconfirm, failure, reject-proposal, and
subscribe. However, additional performatives can be
added by adding an X- to the beginning of the
performative. In effect, this provides a controlled
vocabulary of communication acts to aid in inter-system
communication. The existing set of performatives could
be extended by a community to serve community-specific
needs.

Figure 1. FIPA message structure

The Agent Management System (AMS) manages an agent
life-cycle, providing a directory and transport services for

all agents. A registry maintains a unique agent identifier
(AID) and an agent locator. Together they specify where
and how to communicate with a given agent. Agents
communicate via messages structured as the key-value-
tuples and are written in an Agent Communication
Language.

There are many implementations of the FIPA Abstract
Architecture Specification, including Java Agent Services
(JAS) API (http://www.jcp.org). We begin with a brief
general overview of our system - SlideTutor, and then
describe our data collection framework, which builds on
JAS.

SlideTutor – a medical ITS
SlideTutor (Crowley, Medvedeva, Jukic 2003) is a model-
tracing ITS for teaching visual classification problem
solving in surgical pathology – a medical sub-specialty in
which diagnoses are rendered on microscopic slides.
SlideTutor was created by adding virtual slide cases and
domain ontologies to a general framework that we
developed to teach classification problem solving
(Crowley, Medvedeva 2003). The framework was
informed by our cognitive task analysis in this domain
(Crowley et al. 2003). Students examine virtual slides
using multiple magnifications, point to particular areas in
the slide and identify features, as well as feature qualities
and feature quality values. They make hypotheses and
diagnoses based on these feature sets. All knowledge
(domain and pedagogic) is maintained in ontologies and
retrieved during construction of the dynamic solution
graph. The architecture is agent-based and builds on
methods designed for the Semantic Web (Fensel et al.
1999).

An important aspect of the SlideTutor project was the
development of a very generic representation for tutoring
of classification problem-solving that permits all domain
knowledge to be modularized into domain model, task
model and case data. The domain model consists of an
ontologic representation of (1) evidence as a set of
features, attributes, and values and (2) the diseases to
which they apply. The model is generic and can be
applied to many medical diagnostic problems. The task
model represents an abstraction of the goal structure for
diagnostic problem-solving, for example identifying a
finding or asserting a hypothesis. Data from the task
model, domain model, and case are combined to create a
dynamic solution graph against which student actions are
tested. The underlying generic structure of task goals and
subgoals and the declarative knowledge which instantiate
them form the basis for collecting data about student
progress through any case.

Envelope:
Sender (locator)
Receiver (locator)
Timestamp

Message:
Sender (AID)
Receiver (AID)
Performative (String)
Content: any language
In-reply-with (Message ID)

Message:
Sender (AID)
Receiver (AID)
Performative (String)
Content: any language
In-reply-with (Message ID)

Envelope:
Sender: Client_1
Receiver: PROTOCOL
TimeStamp = 1114444377783
Message:
 Sender: Concept2
 Receiver: PROTOCOL
 Performative: X-Create
 In-reply-with: 1114444378242
 Content:

Type = Finding
Label = blister
Id = Concept2
ObjectDescription = Finding.blister.Concept2
Parent = null
Input:

name = text value = blister
name = y value = 11808
name = x value = 38048
name = z value = 0.03

InterfaceEventIDS = [1114444374333,
1114444375546, 1114444376304, 1114444376798,
1114444377444]

What data is collected?

The basic events collected are shown in Figure 2.
InterfaceEvents record low-level human-computer
interaction such as pressing a button or selecting a menu
item. ClientEvents capture combinations of
InterfaceEvents that represent the most atomic discrete
subgoal, such as creating a hypothesis, identifying a
feature, or asking for a hint. ClientEvents are answered
by TutorResponses. TutorResponses indicate the response
of the system to the last student action including the type
of error for incorrect actions and the best-next-step at this
point in the problem space (hint).

Agent-based communication protocol
Our communications system builds on JAS - a
comprehensive yet lightweight FIPA standards reification.
As shown in figure 1, the basic architecture encompasses
three different agents: the client agent, the tutor agent, and
the protocol collection agent. The client agent broadcasts
low-level InterfaceEvents and higher-level ClientEvents.
Interface events are sent only to the protocol agent, but
client events are sent to both the protocol agent and the
tutor agent. Each ClientEvent contains a set of references
to the low-level InterfaceEvents that it is composed of.
The tutor agent replies to any ClientEvent, sending its
message to both client and protocol agents. The protocol
agent captures these student-tutor interactions, transforms
the messages into relational format and stores them in an
Oracle 9i database. All ClientEventsare also separately
stored in log files, in a format directly understood by
tutor, in order to more efficiently restore system state or
to provide delayed feedback. An example ClientEvent
message is shown in Figure 3.

Figure 2. Agent Architecture

There are 4 required key-value pairs for any particular
message within an envelope: (1) sender: AID, (2)
receiver: AID, (3) content: Agent Communication
Language (4) performative: defines a type of
communicative act. In Figure 3, the envelope indicates the
locator: the sender is a particular slide tutor client, and the
receiver is the protocol agent. In this simple case, there is
only one message.

The performative is a specific request from the client, in
this case to create a finding of blister identified at a
specific x,y,z location. The set of interface action
identifiers (referencing the interface actions for (a)
clicking the ‘findings’ button, (b) clicking in the image,
and (c) selecting three times down a tree of findings) are
contained in the body of the message as well.

Figure 3. Example ClientEvent

Each interface widget is essentially its own agent,
possessing a unique identifier within a particular student
session. We use 5 parameters to identify each agent: (1)
object Type – e.g. ‘tree’, ’button’, ‘finding’, ‘hypothesis’,
(2) Label - the name of the interface object, (3)Id – a
unique object id within the current student session, (4)
ObjectDescription – a combination of Type+Label+Id,
e.g. ‘Finding.Blister.Concept2’, and (5) Parent – a list of
all parent ObjectDescription for hierarchical agent
structures with colon and semicolon separators within and
in between the levels. Together, the ObjectDescription
and parent describe hierarchical relationships between
interface objects. In Figure 3, the sender of this message

Protocol Agent

InterfaceEvent(s)

ClientEvent

TutorResponse

ProblemEvent
start problem AP_77

ProblemEvent
finish problem AP_77

Tutor AgentClient Agent

Project
Database Log

Files

is actually the reified concept for the blister finding. For
the interface in use when this message was generated, the
object was a finding widget in the diagrammatic
reasoning interface. Evolution of the interface is thus
easily accommodated, as any new interface object only
needs to be associated with its own set of performatives
and content input.

The FIPA message structure can easily reproduce the
classic Action:Selection:Input triplet of cognitive tutors
(Ritter, Koedinger 1996). SlideTutor uses part of the
ObjectDescription as ‘Selection’, Performative as
‘Action’ and a list of Content Input as ‘Input’. The
Dormin message format provides a way to communicate
these Action:Selection:Input triplets across a system, but
is limited because the recipient must translate the message
into a format understood by the recipient. In contrast, the
content of the FIPA message structure uses XML as a
middle-layer, and is thus able to represent other languages
(e.g. RDF (http://www.w3.org.RDF/), KIF
(http://logic.stanford.edu/kif/dpans.html), SL
(http://www.fipa.org/specs/fipa00008/XC00008G.html)).

Messages sent from the tutoring agent provide detail
about the system response, but also the tutor state. Figure
4 demonstrates a tutor message when the ClientEvent
does not match a possible next-step, according to the
cognitive model. In this case an error TutorResponse is
generated. The TutorResponse contains the text to be
displayed in the SlideTutor student interface. But it also
contains information about the type of error (error code),
and indicates the best-next-step – the step that the tutor
will suggest to a student request for a hint.
Figure 4.Example TutorResponse

Our categories for system responses derive directly from
our ontologies for hints and errors – which maintain the
semantic meaning of this error and its relationship to
other errors. For example in Figure 4, the error code 15
identifies the error of indicating a correct finding in an
incorrect location. The instance of this error relates to the
finding ‘Blister’. Once stored in relational format, the data
can be analyzed in multiple ways. The query can be
constructed to retrieve only errors in locating blisters, or
errors of the more general type of locating findings, or all
errors related to any action involving ‘Blister’.

In Figure 4, the TutorResponse also contains a description
of the interface object and the performative which will
together describe the action that the expert model would
take in this problem state. It is analogous, in some ways to
the rule that fires at the end of the Match-Resolve-Act
cycle. By capturing the best-next-step for each student
action, we can easily and directly compare student actions
over time to predictions based on the expert model. For
example, we can formulate a query that returns the % of
ClientEvents that match the previous best-next-step
TutorResponse over time for a set of students.

Protocol agent and database schema

The relational schema we employ contains tables that
closely reproduce the message structure, as well as tables
and relations that allow us to maintain and retrieve data
across multiple experiments, and experimental variables.
Many aspects of our schema are quite similar to one
described by Mostow et al (Mostow et al. 2002). Like this
schema, we have tables that reflect static high-level
relationships, for example a many-to-many relationship
between students and experiments. Data in tables for
Experiment, Experimental Condition, Case List, Tutor
Case and Student do not change during a student
participation in the experiment. In addition to this high-
level information about experiments, students, and
problems, the protocol agent also captures content of the
InterfaceEvent, ClientEvent, and TutorReponse messages
as well as messages created at the start and end of
problems and sessions. The relational schema for this
information closely reproduces the structure of the FIPA
messages. The tables and relationships in our schema that
describe message-based inputs are shown in Figure 5.

For each student session the protocol agent collects all
reasonable interaction events, excluding window resizing
and some mouse movements. The representation of these
events is very generic and contains an event description
with any number of possible event parameters that have

Envelope Sender: TutorEngine0
Receiver: PROTOCOL
TimeStamp: 1114444379378
Message:
 Sender: TutorEngine0
 Receiver: PROTOCOL
 Performative: FAILURE
 Conversation_ID: 1114444378242
 Content:
 ErrorCode = 15

NextStepType = Evidence
NextStepLabel = blister
NextStepID = 0
NextStepParent = null
NextStepAction = DELETE
name = Messages
value = "[TEXT:There is BLISTER present,
but not where you have pointed in the
image. See if you can find where.
POINTERS:[PointTo:Concept2
IsPermanent:false Method:setFlash
Args:[true]]]"
name= TutorAction
value = "PointTo:Concept2
IsPermanent:false
Method:setBackgroundColor Args:[RED]"

Figure 5. Database schema for low-level interaction data

been stored in corresponding Input tables. Each FIPA-
based message is directly input as XML into the matching
field in the appropriate table. The many-to-one
relationship between InterfaceEvents and ClientEvents
allows us to analyze our data from an HCI perspective as
well, because we can determine for example, how many
actions were performed, how much time was required to
achieve a particular sub-goal such as identifying a Blister,
or how many InterfaceEvents were unrelated to any
ClientEvents (Saadawi et al. 2005).

 Query Tool
The Protocol Query Tool provides researchers with web-
based querying of our database. The tool allows the user
to obtain data sets specific to a wide range of constraints.
The interface consists of a set of drop down lists. Each
drop down list contains the set of all values existing in the
database for that particular attribute. The following data
elements may be specified or researchers may indicate
ALL or NONE:

1. Experiment : Users may select from the set of named

experiments
2. Experiment Condition : For any single experiment,

users may select a particular experimental condition.
3. User: The username of the participant for the selected

experiment condition
4. Problem : The case which was solved by the student

during tutoring.
5. Session : The user session for the selected problem.

The researcher specifies the value constraints for the
above attributes in the order shown above. As the user
specifies each value constraint, the remaining
attribute:value lists are updated to reflect choices for the
preceding value constraints. The protocol query tool
outputs HTML which can then be loaded into Excel or a
statistics program for further analysis. Queries may be
saved using SQL representation and then subsequently
reloaded. The interface is designed to provide access to
InterfaceEvents, ClientEvents, and TutorResponses for
specific use-cases.

Analysis of InterfaceEvents and associated ClientTutor
events is typically undertaken to analyze the usability of
the system. For example, from this data we might
determine (1) the total time taken to complete a particular
ClientEvent as the interval from the first action which
composes that ClientEvent to the last, or (2) the ratio of
InterfaceEvents to ClientEvents. The tool provides a
special interface to view InterfaceEvents that color codes
the rows that belong to a single ClientEvent. The color
coded groupings ease manual inspection by the
researcher.

In contrast, analysis of ClientEvents linked to associated
TutorResponses is typically undertaken to analyze student
performance during tutoring, including classical metrics
such as the number of hint requests, depth of hints,
responses to hints, error frequency and distribution, as
well as the values of these variables over time. Figure 6
shows the query tool, as a researcher requests data for all

Figure 6. Protocol Query Tool

cases in which ‘Blister’ is identified. It depicts the
selection of ClientEvent criteria. The TutorResponse
criteria may be specified by clicking on the
TutorResponses tab and selecting the appropriate values
from the lists.

Figure 7 shows typical output for InterfaceEvents,
ClientEvents, and TutorResponses. Note that many
InterfaceEvents have been recorded (7A), but only a
subset of them are linked to four discrete ClientEvents
(169814-169818). These ClientEvents (7B) indicate that
the student erroneously asserted ‘Blister’ in a particular
location, deleted the incorrect assertion, asked for help,
and then asserted ‘Blister’ in the correct location.
TutorResponses to these ClientEvents are also shown
(7C).

Some lessons learned

Our data collection framework was deployed
approximately one year ago. Since that time, we have
used it to collect data on 4 smaller HCI studies and one
larger experiment, for a total of 50 students. The most
salient problem we encountered was that direct storage of
data during usage produced records that we later wanted

to remove. For example, when our systems crashed during
an experiment, our research assistant had to restore the
problem state for the student manually. All her actions
were stored in the database under the student name. In
this case, we had to delete her actions and merge the
sessions to preserve the validity of the student data.
Ultimately, we decided to maintain two instances of the
database. The ‘raw’ database is used to capture all data
for the project. After completion of each study we copy
the data to another database, remove irrelevant and
sometimes duplicate records, and then make it available
for all subsequent analyses.

Another issue we have grappled with is that detailed real-
time capture of all interaction data necessarily incurs a
performance cost. In our system, every change of a
virtual microscope viewer position or zoom results in a
ClientEvent message that requires a reply from the Tutor.
This slightly, but noticeably slows tutor response. For the
detailed laboratory studies that we perform, this
performance cost seems justified. However as we move
our tutoring system out of the laboratory – we will need to
significantly scale back the detail of the interactions that
we capture in order to optimize performance.

An important limitation we discovered in our current data
representation is that we are maintaining all of our
assessment data in a separate database. Furthermore our
assessment database does not explicitly map performance
on assessments (multiple choice and diagnostic case tests)
to the same skills that the tutoring system teaches.
Currently, correlation of process data from tutoring
sessions and performance data from assessments is a
manual task. Ultimately we would like to use the system
for data-mining, in order to discover novel relationships
between behaviors in the tutoring system and test
performance. This functionality would benefit from a
unified representation of these two types of data.

Discussion and future directions

The data collection framework we describe is quite
generic and might be adaptable to other model-tracing
ITS. Previous authors have already cited the advantages
of relational formats for maintaining study data in the
design of ITS (Mostow 2002). And we concur that the
single project database has helped us greatly to make
sense of the enormous volume of complex data that we
are collecting.

Beyond the existing implementation, we found the FIPA
standard to be a very useful structure to describe ITS
interaction events. The flexibility to add performatives,
and the potential to reference ontologies within the FIPA
message structure are particularly intriguing.

A

B

C

Figure 7. DB extract showing (A) InterfaceEvents, (B) ClientEvents , and (C) TutorResponse

What would it take to utilize this specification to create an
information exchange standard for ITS? First, a set of
researchers would need to agree to adopt and implement
such a common message representation. Second, the
group would need to develop a set of performatives that
describe the common communications acts for these kinds
of systems. This would, in effect, produce a controlled
vocabulary for ITS communications. It might include acts
such as create, delete, set-property, or show-example.

Once the basic infrastructure is in place, more complex
forms of interoperability between systems could be

supported using the FIPA standard. For example, error
categories, hint content, or domain knowledge specified
in publicly available ontologies could be referenced in the
ontology attribute of the FIPA message structure.
Ultimately, researchers would need to commit to standing
up common services that could generalize beyond their
own project to process external data. Discovery of shared
services could eventually be based on an agent ontology
that indicates what operations the agent performs; what
inputs it expects, and what outputs it produces.

What benefits might result from this approach? First, the
move to a common communications standard might
produce a direct effect on data sharing, because systems
would be at least syntactically and, to a smaller degree,
semantically aligned. This would significantly ease some
kinds of meta-analysis, because the major kinds of ITS
actions would share identical performatives (for example
failure, or confirm). Second, it would allow us to use each
others data for other purposes such as simulation. Third, it
could provide a platform for real-time system
interoperability. For example, individual modules of
separate ITS could interoperate around well-defined tasks
such as calculating knowledge tracing probabilities or
identifying particular help-seeking behaviors.

In general, discussions of standards tend to produce a
mixture of fear and boredom. But one of the many lessons
we have learned as ITS researchers who also work in
other areas of medical informatics, is that standards act as
a bootstrap to collaboration. Once individuals begin to
describe their data in common ways, communication
which was previously impossible becomes only difficult.
Individual ITS developers appear to have an enormous
amount to learn from each other. It seems worth the pain
to consider how we might create our systems in ways that
facilitate this kind of collaboration.

Acknowledgements

This work was supported by grants from the National
Library of Medicine (R01 LM007891-01) and National
Cancer Institute (R25 CA101959). The authors wish to
thank Eugene Tseytlin and Katsura Fujita for their
assistance with this project. Additionally, we thank Neil
Heffernan for several helpful discussions during the
course of developing this system.

References

1. Anderson JR, Corbett AT, Koedinger KR, Pelletier R.

1995. Cognitive Tutors: Lessons learned. Journal of the
Learning Sciences 4(2):167-207.

2. Mitrovic A, Mayo M, Suraweera, P and Martin, B. 2001.
Constraint-Based Tutors: A Success Story. In Monostori,
L. and Vancza, J. (Eds). Proceedings of the 14th
International Conference on Industrial & Engineering
Applications of Artificial Intelligence and Expert Systems,
Budapest, Hungary, Springer, 931-940 Budapest,
Hungary: Springer.

3. Foundation for Intelligent Physical Agents:
http://www.fipa.org

4. Brusilovsky, P., Ritter, S., Schwarz, E. 1997. Distributed
intelligent tutoring on the Web, Proceedings of AIED’97,
the Eighth World Conference on Artificial Intelligence in
Education, 482-489. Amsterdam. IOS .

5. Ritter, S. 1997. PAT Online: A model-tracing tutor on the
World-wide Web, In Proceedings of the workshop
"Intelligent Educational Systems on the World Wide Web,"
8th World Conference of the AIED Society.

6. Koedinger KR, Suthers DD, Forbus KD. 1999.
Component-based construction of a science learning
space: A model and feasibility demonstration.
International Journal of Artificial Intelligence in
Education: 10, 392-31.

7. Ritter, S. Koedinger, K. R. 1996. An architecture for plug-
in tutor agents. Journal of Artificial Intelligence in
Education, 7, 315-347.

8. http://ctat.pact.cs.cmu.edu/tikiindex.php?page=DorminMe
ssages

9. Ritter S, Blessing S, Wheeler L. 2003. Authoring tools for
component-based learning environments. In T. Murray, S.
Blessing and S. Ainsworth (Eds.), Authoring Tools for
Advanced Learning Environments, 467-489. Boston:
Kluwer.

10. http://www.jcp.org
11. Crowley RS, Medvedeva O, Jukic D. 2003. SlideTutor –

A model-tracing Intelligent Tutoring System for teaching
microscopic diagnosis. IOS Press: Proceedings of the 11th
International Conference on Artificial Intelligence in
Education, 157-164. Sydney, Australia.

12. Crowley RS, Medvedeva OP. 2003. A General
Architecture for Intelligent Tutoring of Diagnostic
Classification Problem Solving. Proc AMIA Symp, 185-
189.

13. Crowley RS, Medvedeva O. 2005. An intelligent tutoring
system for visual classification problem solving. Artificial
Intelligence in Medicine, (in press).

14. Crowley RS, Naus GJ, Stewart J, Friedman CP. 2003.
Development of Visual Diagnostic Expertise in Pathology
– An Information Processing Study. J Am Med Inform
Assoc 10(1):39-51.

15. Fensel D, Benjamins V, Decker S, et al. 1999. The
Component Model of UPML in a Nutshell. Proceedings of
the First Working IFIP Conference on Software
Architecture (WICSA1), San Antonio, Texas: Kluwer.

16. Mostow J, Beck J, Chalasani R, Cuneo A, Jia P. 2002.
Viewing and Analyzing Multimodal Human-computer
Tutorial Dialogue: A Database Approach. Proceedings of
the ITS 2002 Workshop on Empirical Methods for Tutorial
Dialogue Systems, 75-84.

17. Saadawi G, Legowski E, Medvedeva O, Chavan G,
Crowley RS. 2005. A method for automated detection of
usability problems from client user interface events.
Submitted to Proceedings of the American Medical
Informatics Association Symposium 2005.

18. http://www.w3.org/RDF/
19. http://logic.stanford.edu/kif/dpans.html
20. http://www.fipa.org/specs/fipa00008/XC00008G.html

