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Abstract 

We describe our experience developing a flexible 
architecture for collecting interaction data for a medical 
cognitive tutoring system. The architecture encompasses 
(1) an agent-based communications system for passing 
messages between all tutor components, as well as 
capturing and storing them in relational format, (2) a 
schema for managing all system data from low-level 
interface events to student-tutor interaction and 
experimental variables, and (3) an interface for querying 
and retrieving this data.  The system has been in use over 
the past year, and includes data from one large study and 
several smaller studies. We discuss some of the lessons we 
have learned over the past year as we strive to achieve a 
scalable and maintainable system to support educational 
data mining in our domain. We also argue that a standards 
based approach to messaging could facilitate development 
of shared data sets, and especially shared analytic services 
for the next generation of tutoring systems. 

Introduction 
The purpose of this manuscript is to describe our attempts 
to create a flexible data collection framework based on a 
known communication standard. What could this possibly 
have to do with shared data sets, meta-analysis, or 
educational data-mining? We argue that one of the most 
significant barriers to educational data mining is the lack 
of common resources for analysis and modeling of these 
data sets. Typically, the developers of each new system 
begin from scratch, creating the system and then all of the 
associated user modeling, data-mining, or other analytic 
resources to support the research project. This slows 
progress and also limits the generality of lessons learned. 
An important barrier to sharable resources is the absence 
of communication or data standards. 
  
As noted by the workshop organizers, many intelligent 
educational systems are based on a common underlying 
theory – for example cognitive tutors (Anderson et al. 
1995) or constraint-based tutors (Mitrovic et al. 2001).  
 
Copyright © 2005, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved.                  

When the paradigm is well established – it is not too 
outlandish to envision separate tutoring systems sharing 
common services. For example, two tutoring systems in 
different domains and different locations could share a 
common resource for knowledge tracing, or for evaluating 
student help request behavior. What is needed to move us 
towards such sharable resources? One important step 
would be to advance a standard method for information 
exchange. We suggest that the Foundation for Intelligent 
Physical Agents (FIPA) (http://www.fipa.org) standard 
encompasses many of the features necessary to provide a 
lingua franca for educational systems that share a 
common underlying theory. We detail our use of the FIPA 
standard to develop a framework for data collection, and 
suggest how the adoption of a standard might reduce the 
barriers to shared data and shared resources. 

Background 
 
In the past, most attempts to support distributed ITS were 
based on a peer-to-peer model of communication 
(Brusilovsky, Ritter, Schwarz 1997, Ritter 1997). 
Typically this meant that (1) there was a very strict 
communication channel – the server for one system could 
not easily communicate with an analytic process for 
another system unless the relationship is known in 
advance, and (2) there was a 1:1 translation between the 
message representation for different systems – therefore 
communication among N systems required N(N-1) 
translators. Ultimately, the lack of a standard 
communication protocol greatly limited the potential for 
developing centralized resources (Koedinger, Suthers, 
Forbus 1999).  
 
There are few existing, well-documented methods for 
inter-system communication and data collection among 
ITS (Ritter, Koedinger 1996). The Dormin 
communication protocol, developed at CMU, allows for 
message exchange between user interface and tutoring 
system (http://ctat.pact.cs.cmu.edu/tikiindex.php?page= 
DorminMessages). Dormin communication language 
elements include:  verb, hierarchical description of 



receiver, message content, and message id. Dormin 
communication language and protocol are used in both 
tutoring systems and tutor authoring systems (Ritter, 
Blessing, Wheeler 2003). Although Dormin messages 
embody many of the characteristics needed in a 
messaging standard, they are not widely used.  
 
In agent-based architectures, a society of independent 
communicating agents work together to meet a set of 
goals. Agent based architectures are now relatively 
common among tutoring systems, providing a means for 
collaboration in distributed ITS. Emerging agent 
standards may provide an opportunity for a more widely 
acceptable communication standard. FIPA 
(http://www.fipa.org) is a collection of standards for agent 
technology, including (1) agent management system, and 
(2) communication specifications. The basic message 
format for FIPA is shown in Figure 1. FIPA specifies the 
minimum required elements but permits introduction of 
new elements. For example, the FIPA performatives 
(which function much like Dormin verbs) specify a set of 
22 common communication acts, such as accept-proposal, 
confirm, disconfirm, failure, reject-proposal, and 
subscribe. However, additional performatives can be 
added by adding an X- to the beginning of the 
performative. In effect, this provides a controlled 
vocabulary of communication acts to aid in inter-system 
communication. The existing set of performatives could 
be extended by a community to serve community-specific 
needs. 
 

 
 

Figure 1. FIPA message structure 
 
 
The Agent Management System (AMS) manages an agent 
life-cycle, providing a directory and transport services for 

all agents. A registry maintains a unique agent identifier 
(AID) and an agent locator. Together they specify where 
and how to communicate with a given agent. Agents 
communicate via messages structured as the key-value-
tuples and are written in an Agent Communication 
Language.   
 
There are many implementations of the FIPA Abstract 
Architecture Specification, including Java Agent Services 
(JAS) API (http://www.jcp.org).  We begin with a brief 
general overview of our system - SlideTutor, and then 
describe our data collection framework, which builds on 
JAS. 

SlideTutor – a medical ITS   
SlideTutor (Crowley, Medvedeva, Jukic 2003) is a model-
tracing ITS for teaching visual classification problem 
solving in surgical pathology – a medical sub-specialty in 
which diagnoses are rendered on microscopic slides. 
SlideTutor was created by adding virtual slide cases and 
domain ontologies to a general framework that we 
developed to teach classification problem solving 
(Crowley, Medvedeva 2003). The framework was 
informed by our cognitive task analysis in this domain 
(Crowley et al. 2003). Students examine virtual slides 
using multiple magnifications, point to particular areas in 
the slide and identify features, as well as feature qualities 
and feature quality values. They make hypotheses and 
diagnoses based on these feature sets. All knowledge 
(domain and pedagogic) is maintained in ontologies and 
retrieved during construction of the dynamic solution 
graph. The architecture is agent-based and builds on 
methods designed for the Semantic Web (Fensel et al. 
1999).  
 
An important aspect of the SlideTutor project was the 
development of a very generic representation for tutoring 
of classification problem-solving that permits all domain 
knowledge to be modularized into domain model, task 
model and case data. The domain model consists of an 
ontologic representation of (1) evidence as a set of 
features, attributes, and values and (2) the diseases to 
which they apply. The model is generic and can be 
applied to many medical diagnostic problems. The task 
model represents an abstraction of the goal structure for 
diagnostic problem-solving, for example identifying a 
finding or asserting a hypothesis. Data from the task 
model, domain model, and case are combined to create a 
dynamic solution graph against which student actions are 
tested. The underlying generic structure of task goals and 
subgoals and the declarative knowledge which instantiate 
them form the basis for collecting data about student 
progress through any case. 
                                                 
 
 

Envelope: 
Sender (locator)  
Receiver (locator) 
Timestamp 
 
 

Message: 
Sender (AID) 
Receiver (AID) 
Performative (String) 
Content: any language 
In-reply-with (Message ID) 
 

Message: 
Sender (AID) 
Receiver (AID) 
Performative (String) 
Content: any language 
In-reply-with (Message ID) 
 



Envelope: 
Sender: Client_1 
Receiver: PROTOCOL 
TimeStamp = 1114444377783 
Message: 
 Sender: Concept2 
 Receiver: PROTOCOL 
    Performative: X-Create 
    In-reply-with: 1114444378242 
    Content: 

Type = Finding 
Label = blister 
Id = Concept2 
ObjectDescription = Finding.blister.Concept2 
Parent = null 
Input: 

name = text         value = blister 
name = y             value = 11808 
name = x              value = 38048 
name = z              value = 0.03 

 
InterfaceEventIDS = [1114444374333, 
1114444375546, 1114444376304, 1114444376798, 
1114444377444] 

What data is collected? 
 
The basic events collected are shown in Figure 2. 
InterfaceEvents record low-level human-computer 
interaction such as pressing a button or selecting a menu 
item. ClientEvents capture combinations of 
InterfaceEvents that represent the most atomic discrete 
subgoal, such as creating a hypothesis, identifying a 
feature, or asking for a hint.  ClientEvents are answered 
by TutorResponses. TutorResponses indicate the response 
of the system to the last student action including the type 
of error for incorrect actions and the best-next-step at this 
point in the problem space (hint). 

Agent-based communication protocol 
Our communications system builds on JAS - a 
comprehensive yet lightweight FIPA standards reification.  
As shown in figure 1, the basic architecture encompasses 
three different agents: the client agent, the tutor agent, and 
the protocol collection agent. The client agent broadcasts 
low-level InterfaceEvents and higher-level ClientEvents. 
Interface events are sent only to the protocol agent, but 
client events are sent to both the protocol agent and the 
tutor agent. Each ClientEvent contains a set of references 
to the low-level InterfaceEvents that it is composed of. 
The tutor agent replies to any ClientEvent, sending its 
message to both client and protocol agents. The protocol 
agent captures these student-tutor interactions, transforms 
the messages into relational format and stores them in an 
Oracle 9i database. All ClientEventsare also separately 
stored in log files, in a format directly understood by 
tutor, in order to more efficiently restore system state or 
to provide delayed feedback. An example ClientEvent 
message is shown in Figure 3. 

Figure 2. Agent Architecture 

 
There are 4 required key-value pairs for any particular 
message within an envelope: (1) sender: AID, (2) 
receiver: AID, (3) content: Agent Communication 
Language  (4) performative: defines a type of 
communicative act. In Figure 3, the envelope indicates the 
locator: the sender is a particular slide tutor client, and the 
receiver is the protocol agent. In this simple case, there is 
only one message.  
 
The performative is a specific request from the client, in 
this case to create a finding of blister identified at a 
specific x,y,z location. The set of interface action 
identifiers (referencing the interface actions for (a) 
clicking the ‘findings’ button, (b) clicking in the image, 
and (c) selecting three times down a tree of findings) are 
contained in the body of the message as well. 
 

Figure 3. Example ClientEvent 

 
Each interface widget is essentially its own agent, 
possessing a unique identifier within a particular student 
session.  We use 5 parameters to identify each agent: (1) 
object Type – e.g. ‘tree’, ’button’, ‘finding’, ‘hypothesis’, 
(2) Label  - the name of the interface object, (3 )Id – a 
unique object id within the current student session, (4) 
ObjectDescription – a combination of Type+Label+Id, 
e.g. ‘Finding.Blister.Concept2’, and (5) Parent –  a list of 
all parent ObjectDescription for hierarchical agent 
structures with colon and semicolon separators within and 
in between the levels. Together, the ObjectDescription 
and parent describe hierarchical relationships between 
interface objects. In Figure 3, the sender of this message 
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is actually the reified concept for the blister finding. For 
the interface in use when this message was generated, the 
object was a finding widget in the diagrammatic 
reasoning interface. Evolution of the interface is thus 
easily accommodated, as any new interface object only 
needs to be associated with its own set of performatives 
and content input. 
 
The FIPA message structure can easily reproduce the 
classic Action:Selection:Input triplet of cognitive tutors 
(Ritter, Koedinger 1996). SlideTutor uses part of the 
ObjectDescription as ‘Selection’, Performative as 
‘Action’ and a list of Content Input as ‘Input’. The 
Dormin message format provides a way to communicate 
these Action:Selection:Input triplets across a system, but 
is limited because the recipient must translate the message 
into a format understood by the recipient. In contrast, the 
content of the FIPA message structure uses XML as a 
middle-layer, and is thus able to represent other languages 
(e.g. RDF (http://www.w3.org.RDF/), KIF 
(http://logic.stanford.edu/kif/dpans.html), SL 
(http://www.fipa.org/specs/fipa00008/XC00008G.html)). 
 
Messages sent from the tutoring agent provide detail 
about the system response, but also the tutor state. Figure 
4 demonstrates a tutor message when the ClientEvent 
does not match a possible next-step, according to the 
cognitive model. In this case an error TutorResponse is 
generated. The TutorResponse contains the text to be 
displayed in the SlideTutor student interface. But it also 
contains  information about the type of error (error code), 
and indicates the best-next-step – the step that the tutor 
will suggest to a student request for a hint.  
Figure 4.Example TutorResponse  

Our categories for system responses derive directly from 
our ontologies for hints and errors – which maintain the 
semantic meaning of this error and its relationship to 
other errors. For example in Figure 4, the error code 15 
identifies the error of indicating a correct finding in an 
incorrect location. The instance of this error relates to the 
finding ‘Blister’. Once stored in relational format, the data 
can be analyzed in multiple ways. The query can be 
constructed to retrieve only errors in locating blisters, or 
errors of the more general type of locating findings, or all 
errors related to any action involving ‘Blister’. 
 
In Figure 4, the TutorResponse also contains a description 
of the interface object and the performative which will 
together describe the action that the expert model would 
take in this problem state. It is analogous, in some ways to 
the rule that fires at the end of the Match-Resolve-Act 
cycle. By capturing the best-next-step for each student 
action, we can easily and directly compare student actions 
over time to predictions based on the expert model. For 
example, we can formulate a query that returns the % of 
ClientEvents that match the previous best-next-step 
TutorResponse over time for a set of students. 

Protocol agent and database schema 

The relational schema we employ contains tables that 
closely reproduce the message structure, as well as tables 
and relations that allow us to maintain and retrieve data 
across multiple experiments, and experimental variables. 
Many aspects of our schema are quite similar to one 
described by Mostow et al (Mostow et al. 2002). Like this 
schema, we have tables that reflect static high-level 
relationships, for example a many-to-many relationship 
between students and experiments. Data in tables for 
Experiment, Experimental Condition, Case List, Tutor 
Case and Student do not change during a student 
participation in the experiment. In addition to this high-
level information about experiments, students, and 
problems, the protocol agent also captures content of the 
InterfaceEvent, ClientEvent, and TutorReponse messages 
as well as messages created at the start and end of 
problems and sessions. The relational schema for this 
information closely reproduces the structure of the FIPA 
messages. The tables and relationships in our schema that 
describe message-based inputs are shown in Figure 5. 

For each student session the protocol agent collects all 
reasonable interaction events, excluding window resizing 
and some mouse movements. The representation of these 
events is very generic and contains an event description 
with any number of possible event parameters that have 

Envelope Sender: TutorEngine0 
Receiver: PROTOCOL 
TimeStamp: 1114444379378 
Message: 
  Sender: TutorEngine0 
  Receiver: PROTOCOL 
  Performative: FAILURE 
  Conversation_ID: 1114444378242 
  Content:  
  ErrorCode = 15 

NextStepType = Evidence 
NextStepLabel = blister 
NextStepID = 0 
NextStepParent = null 
NextStepAction = DELETE 
name = Messages  
value = "[TEXT:There is BLISTER present, 
but not where you have pointed in the 
image. See if you can find where.  
POINTERS:[PointTo:Concept2 
IsPermanent:false Method:setFlash  
Args:[true]]]" 
name= TutorAction  
value = "PointTo:Concept2 
IsPermanent:false 
Method:setBackgroundColor Args:[RED]"



 
Figure 5. Database schema for low-level interaction data

been stored in corresponding Input tables.  Each FIPA-
based message is directly input as XML into the matching 
field in the appropriate table. The many-to-one 
relationship between InterfaceEvents and ClientEvents 
allows us to analyze our data from an HCI perspective as  
well, because we can determine for example, how many 
actions were performed, how much time was required to 
achieve a particular sub-goal such as identifying a Blister, 
or how many InterfaceEvents were unrelated to any 
ClientEvents  (Saadawi et al. 2005). 

 Query Tool 
The Protocol Query Tool provides researchers with web-
based querying of our database. The tool allows the user 
to obtain data sets specific to a wide range of constraints. 
The interface consists of a set of drop down lists. Each 
drop down list contains the set of all values existing in the 
database for that particular attribute. The following data 
elements may be specified or researchers may indicate 
ALL or NONE: 
 
1. Experiment : Users may select from the set of named 

experiments 
2. Experiment Condition : For any single experiment, 

users may select a particular experimental condition. 
3. User: The username of the participant for the selected 

experiment condition 
4. Problem : The case which was solved by the student 

during tutoring.  
5. Session : The user session for the selected problem. 
 

 
The researcher specifies the value constraints for the 
above attributes in the order shown above. As the user 
specifies each value constraint, the remaining 
attribute:value lists are updated to reflect choices for the 
preceding value constraints. The protocol query tool 
outputs HTML which can then be loaded into Excel or a 
statistics program for further analysis. Queries may be 
saved using SQL representation and then subsequently 
reloaded. The interface is designed to provide access to 
InterfaceEvents, ClientEvents, and TutorResponses for 
specific use-cases.  
 
Analysis of InterfaceEvents and associated ClientTutor 
events is typically undertaken to analyze the usability of 
the system. For example, from this data we might 
determine (1) the total time taken to complete a particular 
ClientEvent as the interval from the first action which 
composes that ClientEvent to the last, or  (2) the ratio of 
InterfaceEvents to ClientEvents. The tool provides a 
special interface to view InterfaceEvents that color codes 
the rows that belong to a single ClientEvent. The color 
coded groupings ease manual inspection by the 
researcher. 
 
In contrast, analysis of ClientEvents linked to associated 
TutorResponses is typically undertaken to analyze student 
performance during tutoring, including classical metrics 
such as the number of hint requests, depth of hints, 
responses to hints, error frequency and distribution, as 
well as the values of these variables over time. Figure 6 
shows the query tool, as a researcher requests data for all 
 



 
Figure 6. Protocol Query Tool 

 
cases in which ‘Blister’ is identified. It depicts the 
selection of ClientEvent criteria. The TutorResponse 
criteria may be specified by clicking on the 
TutorResponses tab and selecting the appropriate values 
from the lists.  
 
Figure 7 shows typical output for InterfaceEvents, 
ClientEvents, and TutorResponses. Note that many 
InterfaceEvents have been recorded (7A), but only a 
subset of them are linked to four discrete ClientEvents 
(169814-169818). These ClientEvents (7B) indicate that 
the student erroneously asserted ‘Blister’ in a particular 
location, deleted the incorrect assertion, asked for help, 
and then asserted ‘Blister’ in the correct location. 
TutorResponses to these ClientEvents are also shown 
(7C).  

Some lessons learned 

Our data collection framework was deployed 
approximately one year ago. Since that time, we have 
used it to collect data on 4 smaller HCI studies and one 
larger experiment, for a total of 50 students. The most 
salient problem we encountered was that direct storage of 
data during usage produced records that we later wanted 

to remove. For example, when our systems crashed during 
an experiment, our research assistant had to restore the 
problem state for the student manually. All her actions 
were stored in the database under the student name. In 
this case, we had to delete her actions and merge the 
sessions to preserve the validity of the student data. 
Ultimately, we decided to maintain two instances of the 
database. The ‘raw’ database is used to capture all data 
for the project. After completion of each study we copy 
the data to another database, remove irrelevant and 
sometimes duplicate records, and then make it available 
for all subsequent analyses. 

Another issue we have grappled with is that detailed real-
time capture of all interaction data necessarily incurs a 
performance cost. In our system, every  change of a 
virtual microscope viewer position or zoom results in a 
ClientEvent message that requires a reply from the Tutor. 
This slightly, but noticeably slows tutor response. For the 
detailed laboratory studies that we perform, this 
performance cost seems justified. However as we move 
our tutoring system out of the laboratory – we will need to 
significantly scale back the detail of the interactions that 
we capture in order to optimize performance. 
 
An important limitation we discovered in our current data 
representation is that we are maintaining all of our 
assessment data in a separate database. Furthermore our 
assessment database does not explicitly map performance 
on assessments (multiple choice and diagnostic case tests) 
to the same skills that the tutoring system teaches. 
Currently, correlation of process data from tutoring 
sessions and performance data from assessments is a 
manual task. Ultimately we would like to use the system 
for data-mining, in order to discover novel relationships 
between behaviors in the tutoring system and test 
performance. This functionality would benefit from a 
unified representation of these two types of data. 

Discussion and future directions 
 
The data collection framework we describe is quite 
generic and might be adaptable to other model-tracing 
ITS. Previous authors have already cited the advantages 
of relational formats for maintaining study data in the 
design of ITS (Mostow 2002). And we concur that the 
single project database has helped us greatly to make 
sense of the enormous volume of complex data that we 
are collecting.   
 
Beyond the existing implementation, we found the FIPA 
standard to be a very useful structure to describe ITS 
interaction events. The flexibility to add performatives, 
and the potential to reference ontologies within the FIPA 
message structure are particularly intriguing.  
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Figure 7. DB extract showing (A) InterfaceEvents, (B) ClientEvents , and (C) TutorResponse 
 

What would it take to utilize this specification to create an 
information exchange standard for ITS? First, a set of 
researchers would need to agree to adopt and implement 
such a common message representation. Second, the 
group would need to develop a set of performatives that 
describe the common communications acts for these kinds 
of systems. This would, in effect, produce a controlled 
vocabulary for ITS communications. It might include acts 
such as create, delete, set-property, or show-example. 
 
Once the basic infrastructure is in place, more complex 
forms of interoperability between systems could be 

supported using the FIPA standard. For example, error 
categories, hint content, or domain knowledge specified 
in publicly available ontologies could be referenced in the 
ontology attribute of the FIPA message structure. 
Ultimately, researchers would need to commit to standing 
up common services that could generalize beyond their 
own project to process external data. Discovery of shared 
services could eventually be based on an agent ontology 
that indicates what operations the agent performs; what 
inputs it expects, and what outputs it produces.  
 



What benefits might result from this approach? First, the 
move to a common communications standard might 
produce a direct effect on data sharing, because systems 
would be at least syntactically and, to a smaller degree, 
semantically aligned. This would significantly ease some 
kinds of meta-analysis, because the major kinds of ITS 
actions would share identical performatives (for example 
failure, or confirm). Second, it would allow us to use each 
others data for other purposes such as simulation. Third, it 
could provide a platform for real-time system 
interoperability. For example, individual modules of 
separate ITS could interoperate around well-defined tasks 
such as calculating knowledge tracing probabilities or 
identifying particular help-seeking behaviors. 
 
In general, discussions of standards tend to produce a 
mixture of fear and boredom. But one of the many lessons 
we have learned as ITS researchers who also work in 
other areas of medical informatics, is that standards act as 
a bootstrap to collaboration. Once individuals begin to 
describe their data in common ways, communication 
which was previously impossible becomes only difficult. 
Individual ITS developers appear to have an enormous 
amount to learn from each other. It seems worth the pain 
to consider how we might create our systems in ways that 
facilitate this kind of collaboration. 
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