
Evaluating Planning based Approaches for End to End Composition
and Execution of Web Services

Vikas Agarwal, Girish Chafle, Koustuv Dasgupta, Sumit Mittal, Biplav Srivastava
IBM India Research Laboratory

New Delhi, India
{avikas,cgirish,kdasgupta,sumittal,sbiplav}@in.ibm.com

Abstract

An end–to–end view of the web service composition
process involves the creation of an executable plan
(workflow) that realizes the functionality of a new
service and its deployment on an execution engine.
A number of planning based techniques have been
proposed recently for web service composition. How-
ever, in order to choose a suitable technique for an
application scenario, one needs a formal classification
and evaluation of these approaches. To this end,
we first introduce a formalization of the Web service
composition and execution process. Next, we classify
popular service composition techniques found in the
literature into four planning based approaches. We
distinguish these approaches based on the type of input
specifications they take, and the amount of control they
give to a user who is supervising the process. Further,
we analyse these approaches on the basis of multiple
metrics that are relevant in the context of Web service
composition. Finally, we present a case study by
picking a service composition problem in the telecom
domain, reasoning about our choice of approach for
solving the problem, and providing an outline of the
problem solution.

Introduction

The literature on composition of both WSDL-described
(S. Staab et al. 2003) and Semantic Web services
(McIlraith, Son, & Zeng 2001) is quite comprehensive
Much of it deals with resolving discrepancies in the
description of Web services, the syntax and semantics
of their composition and how they could be executed.
Planning is being explored for automatic Web services
composition (McDermott 2002; Blythe & others 2003;
Srivastava 2002) and many areas apart from classi-
cal planning could be relevant: distributed planning
(DesJardins et al. 1999), planning as model checking
(Giunchiglia & Traverso 1999), planning with extended
goals and actions (Dal-Lago, Pistore, & Traverso 2002),
and HTN planning (Erol, Hendler, & Nau 1994). It
has been noted that web services pose challenges to
existing planning methods in representation of complex

Copyright c© 2005, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

actions, handling of richly typed messages, dynamic
object creation and specification of multi-partner in-
teractions(Srivastava & Koehler 2003).

The problem of Web service composition and execu-
tion (WSCE) cannot be seen as a one-shot plan synthe-
sis problem defined with explicit goals but rather as a
continual process of manipulating complex workflows,
which requires solving synthesis, execution, optimiza-
tion, and maintenance problems as goals get incremen-
tally refined (Srivastava & Koehler 2004). This is be-
cause the WSCE process involves concepts from the AI
domain as well as software engineering/programming
domain. When viewed as a program, input and output
parameters become important whereas when viewed
as an action, the preconditions and effects become
dominant (Sabou, Richards, & van Splunter 2003).
Both the views are necessary to meet the expectations
of real world applications.

The end-to-end view of WSCE involves develop-
ment of an executable plan/workflow that realize the
composite service functionality, its deployment on an
execution environment, and its continuous management
(monitoring, feedback, and redeployment, if required).
This problem can be looked upon as a process with
a user (service developer) supervising it. The user
can give input to the process and intervene at various
stages. The recently proposed approaches to WSCE
can then be classfied based upon the amount of freedom
given to the user to intervene and the kind of input they
take. We focus on the following four approaches to solve
the WSCE problem.

• All-in-one Composition

• Staged Composition

• Monolithic Composition

• Replanning-based Composition

Different applications have different characteristics
(e.g. input, need for the user to intervene, optimization
criteria) and different requirements (e.g. scalability,
adaptability, failure resolution). In order to choose a
suitable WSCE approach for an application one needs
a formalization of the problem that brings out the
essential characteristics of the problem and allows the

All-In-One
Composition & Execution Specifications

I={i1, i2,… i�} X={x1,x2,…x�}

T={t1,t2,…t�}

Figure 1: All-In-One Composition and Execution

user to compare decision choices implied in available
solution approaches. In this paper, we present a
formalization of the end–to–end WSCE problem. The
formalization is independent of the specific reasoning
that may be done at each stage (e.g., planning, LP,
model checking) and makes the underlying assumptions
of the corresponding approach explicit. Next, we qual-
itatively compare the alternative WSCE approaches
with respect to multiple metrics relevant to a service
composition scenario. We also present a case study for a
telecom service provider and demonstrate the use of our
framework in reasoning and selection of an appropriate
planning–based approach.

Formalizing End to End Service

Composition and Execution

Web service composition and execution is the process of
realizing the requirements of a new web service (based
on specifications) using the existing component web
services. The requirements for web service composition
from an end–user can be decomposed into two parts.
The first part deals with the desired functionality of
the composite service, called the functional require-
ments. The second part involves specification of the
non-functional requirements that relate to issues like
performance and availability. The input to an end–to–
end web service composition problem is a composite
service specification in a language that is solution
dependent, e.g., OWL expression for functional spec-
ification, Quality-of-service (QoS) specification. We do
not restrict the input to any one representation but
assume that it is done in a manner that would make
the subsequent composition feasible.

The web services are differentiated into web service
types which are groupings of similar (in terms of
functionality) web services and the actual web service
instances that can be invoked. The web service types
and instances are advertised in a registry. The service
instances that can be invoked at a given time are those
which are actually deployed (up and running) at that
time. In summary:

1. C = {c1, ..., cα}: Set of α web service types.

2. I = {i1, ..,iβ}: Set of β service instances advertised
in a registry like UDDI. Assuming each service type
ci has M instantiations, β = M × α.

3. X = {x1, ..., xγ}: Set of γ services deployed and
running at any time. The deployed services are a

subset of the advertised services, i.e. X ⊆ I , and
γ ≤ β.

The output is a sequential execution trace T = ≺ t1,
...,tλ � of length λ, where ti refers to an invocation of
a deployed web service instance.

We are now ready to present four alternative web
service composition and execution approaches and char-
acterize them based on the general formalization. The
approaches vary depending on how much a user can
intervene in the WSCE process and the type of inputs
they require.

The All-in-one Composition and Execution
Approach

In the all-in-one approach, the composition and execu-
tion processing is internalized as a “blackbox” and the
user is not allowed to intervene. The internal process
realizes the requirements of the composite service and
involves separate or interleaving of the composition and
execution stages.

A straightforward solution for web service composi-
tion and execution is based on optimizing CSP or mixed
integer linear programming, such that the composition
semantics are preserved and the composite QoS is met,
based on the monitored real-time QoS values. The
approach is illustrated in Figure 1. The search space
would be at most O(γλ) since only the deployed web
services can be included in any executable composition.

This approach can give an optimal composition
based on real-time information and would be ideal
if the search space is small. It can capture both
composition followed by execution, or interleaving of
composition and execution stages. Previous work on
metric temporal planning(Do & Kambhampati 2003),
planning based on integer optimization(Kautz & Walser
1999) and mixed planning and execution1(Johnson et
al. 2000) are relevant to this approach.

The Staged Composition and Execution
Approach

In contrast to the all-in-one approach, we can have an
approach in which the user can intervene during the
composition and the execution stages of the process.
Figure 2 gives an illustration of this staged approach.

This approach distinguishes between service types
and instances. The composition first proceeds to
generate an abstract plan based on web service types
(logical composition), and only the sound abstract plans

1http://www.cc.gatech.edu/fac/Sven.Koenig/greedyonline/

Logical

Composition

Physical

Composition

Runtime Specifications

C={c1,c2,…c�} I={i1, i2,… i�} X={x1,x2,…x�}

S={S1,S2,…SK} W={W1,W2,…WL}

T={t1,t2,…t�}

FPC FRE

RAW RIW REW

Figure 2: Staged Composition and Execution

are concretized into executable plans by selecting the
appropriate web service instances (physical composi-
tion). Key elements of the approach are:

1. S = {S1, ..., SK}: Set of K abstract plans selected
after Logical composition. An abstract plan Si has
|Si| service types in it and can be found by searching
in a O(α|Si|) space. For K plans, the worst case
complexity is O(K.αλ).

2. W = {W1, ..., WL}: Set of L executable plans
selected after Physical composition. The total pos-
sible choices for selecting an instantiated plan from
K available abstract plans are =

∏
1..K M |Si|. The

worst case complexity (in terms of search space) for

selection of L instantiated plans is O((K.βλ)
L
).

The output of the logical stage goes to the physical
stage, the output of which is passed to the runtime.
When multiple plans are passed between stages, one
could rank them based on some criteria. Let RAW

denote a ranking function over abstract plans in S and
RIW denote a ranking function over instantiated plans
in W . At runtime, a similar ranking function REW

can be defined over the instantiated plans in W , which
takes the deployed service instances into account. The
runtime infrastructure can use it to select the composite
plan to be executed.

Function 1 RAW (Si) = r1(Si, ∆AW) → <. The
ranking function is defined over the current plan Si and
a disruption factor. In semi-automated composition, a
user may be inspecting the plan resulting after the logical
composition. The selection of given plan would cause
a disruption ∆AW to the user over previously selected
plans. For automated composition, ∆AW = 0.

RAW is used to select among abstract plans. One
may extend the definition of RAW to include a factor
about how well an abstract plan meets the given
specification, thereby allowing partially sound plans to
be passed from one stage to another. We assume that
all plans satisfy the user specifications and hence, the
latter does not figure in our definition.

∆AW can be decomposed as ∆c + ∆ui. Here, the
first disruption factor accounts for change (c) in the

comprehension of the plan as perceived by the user.
Assume that the user is familiar with a particular
plan. If a new plan is now generated, the user has
to again try and understand this plan. This effort is
inverse to the similarity between the new and the old
plan. The second disruption factor accounts for any
user intervention (ui) on the abstract plan, either by
choice or by mandate, before it is given to the physical
composition stage.

We can estimate ∆c and ∆ui as follows:

• | Si |: Number of actions in the plan

• ∆c: | Scurr − Sprev |, which is the cardinality of set
difference corresponding to the current and previous
plans.

• ∆ui: UIEstimate(Scurr) - UIEstimate(Sprev),
where UIEstimate(Si) = Σj∈Si

(| ActionIN
j+1 | × |

ActionOUT
j | −1).

Note that, j represents actions at the jth level of the
plan while IN and OUT represent the input and output
parameters, respectively.

Function 2 RIW (Wi) = r2(W
QoS∗
i) → <. The

ranking function is defined over estimated QoS of the
currently instantiated plan.

RIW is used to select among instantiated plans.
Quality of service (QoS) is the most common basis to
differentiate among plans and we use it in our definition.
Here, QoS* means that the measures are estimated
values rather than the actual runtime values, QoS,
that could be monitored at any given time instant in
the execution environment. QoS* is estimated from
QoS values aggregated over some time interval and
thus, it could lag behind the actual QoS. One may
also define the ranking as a function of how well the
executable plan meets the given QoS specification,
thereby allowing partially compatible plans to be passed
from one stage to another. We assume that all plans
satisfy the QoS specifications and hence, the latter does
not figure as an argument. We have also not introduced
a disruption factor in RIW because executable plans
would seldom be modified by users if they can intervene

Monolithic

Composition

Runtime Specifications

I={i1, i2,… i�} X={x1,x2,…x�}

W={W1,W2,…WL}

T= {t1,t2,…t�}

FRE

RIW

REW

Figure 3: Monolithic Composition and Execution

after abstract plans are produced. Using RIW , we
can prefer a plan which is less likely to lead to QoS
violations, due to the high margin between its QoS
characteristics and the QoS specifications.

Function 3 REW (Wi) = r3(Wi, X) → <. The
ranking function is defined over the given instantiated
plan and the current set of deployed service instances.

REW is a ranking function used to select among
instantiated plans. Here, the QoS of xi is the monitored
runtime value of deployed services rather than the esti-
mated value of all the advertised services. In addition,
REW can capture other domain–specific preference e.g.
execute a plan which leads to fewer deployment of new
services.

Function 4 FRE(W) → <

The feedback function is given from the runtime to
the physical stage and it consists of the monitored
QoS of the deployed instances and the performance of
the instantiated plans w.r.t. QoS specifications. The
feedback will effect the computation of RIW ranking.

Function 5 FPC(S) → <.

The feedback function is given from the physical to
the logical composition and it can contain information
that determines the computation of RAW ranking, e.g.
service types with no instance bindings.

A concrete example of this approach, using the ranking
and feedback functions, is discussed later in the paper.

The Monolithic Composition and
Execution Approach

In the monolithic approach (Figure 3), the user cannot
intervene in the composition phase but can intervene
before the workflow is handed off to the execution
engine. However, no distinction is made between
web service types and instances. The web service
instance capabilities can be represented in OWL-S or
directly in WSDL with additional annotation about
their capabilities, and registries like UDDI store these
descriptions. Based on the service specification, all or
a subset of services are selected and a planning routine
finds the solution to the WSCE problem. The search
space would be at most O(βλ) since potentially all the
advertised, and not just the deployed web services, can
be used in any generated composition.

The monolothic approach is the most common web
service composition approach in literature (Ponnekanti
& Fox 2002; McDermott 2002; Srivastava 2002; Sirin,
Parsia, & Hendler 2004; Sirin & Parsia 2004). It
completely ignores the runtime aspect of web service
deployment and assumes that all generated plans can
be executed without any problem. The system of
(Traverso & Pistore 2004) can be also seen as an
implementation of this approach where the input spec-
ifications consists of message exchanges between the
component services and the output is an executable
(BPEL) workflow, that implements the specifications.

The Replanning-based Composition and
Execution Approach

The replanning–based approach does not plan from
scratch. Instead, it takes an initial plan (or plan
template) and adapts the plan based on runtime or any
other trigger. One way to adapt plans is through a set
of policies which is a general term used to refer to any
specification of behavior. Note that, the use of policies
is intrinsic to any decision making problem, and can be
used at any stage of the WSCE process. However, we
choose to focus on its role in the case of plan adaptation
because of the readily available domain-relevant policies
that can facilitate such a framework.

Most procedural policy languages (like WS-Policy,
REI) support variations of the Event-Condition-Action
(ECA) specification. ECA rules specify what actions to
take in response to events provided stated conditions
hold. An action refers to an activity that can be
performed in the domain and a policy may consist of
one or more actions. Specifically(Bailey, Poulovassilis,
& Wood 2002):

On : ≺ Event �

If : ≺ Condition � holds

Do : ≺ Actions �

In the replanning–based approach, we have an initial
plan which will be executed and a set of policies would
guide replanning or plan adaptation if the external
events (e.g., runtime failures, changes in advertised
instances) occur. The event may take the advertised
web service instances into account or be agnostic to it.
The plan execution is separate from composition and
the approach is illustrated in Figure 4. Systems that
want to adapt available plans depending on anticipated
contexts (business or operational events) would prefer

Replanning-based

Composition

Runtime

 I={i1, i2,… i�} X={x1,x2,…x�}

W={W1,W2,…WL}

T={t1,t2,…t�}

FRE

RIW REW

Specifications

Initial Plan
(Template)

Adaptation
Policy

Figure 4: Replanning–based Composition and Execution

the replanning–based approach(Chun, Atluri, & Adam
2004).

The worst case complexity of reasoning with a set
of policies is the same as automated reasoning on a
knowledge base, and is hence undecidable in nature.
(due to the possibility of infinite loops). However, in
practice, policies encode domain-relevant information
which can be evaluated in a tractable manner.

Comparing Alternative Approaches for

Web Service Composition and

Execution

We next evaluate the different approaches for Web
service composition and execution described in the
previous section. For comparison, we choose a set of
metrics that we feel are appropriate in the context of
service composition. To the best of our knowledge, this
is the first effort to characterize and analyze service
composition and execution.

Completeness: We define completeness as the
ability to compose and execute a (concrete) workflow, if
one exists. In other words, given a correct specification
the approach is guaranteed to output an execution
trace. In this respect, the all-in-one, staged and mono-
lithic approaches are guaranteed to find an executable
workflow if one exists. However, in the replanning case,
the completeness depends on the set of policies that are
defined.

Composition Effort: We define composition effort
to be a measure of the complexity (time/space) involved
in finding an executable workflow using a particular
approach. We believe that the search space is a good
estimate of the composition effort. Table 1 gives the ef-
fort involved with each of the approaches. Note that the
figures provided in the table are worst–case estimates.
The replanning–based approach has minimum effort
(bounded by the number of conditionals) provided the
set of policies provided as input can be evaluated in a
tractable manner.

Sensitivity: The sensitivity of a WSCE approach
depends on the number of external inputs that are
involved in the process. As shown in Table 1, the
sensitivity is highest for the replanning-based approach
since a change in one of the policies can arguably
radically change the subsequent plans that are pro-
duced. Further, we claim that the sensitivities of the
monolithic and staged approaches are low and medium,
respectively. As is evident, the all-in-one approach is

not sensitive to external inputs.

Composition Quality: The quality of composition
refers to the “goodness” of the plan that is generated
by the corresponding approach. We assume that given
complete inormation in terms of the specifications of the
service to be composed, and real-time information from
the runtime there exists an optimal plan to compose
and execute the service. To this end, the all-in-one
approach can generate a plan that is optimal. For
the staged and monolithic approaches, the quality of
the solution depends on the choice of the ranking
functions as well as the feedback from the subsequent
stages of composition (execution). Similarly, for the
replanning–based approach, the quality of the solution
is determined by the initial plan and the set of policies
defined.

Control: This is the amount of control that a
user has to intervene and impact the plans that are
generated. For example, the user can change one of
the ranking functions and effect a change in the plan
that is computed by the corresponding approach. In
this respect, the “black-box” approach for all-in-one
gives no room for the user to control (or intervene
with) the composition and execution of a service. The
control is low for the monolithic approach, medium in
the case of staged, and high for the replanning-based
approach. In the case of the latter, the user can impact
the subsequent plan by simply changing the initial plan
and/or one of the policies.

Failure Resolution: The last criterion that we
consider is the ability of a particular approach to resolve
failures. Note that, such failures might occur during
composition (e.g. no abstract plan found, no instance
binding available) or during execution (e.g. a deployed
service instance fails). In both cases, the approach
should be resilient enough to recover from the failure
and provide alternate plans to the user. Further, the
failure resolution and recovery steps might be possible
only by interacting with the user. The “black-box”
approach for all-in-one makes it extremly difficult to
resove a failure. The staged approach offers maximum
failure resolution because of the inherent nature in
which the WSCE process is decomposed into multiple
stages. Finally, the replanning-based and monolithic
approaches offer low and medium failure resolution,
respectively.

Criteria All-in-one Staged Monolithic Replanning–based

Completeness Yes Yes Yes Depends on inputs
Composition Effort O(γλ) O(αλ) + O(βλ) O(βλ) O(1)
Sensitivity None Medium: Low: High:

< RAW , RIW , FPC , FRE > < RIW , FRE > <initial plan,policies,
RIW , FRE >

Composition Control None Medium Low High
Composition Quality Optimal Depends on Depends on Depends on

RAW , RIW , FPC , FRE RIW , FRE policies
Failure Resolution Minimal High Medium Low

Table 1: Comparison of different Service composition and execution approaches

Case Study

Given the intense competition in the telecom sector,
service providers need to continually develop compelling
applications to attract and retain end-users, with quick
time-to-market. Often, if a competitor introduces a
new service, the service provider must offer a similar or
better service within days/weeks, to avoid losing cus-
tomers. Also, a service provider can attract enterprise
customers by offering custom-developed value-added
services that leverage its telecom and IT infrastructure.
Enterprise customers typically offer significantly higher
margins than consumers, and are thus more attractive.
Service providers therefore need tools and standards-
based runtime platforms to quickly develop and deploy
interesting applications for their clients.

Scenario Description

Suppose a telco wants to enable an enterprise customer
to use its telecom and IT infrastructure by creating
and deploying services that automate the customer’s
business processes. As an example, consider that the
telco is attempting to automate a typical Helpline (or
call center) for a washing machine manufacturer. A
customer calls in to report a problem with her washing
machine. This problem needs to be assigned to an agent
for resolution. If the problem is such that it could be
solved over the phone, a desk-based agent at the call
center will be assigned. Otherwise, we need to find
an agent in the field who can visit the customer and
fix the washing machine. The service provider would
like to create a set of web services that automate parts
of this process to whatever extent possible, and keep
aggregating these components to create higher-level
composite services. Once such a software infrastructure
is developed, the telco could offer it as a service to
various enterprise customers (appliance manufacturers,
software vendors, etc), with minor customization. Fig-
ure 5 summarizes the workflow in this Helpline scenario
and shows the preconditions/effects of the different
component services.

Here is a sampling of the component services that
may be available in the service provider’s infrastructure:
Location tracking, SMS, Call Setup, Agent Expertise
data, Problem Classification, Agent Selection, Location

Expert
Lookup

Problem Ticket

Expertise Level,
Expert Location

Problem
Reporting

Problem
Classification

User Input

Problem Ticket,
List of Field Agents

Location−based
Agent Selector

Problem Ticket,
Field Agent

On Site

Message
Delivery

Problem Ticket,
Problem Resolution Status

Call Set Up

Help Desk

Problem Ticket,
Problem Resolution Status

Problem Ticket,
Desk Agent

Figure 5: Helpline Service.

Based Agent Selector etc. Some of these provide
telco-specific functions such as delivering SMS text
messages, location tracking of mobile phones, etc.
Others are specific to the application domain, e.g.
problem classification and are available at enterprise
customers’ domain.

Selecting the Right WSCE Approach

The example scenario that we presented in the preced-
ing subsection is dynamic - new services arrive and
depart, and the QoS offerings made by the services
change frequently. At any instant, there are hundreds
of services providing varying functional capabilities and
differing non-functional attributes like respone time,
cost etc. From the user’s perspective, it might be
desirable to verify that the composed service meets
its requirements, before it is deployed. We list below
several aspects that are desirable of a composition
approach for this scenario:

1. Scalability - There are multiple services that provide
similar functionality. Moreover, the number of ser-
vices present in the environment might be quite large.
The system should be able to scale with the number
of types and the number of service instances.

2. Adaptability - Plans generated should be responsive
to the changes in the run–time environment. For
example, it should be easy to account for new services
as well as to account for departure of existing ser-
vices. Moreover, any significant changes in the QoS
offerings of the component services should impact the
creation and execution of the composite service.

3. Failure Resolution - We are dealing with a dy-
namic environment where faults can occur frequently.
Hence, the service creation environment should have
a mechanism to detect, resolve and recover from
faults at various stages of composition and execution.

4. User Interaction - The user would want the flexibility
to supervise the entire composition procedure, start-
ing from generation of abstract plan, to the creation
of an executable workflow, and finally its deployment
on a run-time infrastructure.

Keeping in mind the above requirements, we choose
the staged approach for service composition and ex-
ecution. The rationale behind our choice is that
the decomposition of the WSCE process inherently
improves the scalability of the solution as more service
types and instances are added to the registry. Further,
the ranking functions at different stages along with
feedback information, enables the ability to adapt
to changes in runtime conditions and better failure
resolution. Finally, the staged approach gives more
control to the user to intervene and fine–tune both the
abstract plan and the deployable workflow.

We now look at our solution based on the staged
WSCE approach (Agarwal et al. 2005).

Solution Description

Our solution discovers the relevant services from
amongst the available ones, creates the control flow
between them, and stitches them together into an
executable BPEL workflow. The available services are
semantically annotated, providing meta-information
about their functionality in the context of a domain
model. The developer needs to formally specify the
functional and non–functional requirements of the
service to be created. The tool can then generate a
flow, and with some developer inputs, deploy the flow
on to a runtime infrastructure.

The basic approach to automating the process of
service creation is illustrated in Fig. 6. A Ser-
vice Registry contains information about services
available in-house as well as with participating 3rd-
party providers. The capabilities of each available
service type are described formally, using domain-
specific terminology that is defined in a Domain
Ontology. When a new service needs to be created, the
developer provides a Service Specification. Driven
by the specified functional requirements, the Logical
Composer uses generative planning-based automated
reasoning techniques to create a composition of the
available service types that meets the specified require-
ments. The Physical Composer next selects the

Abstract
Workflow (Plan)

Domain
Ontology

Service
Registry

Deployable
Workflow

Service
Specification

Logical
Composer

Physical
Composer

Execution Environment

Service Creation
Environment

Abstract
Workflow (Plan)

Domain
Ontology

Service
Registry

Deployable
Workflow

Service
Specification

Logical
Composer

Physical
Composer

Execution Environment

Service Creation
Environment

Figure 6: Solution Overview.

best web service instances to produce an executable
workflow that meets the non–functional (QoS) require-
ments. Our Execution Environment orchestrates
the workflow in a decentralized fashion (Chafle et al.
2004; Nanda & Karnik 2003), with partitions of the
flow executing concurrently in network-proximity with
the component services they invoke. This results in
better scalability and performance.

The user can interact with the tool at each stage of
the composition, providing validation and fine–tuning
to the workflow being constructed. In our current
implementation, we have one plan going from the logical
stage upto the execution stage. The system follows
the staged approach (in Figure 2) with K = | S |
= 1, L = | W | = 1, RAW (Si) = r1(Si, 0), and

RIW (Wi) = r2(W
QoS∗
i). REW is not used by the

current execution engine. Note that, we propose to
enhance the WSCE process by using feedback from each
stage and incorporate the ability to pass a ranked set
of plans between each stage of composition.

Conclusion

A number of planning–based approaches have been
proposed recently for Web service composition and
execution. In this paper, we have classified these
approaches based on kind of input they take and the
extent of freedom given to the user to intervene with
the process. Further, we have presented a compara-
tive analysis of the approaches, and demonstrated its
usefulness in selecting an efficient service composition
approach for a telecom domain–specific problem. To
the best of our knowledge, no such framework exists for
evaluating end-to-end service composition techniques
and the current work would fill a crucial void.

References

Agarwal, V.; Dasgupta, K.; Karnik, N.; Kumar, A.;
Kundu, A.; Mittal, S.; and Srivastava, B. 2005. A
service creation environment based on end to end

composition of web services. In Proceedings of the 14th
International World Wide Web Conference.

Bailey, J.; Poulovassilis, A.; and Wood, P. 2002.
An event-condition-action language for xml. In
Proceedings of the 11th International World Wide Web
Conference.

Blythe, J., et al. 2003. The Role of Planning in Grid
Computing. Proceedings of International Conference
on AI Planning and Scheduling.

Chafle, G. B.; Chandra, S.; Mann, V.; and Nanda,
M. G. 2004. Decentralized Orchestration of Composite
Web Services. In Proceedings of the 13th International
World Wide Web conference.

Chun, S. A.; Atluri, V.; and Adam, N. R. 2004. Policy-
based web service composition. In Research Issues on
Data Engineering: Web Services for e-Commerce and
e-Government Applications (RIDE).

Dal-Lago, U.; Pistore, M.; and Traverso, P. 2002.
Planning with a language for extended goals. In
Proceedings of AAAI, 447–454.

DesJardins, M.; Durfee, E.; Ortiz, C.; and Wolverton,
M. 1999. A survey of research in distributed, continual
planning. AI Magazine 20(4):13–22.

Do, M. B., and Kambhampati, S. 2003. Sapa: A
Scalable Multi-objective Heuristic Metric Temporal
Planner. Journal of AI Research 20:155–194.

Erol, K.; Hendler, J.; and Nau, D. S. 1994.
HTN planning: Complexity and expressivity. In
Proceedings of the Twelfth National Conference on
Artificial Intelligence.

Giunchiglia, F., and Traverso, P. 1999. Planning as
model checking. In Proceedings European Conference
on Planning.

Johnson, A.; Morris, P.; Muscettola, N.; and Rajan,
K. 2000. Planning in interplanetary space: Theory
and practice. In Proceedings AIPS.

Kautz, H., and Walser, J. P. 1999. State-space plan-
ning by integer optimization. In Proceedings Fifteenth
National Conference on Artificial Intelligence (AAAI-
99).

McDermott, D. 2002. Estimated-Regression Planning
for Interactions with Web Services. In Proc. AIPS.

McIlraith, S.; Son, T.; and Zeng, H. 2001. Semantic
web services. In IEEE Intelligent Systems (Special
Issue on the Semantic Web), March/April 2001.

Nanda, M. G., and Karnik, N. 2003. Synchronization
Analysis for Decentralizing Composite Web Services.
In Proceedings of the ACM Symposium on Applied
Computing.

Ponnekanti, S., and Fox, A. 2002. SWORD: A
Developer Toolkit for Web Service Composition. In
Proceedings of the 11th International World Wide Web
Conference.

S. Staab et al. 2003. Web services: Been there, done
that? IEEE Intelligent Systems 72–85.

Sabou, M.; Richards, D.; and van Splunter, S. 2003.
An experience report on using DAML-S. In Proc. of
12th WWW Conf.

Sirin, E., and Parsia, B. 2004. Planning for Semantic
Web Services. In Semantic Web Services Workshop at
3rd International Semantic Web Conference.

Sirin, E.; Parsia, B.; and Hendler, J. 2004.
Composition-driven Filtering and Selection of Seman-
tic Web Services. In AAAI Spr. Symposium on
Semantic Web Services.

Srivastava, B., and Koehler, J. 2003. Web Service
Composition - Current Solutions and Open Problems.
ICAPS 2003 Workshop on Planning for Web Services.

Srivastava, B., and Koehler, J. 2004. Planning with
Workflows - An Emerging Paradigm for Web Service
Composition. ICAPS 2004 Workshop on Planning and
Scheduling for Web and Grid Services.

Srivastava, B. 2002. Automatic web services
composition using planning. In Proceedings of KBCS,
Mumbai, 2002., 467–477.

Traverso, P., and Pistore, M. 2004. Automated
Composition of Semantic Web Services into Exe-
cutable Processes. In 3rd International Semantic Web
Conference.

