
A Knowledge-Based Architecture for Helping in the Optimization and

Development of Data Mining Applications in Grids

Francisco Flávio de Souza, Leonardo Ayres, Vasco Furtado

Universidade de Fortaleza – UNIFOR, Mestrado em Informática Aplicada – MIA
Washington Soares, 1521, Fortaleza – Ce, Brazil

fsouza@uol.com.br, leoayresm@yahoo.com.br, vasco@unifor.com.br

Abstract

In this paper, we define the SMARTBASEG architecture and
show the preliminary results we have obtained in some
experiments. Our proposal considers that the domain of
Data Mining (DM) can be represented in terms of an
ontology containing the definition of the main concepts
involved in its algorithms. We also use ontology to describe
some characteristics of a computational grid. This
declarative feature of the architecture enables its dynamic
optimization layer to decide how to transform procedures of
DM applications into Grid-adapted tasks and submit them to
the Grid layer, aiming at resulting in efficient load
balancing. To do that, the optimization layer uses a
knowledge base that makes heuristics explicit based on DM
and Grid knowledge. SMARTBASEG also offers
components that facilitate the development of DM
applications for Grids.

Introduction

Knowledge Discovery in Database (KDD) is the data
exploration process aiming at extracting useful, yet
unknown, information. It involves handling a great amount
of data and often requires large amounts of computational
resources. These two characteristics have a considerable
impact on the attainment of satisfying results. The most
important task in KDD is Data Mining (DM), which can be
of five types: classification, concepts formation, analysis of
temporal series, analysis of attributes importance, and
association (Fayyad 1996).
 Computational grids (or simply Grids) appear as an
efficient alternative to the DM processing demand – see
some examples in (Hinke and Novotny 2000). However,
despite the fact that some DM algorithms are naturally
adequate to work on Grids, such as some genetic and data
segmentation algorithms, most of them need to be adapted
for efficient execution (Furtado 2004). Top-Down
Induction Decision Tree (TDIDT) algorithms – one of the
most popular types of classification algorithms – represent
an example of that. They are composed of iterative phases

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

responsible for database exploration, and this can lead to
load unbalancing (Mehta, Agrawal, and Rissanen 1996)
and scheduling problems. Such issues have a negative
impact on performance results at the end of the execution
of these algorithms.

Our motivation in this work is to define a knowledge-
based architecture for optimizing DM applications, called
SMARTBASEG, which acts as an intermediate layer between
DM applications (implementations of algorithms) and the
Grid middleware. Internally, SMARTBASEG uses an
ontology describing the characteristics of DM applications
and of the Grid where these applications are executed.
Besides that, it has a knowledge base (or rule base), which
makes explicit a set of heuristics based on DM and Grid
knowledge for the optimization of tasks. The architecture
identifies a DM application during execution and explores
its properties, as well as the Grid’s static and dynamic
conditions (such as the number of online machines) in
order to compose load-balanced Grid tasks. Another goal is
to indirectly make the scheduling performed by the Grid
middleware more efficient by determining criteria in the
selection of Grid machines (such as its processing and/or
storage capability) to perform tasks.

SMARTBASEG also offers components to assist in the
development of DM applications for Grids. These
components encapsulate concepts of the Grid and of how
these applications can obtain better performance when they
are executed on it, enabling, this way, the development of
DM applications with code reuse and the abstraction of
Grid-related requirements.

Related Work

Related works can be divided in two areas: Parallel Data
Mining on SMP and Parallel Data Mining on Grid. In the
first group, it is intended to develop parallel algorithms that
use distributed computational resources to enhance the
efficiency of the DM processes (Darlington et al. 1997;
Kargupta et al. 1999). However, these works almost
always are based on the fact that multi-processed machines
are available. A particular area of Parallel DM refers to the
parallel generation of TDIDT. Some works in this area can

be found in (Hall, Chawla, and Bowyer 1998; Kubota,
Nakase, and Oyanagi 2001; Tsai and Yang 2004).
Basically, TDIDT algorithms are useful to the
classification function and its parallel implementation is
essential to deal with a great amount of data. Decision trees
are built in two steps: creation and prune of nodes. The
first one consumes more resources from the computational
point of view (Heath, Kasif, and Salzberg 1996).
According to (Hall, Chawla, and Bowyer 1998),
parallelism in TDIDT algorithms can be reached by
processing data in parallel inside a node (in the level of
records and/or attributes) and/or by creating nodes (that are
not inter-dependent) in the decision tree in parallel.
However, implementations of TDIDT algorithms in
parallel are complex and, according to (Shafer, Agrawal,
and Mehta 1996), they do not guarantee efficiency because
the format of a decision tree, normally, is irregular, which
results in the variation of the processing capability used for
each node. Besides that, it is only during the algorithm
execution time that the format of the tree is defined;
therefore, pre-allocations of processing capability and of
data will probably result in load balancing problems.
 Concerning Grids, known approaches to obtain
parallelism are not enough to bring efficiency to the
process (Silva, Carvalho, and Hruschka 2004). Overhead

questions caused by processes performed in central
machines and issues of load balancing can be crucial. On
the other hand, some works aim at making the DM activity
more efficient through parallel access to databases that are
being mined. These solutions are typically found in
database management systems, which are already available
in commercial products (Page 2002). These works,
however, do not consider the fact that the increase of
efficiency in DM does not depend exclusively of the
improvement of data access. In fact, the complexity of a
procedure (a routine or part of an application) is connected
to its own logic of data handling: a procedure that performs
an ordering on a file requires more resources than another
one that simply reads this same file. Therefore, the lack of
knowledge by a scheduler about the processing type and
complexity makes an intelligent choice of Grid resources
unfeasible. Another sub-group of works, concerning DM
proposals, suggests the implementation of heuristics in
algorithms and/or in schedulers to deal with situations
characteristic of a heterogeneous environment, such as a
Grid (Orlando et al. 2002; Banino et al. 2004). Basically, it
is intended to identify the best Grid configuration for a
certain application. They mainly consider the granularity of
tasks, the size of the database and the quantity of machines
to be used, which enables the decision of the best way to
schedule and distribute tasks. The identification of these
properties is possible by the creation of Grid monitoring
mechanisms, besides the definition of algorithms for the
learning process that dynamically determines the state of
the Grid machines (Galstyan, Czajkowski, and Lerman
2004). Based on this, it is possible to make an intelligent

scheduling of mining tasks. These works have greatly
influenced our proposal.

The SMARTBASEG Architecture

Our vision about the task scheduling and load balancing
problems for DM procedures is not only concerned with
the search for information about the Grid. Our proposal is
based on the principle that DM applications can be
characterized in terms of an ontology (that describes
concepts involved in the steps that compose DM
algorithms) and that this characterization enables the
definition of an optimization layer in order to choose
dynamically the best way to submit an application (using
components provided by the architecture) to a Grid. In this
strategy, there is a knowledge base (containing rules that
explicit heuristics) that enables the choice of appropriate
dynamic task organizers. A task organizer is a specific
code responsible for the arrangement of the transactions of
DM processes in jobs/tasks, which will be submitted to the
Grid. Thus the optimization phase produces one (or more)
job(s) or set(s) of tasks, where each task corresponds to
one (or more) DM procedure(s). It is important to
introduce the concept of process and transaction, which
will be useful along the architecture description. A process
is an application in execution, while a transaction is each
interaction made by a process with the Grid in order to get
a set of DM procedures executed by it. In this work, we
propose an architecture that can be seen as a knowledge
layer between the DM application and a Grid, in a way
that, both in the development and in the use of DM
algorithms, the Grid concept can be transparent to the
developer and to the final user. The general goal is to
obtain quality in the development and in the use of these
algorithms, independently of the Grid configuration and of
the algorithm implementation. The architecture provides
components that achieve this “transparency” (during the
application development) and also a service for tasks
optimization (in the application execution time).

The proposed architecture, called SMARTBASEG, is
currently implemented over OurGrid/MyGrid (Cirne
2003). It offers specific DM services, encapsulating the
Grid concepts and possible strategies of how to better use it
(e.g. parallelism forms). The architecture uses dynamic
information about the Grid behavior and information about
previous executions of DM applications on the Grid to
decide how to best submit the jobs/tasks generated by the
application procedures. For instance, some tasks of a job
(that perform some application procedures) can be
grouped, thus, generating a new job that has fewer tasks
(where each new task is composed of two or more original
ones) in order to produce a better load balancing in the
Grid machines.

SMARTBASEG Overview

Figure 1. SMARTBASEG for the development of DM applications.

In figure 1, there is an overview of SMARTBASEG in the
DM application developer’s point of view. In this situation,
the architecture makes available for the developer a set of
templates, components, and interfaces, which make up
layers organized in the following manner: the layer closest
to the application is represented by templates of DM
applications in Grids layer, in which skeletons for DM
algorithms are available in order to facilitate the generation
of applications by the developer. The components of DM
applications in Grids layer encapsulates Grid concepts and
also uses components that implement DM functionalities
based on JDM – the Sun JSR 073 specification for DM
(Hornik 2004) – and that make up the JDM-based DM
components layer. They also determine which procedures
will be sent to the grid in a parallel way. The DM
processes optimization layer, in the application execution
time, is responsible for optimizing the performance of an
application being executed (process). Finally, the Grid
services layer abstracts the Grid real implementation, thus,
facilitating the portability of the other layers in the
architecture. The developer of a DM application can access
the layer he/she finds most appropriate, even though the
ideal situation is to develop an application accessing the
templates of DM applications in Grids layer because there
are advantages in using already offered services, besides
the code reuse and a better abstraction of the Grid concept.

Figure 2. SMARTBASEG for the execution of DM applications.

In figure 2, we see the environment for the execution of

DM applications proposed by the architecture, in which we
focus on the Grid services layer and, mainly, on the
optimization of DM process layer that will be described as
follows.

Grid Services Layer. This software layer abstracts the
Grid concepts (as well as its API) for the rest of the
architecture and for the applications. The main services
provided are: the access to the Grid information (obtained
by the Grid information provider), such as its total number
of on-line and off-line machines, the characteristics of the
Grid scheduler, the beginning and finish times of a task in
its initial, remote and final phases, the current status of a
task (ready to execute, in execution, finished, not finished
with failures, and canceled), the moment in which a job
was added to the Grid and when it was finished, the current
status of a job (ready to execute, in execution, finished, not
finished with failures, and canceled); and the submission of
jobs composed of tasks to the Grid.

DM Process Optimization Layer. This is the layer
responsible for applying heuristics based on the knowledge
of an expert to prepare jobs/tasks to be submitted to the
Grid. It uses information about the characteristics of DM
applications and of Grids. The main entities that compose
it are:
• Processes Controller: Responsible for creating and

maintaining the processes corresponding to applications
(algorithms implementations) being executed on the
optimization layer. It must also align the transactions
arising from these processes and maintain them until
they are finished (these transactions must come with an
identification of the process that originated them). It’s
also an activity of the processes controller to load the
concepts and statistics concerning finished processes
and to maintain synthetic data about the execution of
processes/transactions in progress (such as the total of
transactions already submitted per process, the total
execution time of the process up to the current moment,
etc.);

• Transaction Analyzer/Optimizer: This is an entity of
the architecture responsible for deciding how the
procedure(s) present in a transaction must be sent to the
Grid to obtain better efficiency. To do that, it uses many
heuristics represented in the knowledge base, concepts
in the ontologies, and information maintained by other
entities, such as: Grid conditions (how many machines
exist, machines “capability”, and “localization” of
machines, etc.); results of previous executions of the
application; results of transactions already executed in
the current process of the application; and the nature of
the application (the complexity of steps that make up the
algorithm, the quantity of attributes and of examples, if
the attributes are continuous or discrete, if the number of
examples and of attributes decreases during the
algorithm execution, etc.);

• Log: Place where the results of jobs (and their
respective tasks) submitted to the Grid will be recorded,
besides the results of decisions taken by the transactions
analyzer/optimizer;

• Job Controller: Responsible for submitting to the Grid
services layer jobs formatted by the transactions
analyzer/optimizer. It keeps correspondence with the
process transactions related to these jobs. When a job
finishes, its controller records the information about it in
the log and informs this fact to the processes controller;

• Statistics Generator: Responsible for making available
synthetic information about the DM applications and the
Grid to the experts, after processing the log records
generated in consequence of the executions of DM
procedures on Grid;

• Statistics, Ontology and Knowledge Base: Repository
where are recorded the most important statistical
information about the performance of DM applications.
DM and Grid ontologies (maintaining conceptual
information about the applications and about the Grid)
are also represented. Finally, there is a knowledge base
that represents heuristics in order to enable the
transactions analyzer/optimizer to re-arrange jobs/tasks
to be submitted to the Grid. These heuristics are based
on information about the characteristics of procedures
that are in the transactions as well as the concepts
represented in the DM and Grid ontology;

• Transactions Dispatcher: Responsible for: verifying at
the processes controller which transactions are recently
arrived from processes, and forwarding the ones
belonged to the process with the “highest” priority to the
transactions analyzer/optimizer. When receiving the
optimization result, it creates a job controller, which
must be responsible for submitting jobs/tasks to the
Grid.

Knowledge Representation

As mentioned previously, SMARTBASEG uses different
sources (statistics information, ontology and Knowledge
base) in order to enable the transactions analyzer/optimizer
to perform its mission. For the intent of this paper, we will
focus our explanation only on the ontology and the
production rules.

Ontology. The ontology used by SMARTBASEG has
concepts about DM applications (based in Cannataro and
Comito 2003) and Grids. The definition that C4.5 is a
supervised TDIDT classification algorithm is done in the
DM ontology, as well as the characteristics of the steps that
compose this algorithm. Moreover, Grid properties as the
fact that a certain Grid only executes applications with
independent and idempotent tasks (called Bag-of-Tasks
applications) are made explicit in the ontology. These
concepts facilitate the generation of rules in the knowledge
base to be explored by the optimization layer during the
execution of DM applications. Besides the Grid and DM

concepts, in the ontology are also represented the concepts
that were defined with the goal to integrate concepts from
these two domains. The concept of process and transaction
are examples of this.

Figure 3. A part of SMARTBASEG’s ontology describing DM and
Grid concepts.

In Figure 3, we have a part of an implemented ontology,
its taxonomies (solid lines) and how its concepts relate to
each other (traced lines). Particularly, we exemplify the
definition of the concepts involved in a DM application, in
this case, the C45Aplic01. In the ontology, it is described
as software that implements the C4.5 algorithm, which is a
TDIDT algorithm and belongs to the classification
function. We can see that the C45Aplic01 has the
procedures C45AvalAtribC01 and C45AvalAtribD01,
responsible for the continuous and discrete attribute
evaluation, according to C4.5 algorithm. Basically, these
procedures realize the same activity but as they have
different computing complexity, they are represented
particularly. On the same figure, it’s possible to note that
the concepts of process and transaction perform the
integration between the concepts of application and
procedures from the DM domain with the concepts of job
and task from the Grid domain. Finally, we can see that the
concept of Grid is declared as an entity that has machines
to perform tasks and a middleware for its own management
and the schedule of tasks. As an example, we have a grid
middleware that deals with Bag-of-Tasks applications, the
OurGrid.

Knowledge Base. In the knowledge base (or rule base), the
rules to be explored during the execution of DM
applications are represented in order to make the
transactions analyzer/optimizer decide which kind of task
organizer it will employ. Besides that, the transactions
analyzer/optimizer can add conditions that will guide the
scheduler (present in the middleware) of the Grid at the

moment to determine the machines that will execute the
tasks.

...
IF (GridIsReady) AND NOT (ThereIsOptimizationCondition)
THEN organize_1_procedure_by_task;

IF (GridIsReady) AND (ThereIsOptimizationCondition) AND
 (ApplicationMethod = TDIDT) AND
 (TransactionsProceduresHasTheSameComplexity)
THEN organize_N_equivalent_procedures_by_task;

IF (GridIsReady) AND (ThereIsOptimizationCondition) AND
 (ApplicationMethod = TDIDT) AND NOT
 (TransactionsProceduresHasTheSameComplexity)
THEN organize_N_different_procedures_by_task;

...
Figure 4. Some rules in SmartBaseG’s knowledge base.

In figure 4, we have a piece of the heuristic knowledge

base of optimization, where pre-defined rules (represented
as propositional rules to abstract the real ones) cause the
execution of a specific task organizer given a certain
situation. Some concepts such as GridIsReady (e.g., Grid is
up and running with at least one machine online) and
ThereIsOptimizationCondition (e.g. if the procedures are
independent and idempotent and their number exceeds that
of available Grid machines) are represented by rules not
presented in the figure. With this information, we can see
that the first rule simply organizes a procedure by task,
since there is no optimization condition, creating a job with
the same amount of tasks and DM procedures. The second
rule determines that we can optimize the TDIDT
procedures with the same complexities, just by dividing
them equally. This creates a job that has a number of tasks
equal to the number of online Grid machines. Finally, the
third rule determines that procedures with different
complexities need an organizer that balances the
distribution of these procedures among tasks resulting in an
egalitarian computational effort. There are many other
rules not made explicit here, for example, a rule that
organizes all kinds of DM procedures in just one task if it
is determined that these procedures would have a very low
computational cost, regardless of how many Grid machines
are available. This prevents unnecessary allocation of
resources, keeping them free to be assigned to other
processes.

Implementing a DM Application Using

SMARTBASEG

In order to make a preliminary validation of our proposal,
it was implemented a TDIDT algorithm, in this case, the
C4.5 (Quinlan 1992). This algorithm performs successive
division steps of the initial training set while it builds a
decision tree. After each iteration, the C4.5 chooses an
attribute to be the root of the decision tree and divides the
training set for each value of the chosen attribute. The

procedure for choosing the best attribute to be the root of
the tree is the most costly of the algorithm. Because of that,
it is potentially parallelizable, since it is necessary for its
realization the execution of a new procedure (called
attribute evaluation) for each one of the involved attributes.
All of these evaluations can be done in parallel, since they
are independent from each other.

The algorithm used Java interfaces that SMARTBASEG
made available. Internally, SMARTBASEG has the
implementations of the DM and Grid ontology, which were
generated through the Protégé tool (Noy et al. 2001),
besides some heuristics, generated through the Jeops tool
(Figueira and Ramalho 2000), to better direct the use of the
Grid during the execution of the application that
implements the C4.5 (C45App01). The implemented
heuristics are the following.

In the task load balance heuristic, the number of tasks
produced by the algorithm corresponds to the number of
available machines in the Grid at a moment. The tasks can
be grouped in order to improve load balancing between the
machines. Suppose, for instance, that in a Grid BoT, as
OurGrid, made up of 50 machines, 100 tasks of a DM
algorithm must be executed. Typically, each task would be
submitted for a machine and the others 50 would be in
queue waiting the release of some machine for their
processing. This situation is not desirable since it does not
optimize the use of the resources, besides provoking a
home machine overhead. To solve this, the optimization
layer using the task load balance heuristic groups the tasks
by two in accordance with the amount of machines. Thus,
each machine process two tasks avoiding queue formation.

The other heuristic is named task balance with
application knowledge. This heuristic is similar the
previous one; however, it is enriched with knowledge
about the application. In such a case, the task grouping is
made not alone taking into consideration the amount of
machines, but also the task type and mainly its cost. In
TDIDT algorithms, internal calculations can vary strongly
in function of the type of attribute that is participating of
these calculations. For example, in continuous attributes, it
is always necessary to make a sort of the attribute values
before the calculation properly said. In discrete attributes
this does not occur. Consequently the evaluation of a
continuous attribute is much more costly than an
evaluation of a discrete attribute. The heuristic basic idea
is to homogeneously distribute the tasks in accordance with
the type of attribute preventing excessive evaluations of
continuous attributes in certain machines. Suppose for
example, 100 tasks generated by an algorithm that is
mining a database with five continuous and five discrete
attributes in a Grid with 50 machines. This type of
heuristic leads the optimizer to produce 50 tasks with 2
attribute evaluations each: one of continuous attribute and
another of discrete attribute.

Experimental Evaluation

In this section, we exemplify how the use of heuristics
defined in SMARTBASEG influenced the DM applications
performance in a Grid.

For the heuristic evaluation, we generated seven
artificial databases with 100k examples and 16 attributes.
The first database has only discrete attributes and the
second only continuous. The others are composed of
continuous and discrete attributes in different proportions.
Our intention is to exemplify situations where
SMARTBASEG, having knowledge about the application,
can improve the partitioning and the dispatch of task to the
Grid, influencing the performance of the applications. In
figure 5, we see the execution time of three applications,
which are different versions of C4.5 algorithm, mining the
seven different databases. First, a serial version of the
algorithm was executed, in the local machine without use
of the Grid. Then, the second version of the algorithm was
executed in the Grid, with no heuristic. Finally, the third
version of the algorithm, using the heuristics described
previously, was executed in the same Grid. For the first
and second database, only the task balance heuristic was
applied while, for the other databases, the task balance
with application knowledge heuristic was preferred.

Figure 5. Execution time of the three versions of C4.5 algorithm

using different approaches.

The results show that the use of heuristics improves the
performance of the applications. The task balance with
knowledge heuristic was the most interesting in terms of
performance even if the proportion of discrete and
continuous attributes varies. This example shows the major
contribution of this work that is the possibility of
representing in a knowledge base different heuristics to be
used in each specific case. To render these heuristics
explicit in the optimization layer enables the programmer
of a DM application to be free of concerns related to the
application performance in the Grid.

Conclusion and Future Work

In this article, we described the SMARTBASEG architecture,
which is based on the principle that DM applications can
be characterized in terms of ontology and that this
characterization enables the definition of an optimization
layer that can decide the best way to submit procedures of
a DM application to a Grid. We described examples of
heuristics used by the optimization layer to make the DM
application more efficient when executed on a Grid. The
main contribution of this work is to show that it is possible
to provide an optimization service for better execution of
DM applications on Grid. The approach uses knowledge
about Grids and, mainly, about the DM applications being
executed, avoiding that the developer of these applications
be concerned with the particularities of the Grid and the
means to get better performance on it. It is a multi-
disciplinary approach, since it uses Artificial Intelligence
techniques to help with the representation of heuristic
knowledge concerning the preparation of tasks to be
executed on a Grid.

Our research continues to focus on identifying
interesting heuristics to be programmed into

SMARTBASEG. Specifically, we are investigating the
simultaneously use of multiple heuristics. We are also
enriching the formalization of the ontology, including more
features of DM algorithms and Grids. Another area of
research is the implementation of the access layer to Grid
services. This opens the possibility to define more
heuristics that combine information about the application
with dynamic characteristics of the Grid.

Acknowledgments

This work was partially developed in collaboration with
HP Brazil P&D.

References

Banino, C., Beaumont, O., Carter, L., Ferrante, J., Legrand, A.,
and Robert, Y. 2004. Scheduling Strategies for Master-Slave
Tasking on Heterogeneous Processor Platforms. IEEE
Transactions on Parallel Distributed Systems 15(4): 319-330.

Cannataro, M., and Comito, C. 2003. A Data Mining Ontology
for Grid Programming. In Proceedings of the First International
Workshop on Semantics in Peer-to-Peer and Grid Computing
(SemPGrid2003), 115-134. Budapest, Hungary. At
http://www.isi.edu/~stefan/SemPGRID.

Cirne, W., Paranhos, D., Costa, L., Santos-Neto, E., Brasileiro, F.,
Sauve, J., da Silva, F. A. B., Osthoff, C., and Silveira, C. 2003.
Running bag-of-tasks applications on computational grids: The
MyGrid approach. In Proceedings of the International Conference
on Parallel Processing (ICCP'2003), 407-418. Kaohsiung,
Taiwan: IEEE Computer Society.

Darlington, J., Guo, Y., Sutiwaraphun, J. and To, H. W. 1997. In
Proceedings of the Second International Symposium on Advances
in Intelligent Data Analysis, Reasoning about Data, 437-445.
London, UK: Springer-Verlag.

Fayyad, U. M. 1996. Data mining and knowledge discovery:
making sense out of data. IEEE Intelligent Systems 11(5): 20-25.

Figueira Filho, C. S., and Ramalho, G. L. 2000. The Java
Embedded Object Production System. In Proceedings of the
International International Joint Conference,7th Ibero-American
Conference on AI, 15th Brazilian Symposium on AI,
IBERAMIA-SBIA 2000, 53-62. Atibaia, SP, Brazil: Springer.

Furtado, V. 2004. Data Mining in Grid, Technical Report I,
HP/UNIFOR Project, University of Fortaleza – UNIFOR,
Fortaleza, CE, Brazil.

Galstyan, A., Czajkowski, K., and Lerman, K. 2004. Resource
Allocation in the Grid Using Reinforcement Learning. In
Proceedings of the 3rd International Joint Conference on
Autonomous Agents and Multiagents Systems (AAMAS’04),
1314-1315. New York, New York, USA: IEEE Computer
Society.

Hall, L. O., Chawla, N., and Bowyer, K. W. 1998.
Combining Decision Trees Learned in Parallel. In Proceedings of
Fourth International Conference on Knowledge Discovery and
Data Mining. New York, New York, USA: AAAI Press.

Heath, D., Kasif, S. and Salzberg, S. 1996. Committees of
Decision Trees. In Cognitive Technology: In Search of a Humane
Interface, 305-317, B. Gorayska and J.L. Mey eds.: Elsevier.

Hinke, H. T., and Novotny, J. 2000. Data Mining on NASA´s
Information Power Grid. In Proceedings of Ninth IEEE
International Symposium on High Performance Distributed
Computing (HPDC'00), 292-293. Pittisburgh, Pennsylvania,
USA: IEEE Computer Society.

Hornick, M. 2004. Java Specification Request 73: Java Data
Mining (JDM), Version 1.0, Final Release: Java Community
Process. At
http://www.jcp.org/aboutJava/communityprocess/final/jsr073.

Kargupta, H., Park, B., Hershbereger, D. and Johnson, E. 1999.
Collective Data Mining: A New Perspective Toward Distributed
Data Mining. In Advances in Distributed and Parallel Knowledge
Discovery, Hillol Kargupta and Philip Chan eds.: MIT/AAAI
Press.

Kubota, K., Nakase, A., and Oyanagi, S. 2001. Implementation
and Performance Evaluation of Dynamic Scheduling for Parallel
Decision Tree Generation. In Proceedings of 15th International
Parallel and Distributed Processing Symposium (IPDPS'01)
Workshops. San Francisco, California, USA: IEEE Computer
Society.

Mehta, M., Agrawal, R., and Rissanen, J. 1996. SLIQ: A fast
scalable classifier for data mining. In Proceedings of the Fifth
International Conference on Extending DataBase Technology
(EDBT), 18-32. Avignon, France: Springer.

Noy, N. F., Sintek, M., Decker, S., Crubezy, M., Fergenson, R.
W., and Musen, M. A. 2001. Creating Semantic Web Contents
with Protege-2000. IEEE Intelligent Systems 16(2): 60-71.

Orlando, S., Palmerini, P., Perego, R. and Silvestri, F. 2002.
Scheduling high performance data mining tasks on a data Grid
environment. In Proceedings of International Conference Euro-
Par 2002, 375-384. Paderborn, Germany: Springer-Verlag.

Page, C. 2002. Phase A Report. Database and Data Mining,
chapter 7. The Astrogrid Project. At
http://wiki.astrogrid.org/bin/view/Astrogrid/RbDataminingTechn
ologyReport.

Quinlan, J.R ed. 1992. C4.5: Programs for Machine Learning.
San Francisco, California, USA: Morgan Kauffmann.

Shafer, J. C., Agrawal, R. and Mehta, M. 1996. SPRINT: A

scalable parallel classifier for data mining. In Proceedings of the
Twenty-Second International Conference on Very Large
Databases, 544-555. Bombain, Índia: Morgan Kaufmann.

Silva, F., Carvalho, S., and Hruschka, E. 2004. A Scheduling
Algorithm for Running Bag-of-Tasks Data Mining Applications
on the Grid. In Proceedings of the International Conference Euro-
Par 2004. 254-262. Pisa, Italy: Springer-Verlag.

Tsai, S. T., and Yang, C. T. 2004. Decision Tree Construction for
Data Mining on Grid Computing. In Proceedings of the 2004
IEEE International Conference on e-Technology, e-Commerce
and e-Service (EEE'04), 441-447. Taipei, Taiwan: IEEE
Computer Society.

