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Abstract 

In this paper, we define the SMARTBASEG architecture and 
show the preliminary results we have obtained in some 
experiments. Our proposal considers that the domain of 
Data Mining (DM) can be represented in terms of an 
ontology containing the definition of the main concepts 
involved in its algorithms. We also use ontology to describe 
some characteristics of a computational grid. This 
declarative feature of the architecture enables its dynamic 
optimization layer to decide how to transform procedures of 
DM applications into Grid-adapted tasks and submit them to 
the Grid layer, aiming at resulting in efficient load 
balancing. To do that, the optimization layer uses a 
knowledge base that makes heuristics explicit based on DM 
and Grid knowledge. SMARTBASEG also offers   
components that facilitate the development of DM 
applications for Grids. 

Introduction   

Knowledge Discovery in Database (KDD) is the data 
exploration process aiming at extracting useful, yet 
unknown, information. It involves handling a great amount 
of data and often requires large amounts of computational 
resources. These two characteristics have a considerable 
impact on the attainment of satisfying results. The most 
important task in KDD is Data Mining (DM), which can be 
of five types: classification, concepts formation, analysis of 
temporal series, analysis of attributes importance, and 
association (Fayyad 1996).  
 Computational grids (or simply Grids) appear as an 
efficient alternative to the DM processing demand – see 
some examples in (Hinke and Novotny 2000). However, 
despite the fact that some DM algorithms are naturally 
adequate to work on Grids, such as some genetic and data 
segmentation algorithms, most of them need to be adapted 
for efficient execution (Furtado 2004). Top-Down 
Induction Decision Tree (TDIDT) algorithms – one of the 
most popular types of classification algorithms – represent 
an example of that. They are composed of iterative phases 
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responsible for database exploration, and this can lead to 
load unbalancing (Mehta, Agrawal, and Rissanen 1996) 
and scheduling problems. Such issues have a negative 
impact on performance results at the end of the execution 
of these algorithms.  

Our motivation in this work is to define a knowledge-
based architecture for optimizing DM applications, called 
SMARTBASEG, which acts as an intermediate layer between 
DM applications (implementations of algorithms) and the 
Grid middleware. Internally, SMARTBASEG uses an 
ontology describing the characteristics of DM applications 
and of the Grid where these applications are executed. 
Besides that, it has a knowledge base (or rule base), which 
makes explicit a set of heuristics based on DM and Grid 
knowledge for the optimization of tasks. The architecture 
identifies a DM application during execution and explores 
its properties, as well as the Grid’s static and dynamic 
conditions (such as the number of online machines) in 
order to compose load-balanced Grid tasks. Another goal is 
to indirectly make the scheduling performed by the Grid 
middleware more efficient by determining criteria in the 
selection of Grid machines (such as its processing and/or 
storage capability) to perform tasks. 

SMARTBASEG also offers components to assist in the 
development of DM applications for Grids. These 
components encapsulate concepts of the Grid and of how 
these applications can obtain better performance when they 
are executed on it, enabling, this way, the development of 
DM applications with code reuse and the abstraction of 
Grid-related requirements. 

Related Work 

Related works can be divided in two areas: Parallel Data 
Mining on SMP and Parallel Data Mining on Grid. In the 
first group, it is intended to develop parallel algorithms that 
use distributed computational resources to enhance the 
efficiency of the DM processes (Darlington et al. 1997; 
Kargupta et al. 1999). However, these works almost 
always are based on the fact that multi-processed machines 
are available. A particular area of Parallel DM refers to the 
parallel generation of TDIDT. Some works in this area can 



be found in (Hall, Chawla, and Bowyer 1998; Kubota, 
Nakase, and Oyanagi 2001; Tsai and Yang 2004). 
Basically, TDIDT algorithms are useful to the 
classification function and its parallel implementation is 
essential to deal with a great amount of data. Decision trees 
are built in two steps: creation and prune of nodes. The 
first one consumes more resources from the computational 
point of view (Heath, Kasif, and Salzberg 1996). 
According to (Hall, Chawla, and Bowyer 1998), 
parallelism in TDIDT algorithms can be reached by 
processing data in parallel inside a node (in the level of 
records and/or attributes) and/or by creating nodes (that are 
not inter-dependent) in the decision tree in parallel. 
However, implementations of TDIDT algorithms in 
parallel are complex and, according to (Shafer, Agrawal, 
and Mehta 1996), they do not guarantee efficiency because 
the format of a decision tree, normally, is irregular, which 
results in the variation of the processing capability used for 
each node. Besides that, it is only during the algorithm 
execution time that the format of the tree is defined; 
therefore, pre-allocations of processing capability and of 
data will probably result in load balancing problems.  
 Concerning Grids, known approaches to obtain   
parallelism are not enough to bring efficiency to the 
process (Silva, Carvalho, and Hruschka 2004). Overhead 

questions caused by processes performed in central 
machines and issues of load balancing can be crucial. On 
the other hand, some works aim at making the DM activity 
more efficient through parallel access to databases that are 
being mined. These solutions are typically found in 
database management systems, which are already available 
in commercial products (Page 2002). These works, 
however, do not consider the fact that the increase of 
efficiency in DM does not depend exclusively of the 
improvement of data access. In fact, the complexity of a 
procedure (a routine or part of an application) is connected 
to its own logic of data handling: a procedure that performs 
an ordering on a file requires more resources than another 
one that simply reads this same file. Therefore, the lack of 
knowledge by a scheduler about the processing type and 
complexity makes an intelligent choice of Grid resources 
unfeasible. Another sub-group of works, concerning DM 
proposals, suggests the implementation of heuristics in 
algorithms and/or in schedulers to deal with situations 
characteristic of a heterogeneous environment, such as a 
Grid (Orlando et al. 2002; Banino et al. 2004). Basically, it 
is intended to identify the best Grid configuration for a 
certain application. They mainly consider the granularity of 
tasks, the size of the database and the quantity of machines 
to be used, which enables the decision of the best way to 
schedule and distribute tasks. The identification of these 
properties is possible by the creation of Grid monitoring 
mechanisms, besides the definition of algorithms for the 
learning process that dynamically determines the state of 
the Grid machines (Galstyan, Czajkowski, and Lerman 
2004). Based on this, it is possible to make an intelligent 

scheduling of mining tasks. These works have greatly 
influenced our proposal. 

The SMARTBASEG Architecture 

Our vision about the task scheduling and load balancing 
problems for DM procedures is not only concerned with 
the search for information about the Grid. Our proposal is 
based on the principle that DM applications can be 
characterized in terms of an ontology (that describes 
concepts involved in the steps that compose DM 
algorithms) and that this characterization enables the 
definition of an optimization layer in order to choose 
dynamically the best way to submit an application (using 
components provided by the architecture) to a Grid. In this 
strategy, there is a knowledge base (containing rules that 
explicit heuristics) that enables the choice of appropriate 
dynamic task organizers. A task organizer is a specific 
code responsible for the arrangement of the transactions of 
DM processes in jobs/tasks, which will be submitted to the 
Grid. Thus the optimization phase produces one (or more) 
job(s) or set(s) of tasks, where each task corresponds to 
one (or more) DM procedure(s). It is important to 
introduce the concept of process and transaction, which 
will be useful along the architecture description.  A process 
is an application in execution, while a transaction is each 
interaction made by a process with the Grid in order to get 
a set of DM procedures executed by it. In this work, we 
propose an architecture that can be seen as a knowledge 
layer between the DM application and a Grid, in a way 
that, both in the development and in the use of DM 
algorithms, the Grid concept can be transparent to the 
developer and to the final user. The general goal is to 
obtain quality in the development and in the use of these 
algorithms, independently of the Grid configuration and of 
the algorithm implementation. The architecture provides 
components that achieve this “transparency” (during the 
application development) and also a service for tasks 
optimization (in the application execution time).  

The proposed architecture, called SMARTBASEG, is 
currently implemented over OurGrid/MyGrid (Cirne 
2003). It offers specific DM services, encapsulating the 
Grid concepts and possible strategies of how to better use it 
(e.g. parallelism forms). The architecture uses dynamic 
information about the Grid behavior and information about 
previous executions of DM applications on the Grid to 
decide how to best submit the jobs/tasks generated by the 
application procedures. For instance, some tasks of a job 
(that perform some application procedures) can be 
grouped, thus, generating a new job that has fewer tasks 
(where each new task is composed of two or more original 
ones) in order to produce a better load balancing in the 
Grid machines. 

 



SMARTBASEG Overview 

 

Figure 1. SMARTBASEG for the development of DM applications. 

 
In figure 1, there is an overview of SMARTBASEG in the 
DM application developer’s point of view. In this situation, 
the architecture makes available for the developer a set of 
templates, components, and interfaces, which make up 
layers organized in the following manner: the layer closest 
to the application is represented by templates of DM 
applications in Grids layer, in which skeletons for DM 
algorithms are available in order to facilitate the generation 
of applications by the developer. The components of DM 
applications in Grids layer encapsulates Grid concepts and 
also uses components that implement DM functionalities 
based on JDM – the Sun JSR 073 specification for DM 
(Hornik 2004) – and that make up the JDM-based DM 
components layer. They also determine which procedures 
will be sent to the grid in a parallel way. The DM 
processes optimization layer, in the application execution 
time, is responsible for optimizing the performance of an 
application being executed (process). Finally, the Grid 
services layer abstracts the Grid real implementation, thus, 
facilitating the portability of the other layers in the 
architecture. The developer of a DM application can access 
the layer he/she finds most appropriate, even though the 
ideal situation is to develop an application accessing the 
templates of DM applications in Grids layer because there 
are advantages in using already offered services, besides 
the code reuse and a better abstraction of the Grid concept. 
 

 
 

Figure 2. SMARTBASEG for the execution of DM applications. 

 
In figure 2, we see the environment for the execution of 

DM applications proposed by the architecture, in which we 
focus on the Grid services layer and, mainly, on the 
optimization of DM process layer that will be described as 
follows. 

Grid Services Layer. This software layer abstracts the 
Grid concepts (as well as its API) for the rest of the 
architecture and for the applications. The main services 
provided are: the access to the Grid information (obtained 
by the Grid information provider), such as its total number 
of on-line and off-line machines, the characteristics of the 
Grid scheduler, the beginning and finish times of a task in 
its initial, remote and final phases, the current status of a 
task (ready to execute, in execution, finished, not finished 
with failures, and canceled), the moment in which a job 
was added to the Grid and when it was finished, the current 
status of a job (ready to execute, in execution, finished, not 
finished with failures, and canceled); and the submission of 
jobs composed of tasks to the Grid. 

DM Process Optimization Layer. This is the layer 
responsible for applying heuristics based on the knowledge 
of an expert to prepare jobs/tasks to be submitted to the 
Grid. It uses information about the characteristics of DM 
applications and of Grids. The main entities that compose 
it are:  
• Processes Controller: Responsible for creating and 

maintaining the processes corresponding to applications 
(algorithms implementations) being executed on the 
optimization layer. It must also align the transactions 
arising from these processes and maintain them until 
they are finished (these transactions must come with an 
identification of the process that originated them). It’s 
also an activity of the processes controller to load the 
concepts and statistics concerning finished processes 
and to maintain synthetic data about the execution of 
processes/transactions in progress (such as the total of 
transactions already submitted per process, the total 
execution time of the process up to the current moment, 
etc.); 

• Transaction Analyzer/Optimizer: This is an entity of 
the architecture responsible for deciding how the 
procedure(s) present in a transaction must be sent to the 
Grid to obtain better efficiency. To do that, it uses many 
heuristics represented in the knowledge base, concepts 
in the ontologies, and information maintained by other 
entities, such as: Grid conditions (how many machines 
exist, machines “capability”, and “localization” of 
machines, etc.); results of previous executions of the 
application; results of transactions already executed in 
the current process of the application; and the nature of 
the application (the complexity of steps that make up the 
algorithm, the quantity of attributes and of examples, if 
the attributes are continuous or discrete, if the number of 
examples and of attributes decreases during the 
algorithm execution, etc.); 



•  Log: Place where the results of jobs (and their 
respective tasks) submitted to the Grid will be recorded, 
besides the results of decisions taken by the transactions 
analyzer/optimizer; 

• Job Controller: Responsible for submitting to the Grid 
services layer jobs formatted by the transactions 
analyzer/optimizer. It keeps correspondence with the 
process transactions related to these jobs. When a job 
finishes, its controller records the information about it in 
the log and informs this fact to the processes controller;  

• Statistics Generator: Responsible for making available 
synthetic information about the DM applications and the 
Grid to the experts, after processing the log records 
generated in consequence of the executions of DM 
procedures on Grid; 

• Statistics, Ontology and Knowledge Base: Repository 
where are recorded the most important statistical 
information about the performance of DM applications.  
DM and Grid ontologies (maintaining conceptual 
information about the applications and about the Grid) 
are also represented. Finally, there is a knowledge base 
that represents heuristics in order to enable the 
transactions analyzer/optimizer to re-arrange jobs/tasks 
to be submitted to the Grid. These heuristics are based 
on information about the characteristics of procedures 
that are in the transactions as well as the concepts 
represented in the DM and Grid ontology; 

• Transactions Dispatcher: Responsible for: verifying at 
the processes controller which transactions are recently 
arrived from processes, and forwarding the ones 
belonged to the process with the “highest” priority to the 
transactions analyzer/optimizer. When receiving the 
optimization result, it creates a job controller, which 
must be responsible for submitting jobs/tasks to the 
Grid. 

Knowledge Representation 

As mentioned previously, SMARTBASEG uses different 
sources (statistics information, ontology and Knowledge 
base) in order to enable the transactions analyzer/optimizer 
to perform its mission. For the intent of this paper, we will 
focus our explanation only on the ontology and the 
production rules.  

Ontology. The ontology used by SMARTBASEG has 
concepts about DM applications (based in Cannataro and 
Comito 2003) and Grids. The definition that C4.5 is a 
supervised TDIDT classification algorithm is done in the 
DM ontology, as well as the characteristics of the steps that 
compose this algorithm. Moreover, Grid properties as the 
fact that a certain Grid only executes applications with 
independent and idempotent tasks (called Bag-of-Tasks 
applications) are made explicit in the ontology. These 
concepts facilitate the generation of rules in the knowledge 
base to be explored by the optimization layer during the 
execution of DM applications. Besides the Grid and DM 

concepts, in the ontology are also represented the concepts 
that were defined with the goal to integrate concepts from 
these two domains. The concept of process and transaction 
are examples of this.  
 

 

Figure 3. A part of SMARTBASEG’s ontology describing DM and 
Grid concepts. 

In Figure 3, we have a part of an implemented ontology, 
its taxonomies (solid lines) and how its concepts relate to 
each other (traced lines). Particularly, we exemplify the 
definition of the concepts involved in a DM application, in 
this case, the C45Aplic01. In the ontology, it is described 
as software that implements the C4.5 algorithm, which is a 
TDIDT algorithm and belongs to the classification 
function. We can see that the C45Aplic01 has the 
procedures C45AvalAtribC01 and C45AvalAtribD01, 
responsible for the continuous and discrete attribute 
evaluation, according to C4.5 algorithm. Basically, these 
procedures realize the same activity but as they have 
different computing complexity, they are represented 
particularly. On the same figure, it’s possible to note that 
the concepts of process and transaction perform the 
integration between the concepts of application and 
procedures from the DM domain with the concepts of job 
and task from the Grid domain. Finally, we can see that the 
concept of Grid is declared as an entity that has machines 
to perform tasks and a middleware for its own management 
and the schedule of tasks. As an example, we have a grid 
middleware that deals with Bag-of-Tasks applications, the 
OurGrid. 

Knowledge Base. In the knowledge base (or rule base), the 
rules to be explored during the execution of DM 
applications are represented in order to make the 
transactions analyzer/optimizer decide which kind of task 
organizer it will employ. Besides that, the transactions 
analyzer/optimizer can add conditions that will guide the 
scheduler (present in the middleware) of the Grid at the 



moment to determine the machines that will execute the 
tasks. 

... 
IF (GridIsReady) AND NOT (ThereIsOptimizationCondition) 
THEN organize_1_procedure_by_task;       
 
IF (GridIsReady) AND (ThereIsOptimizationCondition) AND 
    (ApplicationMethod = TDIDT) AND 
    (TransactionsProceduresHasTheSameComplexity)  
THEN organize_N_equivalent_procedures_by_task;  
          
IF (GridIsReady) AND (ThereIsOptimizationCondition) AND 
    (ApplicationMethod = TDIDT) AND NOT 
    (TransactionsProceduresHasTheSameComplexity)  
THEN organize_N_different_procedures_by_task;   

... 
Figure 4. Some rules in SmartBaseG’s knowledge base. 

 
In figure 4, we have a piece of the heuristic knowledge 

base of optimization, where pre-defined rules (represented 
as propositional rules to abstract the real ones) cause the 
execution of a specific task organizer given a certain 
situation. Some concepts such as GridIsReady (e.g., Grid is 
up and running with at least one machine online) and 
ThereIsOptimizationCondition (e.g. if the procedures are 
independent and idempotent and their number exceeds that 
of available Grid machines) are represented by rules not 
presented in the figure. With this information, we can see 
that the first rule simply organizes a procedure by task, 
since there is no optimization condition, creating a job with 
the same amount of tasks and DM procedures. The second 
rule determines that we can optimize the TDIDT 
procedures with the same complexities, just by dividing 
them equally. This creates a job that has a number of tasks 
equal to the number of online Grid machines. Finally, the 
third rule determines that procedures with different 
complexities need an organizer that balances the 
distribution of these procedures among tasks resulting in an 
egalitarian computational effort. There are many other 
rules not made explicit here, for example, a rule that 
organizes all kinds of DM procedures in just one task if it 
is determined that these procedures would have a very low 
computational cost, regardless of how many Grid machines 
are available. This prevents unnecessary allocation of 
resources, keeping them free to be assigned to other 
processes. 

Implementing a DM Application Using 

SMARTBASEG 

In order to make a preliminary validation of our proposal, 
it was implemented a TDIDT algorithm, in this case, the 
C4.5 (Quinlan 1992). This algorithm performs successive 
division steps of the initial training set while it builds a 
decision tree. After each iteration, the C4.5 chooses an 
attribute to be the root of the decision tree and divides the 
training set for each value of the chosen attribute. The 

procedure for choosing the best attribute to be the root of 
the tree is the most costly of the algorithm. Because of that, 
it is potentially parallelizable, since it is necessary for its 
realization the execution of a new procedure (called 
attribute evaluation) for each one of the involved attributes. 
All of these evaluations can be done in parallel, since they 
are independent from each other.  

The algorithm used Java interfaces that SMARTBASEG 
made available. Internally, SMARTBASEG has the 
implementations of the DM and Grid ontology, which were 
generated through the Protégé tool (Noy et al. 2001), 
besides some heuristics, generated through the Jeops tool 
(Figueira and Ramalho 2000), to better direct the use of the 
Grid during the execution of the application that 
implements the C4.5 (C45App01). The implemented 
heuristics are the following.  

In the task load balance heuristic, the number of tasks 
produced by the algorithm corresponds to the number of 
available machines in the Grid at a moment.  The tasks can 
be grouped in order to improve load balancing between the 
machines.  Suppose, for instance, that in a Grid BoT, as 
OurGrid, made up of 50 machines, 100 tasks of a DM 
algorithm must be executed.  Typically, each task would be 
submitted for a machine and the others 50 would be in 
queue waiting the release of some machine for their 
processing.  This situation is not desirable since it does not 
optimize the use of the resources, besides provoking a 
home machine overhead.  To solve this, the optimization 
layer using the task load balance heuristic groups the tasks 
by two in accordance with the amount of machines. Thus, 
each machine process two tasks avoiding queue formation. 

The other heuristic is named task balance with 
application knowledge. This heuristic is similar the 
previous one; however, it is enriched with knowledge 
about the application. In such a case, the task grouping is 
made not alone taking into consideration the amount of 
machines, but also the task type and mainly its cost.  In 
TDIDT algorithms, internal calculations can vary strongly 
in function of the type of attribute that is participating of 
these calculations.  For example, in continuous attributes, it 
is always necessary to make a sort of the attribute values 
before the calculation properly said.  In discrete attributes 
this does not occur.  Consequently the evaluation of a 
continuous attribute is much more costly than an 
evaluation of a discrete attribute.  The heuristic basic idea 
is to homogeneously distribute the tasks in accordance with 
the type of attribute preventing excessive evaluations of 
continuous attributes in certain machines. Suppose for 
example, 100 tasks generated by an algorithm that is 
mining a database with five continuous and five discrete 
attributes in a Grid with 50 machines.  This type of 
heuristic leads the optimizer to produce 50 tasks with 2 
attribute evaluations each:  one of continuous attribute and 
another of discrete attribute.   



Experimental Evaluation 

In this section, we exemplify how the use of heuristics 
defined in SMARTBASEG influenced the DM applications 
performance in a Grid.  

For the heuristic evaluation, we generated seven 
artificial databases with 100k examples and 16 attributes. 
The first database has only discrete attributes and the 
second only continuous.  The others are composed of 
continuous and discrete attributes in different proportions.  
Our intention is to exemplify situations where 
SMARTBASEG, having knowledge about the application, 
can improve the partitioning and the dispatch of task to the 
Grid, influencing the performance of the applications. In 
figure 5, we see the execution time of three applications, 
which are different versions of C4.5 algorithm, mining the 
seven different databases. First, a serial version of the 
algorithm was executed, in the local machine without use 
of the Grid.  Then, the second version of the algorithm was 
executed in the Grid, with no heuristic.  Finally, the third 
version of the algorithm, using the heuristics described 
previously, was executed in the same Grid. For the first 
and second database, only the task balance heuristic was 
applied while, for the other databases, the task balance 
with application knowledge heuristic was preferred.   

 

 
Figure 5. Execution time of the three versions of C4.5 algorithm 

using different approaches. 
 

The results show that the use of heuristics improves the 
performance of the applications.  The task balance with 
knowledge heuristic was the most interesting in terms of 
performance even if the proportion of discrete and 
continuous attributes varies. This example shows the major 
contribution of this work that is the possibility of 
representing in a knowledge base different heuristics to be 
used in each specific case. To render these heuristics 
explicit in the optimization layer enables the programmer 
of a DM application to be free of concerns related to the 
application performance in the Grid. 

Conclusion and Future Work 

In this article, we described the SMARTBASEG architecture, 
which is based on the principle that DM applications can 
be characterized in terms of ontology and that this 
characterization enables the definition of an optimization 
layer that can decide the best way to submit procedures of 
a DM application to a Grid. We described examples of 
heuristics used by the optimization layer to make the DM 
application more efficient when executed on a Grid. The 
main contribution of this work is to show that it is possible 
to provide an optimization service for better execution of 
DM applications on Grid. The approach uses knowledge 
about Grids and, mainly, about the DM applications being 
executed, avoiding that the developer of these applications 
be concerned with the particularities of the Grid and the 
means to get better performance on it. It is a multi-
disciplinary approach, since it uses Artificial Intelligence 
techniques to help with the representation of heuristic 
knowledge concerning the preparation of tasks to be 
executed on a Grid. 

Our research continues to focus on identifying 
interesting heuristics to be programmed into 

SMARTBASEG. Specifically, we are investigating the 
simultaneously use of multiple heuristics. We are also 
enriching the formalization of the ontology, including more 
features of DM algorithms and Grids. Another area of 
research is the implementation of the access layer to Grid 
services. This opens the possibility to define more 
heuristics that combine information about the application 
with dynamic characteristics of the Grid. 
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